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Abstract

Building on recent advancements in transformer-based approaches for domestic
robots performing ’knolling’—the art of organizing scattered items into neat ar-
rangements—this paper introduces Knolling bot 2.0. Recognizing the challenges
posed by piles of objects or items situated closely together, this upgraded system
incorporates a self-supervised graspability estimation model. If objects are deemed
ungraspable, an additional behavior will be executed to separate the objects before
knolling the table. By integrating this grasp prediction mechanism with existing
visual perception and transformer-based knolling models, an advanced system capa-
ble of decluttering and organizing even more complex and densely populated table
settings is demonstrated. Experimental evaluations demonstrate the effectiveness
of this module, yielding a graspability prediction accuracy of 95.7%.

1 Introduction

Domestic robots are increasingly being recognized as valuable aids for routine human tasks. Among
these, a critical manipulation task is organizing and tidying tables. [1–7]. Unlike structured industrial
settings, household environments are dynamic, with a diverse array of items and ever-changing
configurations [8–10]. Furthermore, human preferences play a pivotal role in defining what is
considered ’tidy’, introducing an additional layer of complexity [11–16]. For a robot to be effective
in such a setting, it must not only detect and recognize objects but also understand the context in
which they are placed and align its actions with human aesthetic and organizational preferences.

Recent studies have drawn parallels from the field of natural language processing, conceptualizing
objects on a table as words and the organized table itself as a sentence. Just as words can be rearranged
in multiple ways to convey the same meaning in a sentence, objects can be organized in various
configurations, all of which can be considered tidy [17]. When employing traditional supervised
learning, which relies on one-to-one mapping, to address multi-label learning, it frequently produces
an output that averages the labels. [18]. Given the multifaceted nature of tidiness, where multiple
configurations can be valid, we use an auto-regression transformer-based model to predict the target
position of objects [19]. While such methods have shown promise in knolling tasks, challenges arise
when objects are closely packed or stacked, a common scenario in real-world settings [20–24].
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Figure 1: Knolling bot 2.0 Pipeline.(a) Five colored objects closely clustered on the table. (b)
Top row: Four images depicting the robot arm in the process of separating objects. Bottom row:
Corresponding top-down camera views for each image above, annotated with outputs from the
visual perception and graspability estimation models. (c) Two images show the robot performing
the knolling task. (d) Final arrangement post-knolling: The robot has returned to its origin, and
the objects are neatly organized on the front left of the table. For a comprehensive view of this
demonstration, refer to the supplementary movie1.

Self-supervised learning allows the robot to generate its supervisory data automatically. It offers
a way to harness vast amounts of unlabeled data, allowing robots to learn from interactions with
their environment without the need for explicit human supervision [25–30]. For the knolling bot, the
self-supervised learning paradigm is particularly beneficial. By interacting with objects on a table,
the robot can generate a rich dataset that captures the objects and environment dynamics.

In this study, a key contribution is proposing a graspability estimation model, developed through a
self-supervised learning framework. This model leverages the output of a visual perception model,
equipping the robot with the capability to assess the graspability of objects on a table. If an object
is predicted to be ungraspable due to its proximity to others or its position in a stack, the robot arm
executes separating behaviors on the object, ensuring a successful grasp. This research aims to develop
a robotic system adept at table organization. The methodologies introduced in this work are versatile
for potential adaptation to a broader spectrum of domestic tasks. Given the multifaceted challenges of
domestic environments, ranging from various object types to diverse spatial configurations, knolling
bot 2.0 can handle an arbitrary number of objects, irrespective of their color or size. Future endeavors
could explore the scalability of this system, potentially extending its capabilities to larger spaces like
rooms or even entