
World Model Based Sim2Real Transfer for Visual
Navigation

Chen Liu∗, Kiran Lekkala∗ and Laurent Itti ∗†

Abstract

Sim2Real transfer has gained popularity because it helps transfer from inexpensive
simulators to real world. This paper presents a novel system that fuses compo-
nents in a traditional World Model into a robust system, trained entirely within a
simulator, that Zero-Shot transfers to the real world. To facilitate transfer, we use
an intermediary representation that are based on Bird’s Eye View (BEV) images.
Thus, our robot learns to navigate in a simulator by first learning to translate from
complex First-Person View (FPV) based RGB images to BEV representations,
then learning to navigate using those representations. Later, when tested in the
real world, the robot uses the perception model that translates FPV-based RGB
images to embeddings that are used by the downstream policy. The incorporation of
state-checking modules using Anchor images and Mixture Density LSTM not only
interpolates uncertain and missing observations but also enhances the robustness
of the model when exposed to the real-world environment. We trained the models
in a CARLA[2]-based Differential-drive robot simulator. Our methodology’s ef-
fectiveness is shown through the deployment of trained models onto a Real-world
Differential-drive robot. Lastly we release a comprehensive codebase, dataset and
models for training and deployment that are available to the public.

1 Related Work

Traditional Sim2Real transfer for Visual Navigation comprise methods ranging from Fine-tuning[5],
Meta-learning[1], Domain Randomization[9] to System Identification[6]. Some of the recent works,
such as [11] and [12], have shown promising results in attempting to cope with the Sim2real gap
using Style Transfer but might not be suitable for visual navigation on drones and delivery robots
which have limited computational bandwidth.

Recurrent world-models [3] introduces a novel approach to RL, incorporating a Vision model for
sensory data representation and a Memory model for capturing temporal dynamics, all of which
collectively improve agent performance. Apart from the advantages of pertaining each module, some
of the modules in this architecture can be frozen after learning the representation of the environment,
paving the way for more efficient and capable RL agents.

In this paper, we formulate a new setting for Zero-shot Sim2Real transfer for Visual Navigation
without Maps. The system, as outlined in 1, is trained entirely on a simulated dataset and is frozen
and deployed on a real-world mobile robot.
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Figure 1: Left: Working of the System. RGB observation ot at time step t is passed to the ResNet-50 and
compressed into a Bird’s Eye View (BEV) based embedding zt. The LSTM model takes the current latent
representation and uses the historical context to refine the state into ẑt. The control policy takes the current state
and gives a proper action command at. Blue box corresponds to the part of the system that sees the world only
from a BEV based representation. Grey box depicts what would happen if we pass the output of the perception
model into the VAE Decoder. Right: Robustness Enhancement. TSC (in Red) only takes input from the
representation zt when it comes with a high confidence score. Otherwise, it takes the previous prediction by
the LSTM ẑt−1 as interpolation. ASC improves the representation of the incoming observation by making it
in-domain.

2 Proposed Method

2.1 Perception model

The perception model consists of a ResNet-50 [4] that is tasked with processing the observation (ot)
obtained from an RGB camera, with the primary objective of comprehending the environmental
context in which the robot operates. To learn consistent representations, we have opted for a design
wherein the perception model compresses ot into a consistent intermediate representation, zt, which
stays close to the corresponding BEV representation z

′

t. Our choice for BEV representations is rooted
in their capacity to convey the surrounding roadmaps with minimal information redundancy. To learn
the representations from the binary BEV images, we train a Variational Autoencoder (VAE) to encode
a binary BEV image xt into z

′

t ∈ R32. The loss function we optimize for training VAE is available in
the supplementary material.

When training the perception model, we focus on 3 main principles. Firstly, irrespective of whether
ot originates from a simulator or the real-world environment, the output vector of the ResNet-50
should always be consistent by being close to the corresponding BEV vector. Secondly, BEV images
must be represented in a continuous latent space that has smooth transitions to similar BEV images.
Finally, the perception model (ResNet-50) must operate irrespective of any other decoder, i.e. the
representations estimated by the encoder must be sufficient for performing the downstream task
efficiently, Moreover, this would also allow for unsupervised training/fine-tuning of the ResNet-50
using real-world RGB sequences, which we leave for the future work.

We opt to train the ResNet-50 after initializing with ImageNet pre-trained weights on a large-scale
dataset containing FPV-BEV image pairs captured in the simulator. To achieve the FPV-BEV
translation, we align the output vector z ∈ R32 from the ResNet-50 with the corresponding BEV
latent vector z′ through Contrastive Learning (Fig 2). We optimize the model parameters with the
cosine similarity-based contrastive loss and Mean Square Error (MSE) loss for image encoding. The
detailed cost functions can be found in the supplementary material.

2.2 Temporal model with Robustness modules

To enhance the robustness of the perception model and transfer it to the real world setting, we
implemented an additional model in the pipeline. Fig. 1 shows our proposed method of robustness
enhancement. This involves the integration of an LSTM, functioning as a Memory model. The LSTM
was trained on sequences {⟨oj , aj⟩}j=T

j=0 gathered from sequences {T0, T1, .., Tn} in the simulator.
The primary outcome of this Memory model is to effectively infuse historical context {⟨zj , aj⟩}j=T

j=0
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Figure 2: Training pipeline for the perception model. During the training phase, the Resnet model is trained
using FPV (First person view) images from the simulator. During the test phase, its used for inferring the
embeddings of real-world RGB images. These embedding are further passed through the VAE decoder to get
BEV (Birds eye view) observations.

into the prediction of ẑt, which forms a candidate of zt, and enhancing the robustness of the perception
module when confronted with the unseen real-world data. To model the uncertainty in future states,
we add an Mixture Density Network (MDN) on the top of LSTM output layer. The above pipeline can
be formulated as:

ẑt ∼ P (ẑt | at−1, ẑt−1, ht−1) (1)

where at−1, ẑt−1, ht−1 respectively denotes action, state prediction at the previous timestep, and
historical hidden state at the time step t− 1. ẑt is the latent representation that is given as an input
to the policy. The detailed cost functions for training the Memory model (M) can be found in the
supplementary material.

Nonetheless, it is noteworthy that zt, that is obtained from the ResNet-50 may slightly distract from
the latent distribution of BEV images when the perception model is applied to real-world observations
ot, potentially impacting the performance of the LSTM and the policy. To mitigate this concern, we
collected a dataset S comprising of the latent vectors s of 1439 BEV images which we define as the
BEV anchors. In practice, upon obtaining the output vector zt from the ResNet-50, we measure its
proximity to each s ∈ S , subsequently identifying the closest match. We replace zt with the identified
anchor embedding z̄t, ensuring that both the LSTM and the policy consistently uses the pre-defined
BEV data distribution. We pass z̄t as an input to the LSTM, along with the previous action at−1 to
get the output ẑt+1. Again, we find the closest match ŝt ∈ S for ẑt. We call this module Anchor State
Checking (ASC):

z̄ = argmin
s∈S

∥z − s∥ (2)

We also utilize the LSTM model for rejecting erroneous predictions by the ResNet-50, further
enhancing the system’s robustness against noise. If the processed prediction z̄t from the perception
model is estimated with confidence score τt, obtained from either cosine-similarity or MSE, below a
predefined threshold ρ, we deliberately discard z̄t and opt for ẑt. In such instances, we resort to the
output of the LSTM at the previous time-step. This module is known as Temporal State Checking
(TSC):

ẑt =

{
z̄t, τt ≥ ρ,

ẑt−1, τt < ρ.
(3)

Apart from adding robustness to the system using TSC, the utilization of the Memory model also
serves as the crucial purpose of performing interpolation for the robots state in instances where actual
observations ot are delayed. This ensures the continuity and reliability of the entire system. There is
often a notable discrepancy in the update frequencies between control signals and camera frames.
Typically, control signals exhibit a significantly higher update rate compared to the incoming stream
of camera frames.
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Figure 3: Evaluation on the Validation dataset. Left: We constructed two 6-class validation datasets: one from
the simulator (second row) and another from street-view data (third row). The first row depicts the Bird’s eye
view (BEV) of the corresponding RGB images, which forms the basis for each class. Right: We compared our
two contrastive learning approaches (MSE-based and Cosine similarity-based) against a 6-class CNN classifier.
Our methods outperformed the baseline on both the unseen simulation dataset and the real-world validation
dataset as shown above.

Figure 4: Experiements on the Test Dataset Each double-row corresponds to a data sequence. In the upper
portion of the table, we assessed our method independently of the LSTM on an unseen temporal sequence from
the simulator, contrasting it with the baseline CNN classifier. In the lower portion, we compared the performance
of system with and without LSTM on a real-world data sequence. Note that dashes in the table indicate the
absence of a class in the respective sequence.

3 Evaluation and Results

We evaluated the performance of our ResNet-50 model using the Validation dataset and the results
are shown in Figure 3. Our perception model identifies the closest matching class for the output
embedding. The baseline is a ResNet-50 model trained on a 6-class training dataset comprising
140,213 labelled FPV images.

Following a similar approach, we used the Test dataset to evaluate the entire system. Apart from
the accuracy also used Cross entropy (CE) and Mean Square error (MSE) to judge the quality of
reconstructions by the LSTM model. These results are shown in Figure 4. The metrics presented
in this table exhibit a slight decrease compared to Figure 3. This can be attributed to the increased
presence of abnormal observations and higher ambiguity between classes within the time-series data
obtained from the robot, as opposed to the manually collected and labelled dataset in the validation
dataset. For additional details regarding the experiments, please refer to the supplementary material.
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Appendices
In this supplementary material, we offer further context and elaborate on details that were not included
in the paper World Model Based Sim2Real Transfer for Visual Navigation.

A Loss Function

To learn the representations from the binary BEV images, we train a Variational Autoencoder (VAE)
to encode a binary BEV image xt into z

′

t ∈ R32. and optimize the following loss function:

LV AE =

B∑
i=0

−(yi · log(xi) + (1− yi) · log(1− xi))

+ β ·KL(N (µi, σ
2
i ) || N (0, 1)))

(1)

In the above loss function KL divergence is the Kullback Leibler divergence, y is the ground truth for
reconstruction and B is the batch size. Using this loss function, the VAE Encoder will learn to embed
the BEV observations xi into a smooth Gaussian manifold that allows 2 BEV observations that are
very similar, for example 2 straight roads, but a have slight variation in the angle to be closer, than a
straight road and an intersection. These are the BEV embeddings the corresponding RGB images
needs to be close with.

We optimize the parameters of the perception model V with the cosine similarity-based contrastive
loss for image encoding.

Li
BEV = −log

exp(zi · z′i/τ)∑N
j=0 exp(zi · z′j/τ)

Li
FPV = −log

exp(z′i · zi/τ)∑N
j=0 exp(z

′
i · zj/τ)

Lcontrastive =

N∑
i=0

(Li
BEV + Li

FPV )/2

(2)

where τ is a temperature hyper-parameter, and N denotes the training batch size. Apart from the
cosine similarity-based contrastive loss, we also attempt to use the Mean Square Error (MSE) loss
function:

Lcontrastive = ∥z − z′∥2 (3)

We optimize M with the below loss function:

LM = − 1

T

T∑
t=1

log(

K∑
j=1

θ · N (zt|µj , σj)) (4)

where {T,K, θj ,N (zt|µj , σj)} is, respectively, the training batch size, number of Gaussian models,
Gaussian mixture weights with the constraint

∑K
j=1 θj = 1, and the probability of ground truth at

time step t conditioned on predicted mean µj and standard variance σj for Gaussian model j.

B Control model

To speedup RL for the control model, we intentionally allocate the majority of challenges to other
components in the pipeline. Consequently, the training of our policy becomes a relatively straight-
forward endeavour. We accomplished this by training a policy employing the PPO algorithm [10].
The design of the reward function is rooted in proportionality to the number of waypoints the robot
achieves to the designated goal point. In each timestep, the policy receives the current embedding
of the observation zt concatenated with the directional vector pointing towards the waypoint tasked
with producing a pair of (Throttle, Steer) values.
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Figure 1: Overview of our system We first train the visual navigation system on a large-scale dataset
collected in the simulator and deploy the frozen model in an unseen real-world environment.

C Experimental platform and setup

We collected the train dataset from the CARLA simulator to train both the Perception and the
Memory model. Along with that, we also collected the validation and the test datasets from 2
different real-world sources. Following are the details on the collected datasets.

C.1 Data collection

C.1.1 Train dataset from CARLA simulator

# of FPV-BEV Pairs # of Sequences

Town01 201247 609
Town02 100206 301
Town03 202242 633
Town04 201784 385
Town05 100404 202
Town06 201333 400
Town07 201960 478

Town10HD 201332 317
Total 1410508 3325

Table 1: Statistics of the training dataset.

Within the CARLA simulator, we have access to the global waypoints various trajectories. We added
multi-camera system on the robot to obtain the data. To allow some uncertainty, we randomly sampled
a range of different orientations and locations. Leveraging this setup, we facilitated the generation of
a large dataset of FPV-BEV images. We augmented the simulator’s realism by introducing weather
randomization and non-player traffic into the simulated environment. C.1.1 presents the statistics of
trajectories sampled across eight distinct CARLA simulator maps. These trajectories are initiated
from randomized start points and conclude upon either the successful completion of a task or failure.
Along these trajectories, corresponding FPV and BEV images are concurrently captured. The FPV
images are captured in a size of 84 × 84 × 3, while the BEV images are acquired at a size of
64× 64× 1.
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C.1.2 Validation dataset from Google Street View

Using the Google Street View API, we obtained all the panoramic images from various locations on
the USC campus. The panoramic images were segmented with a Horizontal Field of View (FoV) of
90 degrees and are manually segregated into different 6 different classes. The validation dataset does
not have any temporal sequencing and is primarily focused on having a broader data distribution.
Due to these reasons, this dataset becomes an optimal choice for evaluating the perception model.

C.1.3 Test dataset from Beobotv3

To evaluate the quality of representations estimated by the entire system, we record a video sequence
using a mobile robot. More precisely, we recorded a set of 5 ROS Bag sequences at different locations
of the USC campus. Later, we labelled all the frames in a ROS Bag sequence, similar to the above
paragraph. However, unlike the validation set, the test dataset has temporal continuity, which would
help us to judge the system better.

C.2 Experimental platform

C.2.1 Scoomatic in CARLA

The CARLA simulator had been primarily tailored to self-driving applications, with a specific focus
on synchronous-drive vehicles. Since all the vehicles in CARLA uses Ackermann steering, we
further developed an existing differential drive setup using Schoomatic [8] and upgraded the CARLA
simulator. We find this necessary because our real-world hardware system is based on differential-
drive and to enable seamless transfer without any fine-tuning, both the control systems need to have
similar dynamics. Consequently, it exhibited a conspicuous deficiency in accommodating differential-
drive agents. In response to this limitation, Luttkus [8] designed a scheme for the integration of a
differential-drive robot into the CARLA environment. Building upon their work, we undertook the
development of a dedicated simulator catering to differential-drive robots, subsequently migrating it
into the newly introduced CARLA v0.9.13.

Our enhancements extended beyond mere implementation, including improvements to the stability of
motion through the fine-tuning of its physical configuration. Additionally, we implemented a sensor
designed to respond to collisions with curbs, in order to keep the robot running on roads. To ensure
accessibility and ease of utilization, we have thoughtfully encapsulated the simulator within a readily
deployable Docker image, which is shared for public use.

C.2.2 Beobotv3

For evaluating Zero-shot Sim2Real transfer, we built a hardware apparatus which is a Non-Holonomic,
Differential-drive robot (Beobotv3) for the task of visual navigation. Our system is implemented
using the ROS (Robotic Operating System) middleware and uses a Coral EdgeTPU, which is an ASIC
chip designed to run CNN models for edge computing for all the compute. We used this particularly
to run the forward inference of the ResNet-50 [4] through a ROS nodes. The models are trained using
the PyTorch framework and are integrated with the ROS API for inference. We integrated the RLlib
[7] framework with Pytorch and CARLA to train the policy using RL.

C.3 Codebase for the system

As part of our open-source framework, we are realising 3 repositories, that allow users to integrate
our models and system into their framework. Following are the brief outlines for each of them:

C.3.1 Model pretraining

The code pertaining to this repository allows the users to train CNN and LSTM parts of our system
on offline trajectory sequences using our method.
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Figure 2: RL experiments using BEV representations. We notice that the BEV representations
enable the agent to learn faster when the waypoint threshold is higher. Green and orange correspond
to waypoint threshold of 5m, resolution of 1. Blue and Yellow corresponds to waypoint threshold of
1m, resolution of 1.

C.3.2 RL training

With our efficient implementation of CARLA API with RLlib integration, we were able to achieve
simulator training at 1000 FPS. With the objective of enabling distributed policy training, we
integrated our compiled Scoomatic docker-based server.

C.3.3 System deployment

We also release ROS based code that allows users to integrate the above modules on their real-world
robot. This specifically consists of ROS based APIs to load and infer the Pytorch models using the
subscribed topics.

Apart from the above repositories, we also release a large dataset of FPV-BEV trajectory sequences
collected by the Schoomatic robot in the CARLA simulator along with the pre-trained models.

D Additional Experiment

We performed RL experiments by deploying the policy trained in the CARLA simulator, which
can be found here 2. We used the BEV representations to learn to navigate to a goal location with
different waypoint density and waypoint threshold (threshold from the waypoint to be for obtaining
the reward). We noticed that BEV representations tend to learn faster when the threshold is higher.

E Discussion and Conclusion

In this paper we proposed a robust navigation system that is trained entirely in a simulator and frozen
when deployed. We learn compact embeddings of an RGB image for Visual Navigation that are
aligned with those of corresponding BEV images. By decoupling the perception model from the
control model, we get an added advantage of being able to deploy the model onto a future robot with
unknown dynamics. This approach also allows us to pretrain the perception and the memory model
using offline datasets. Lastly, we release software and models for efficient training and deployment
of the model onto a real world robot.
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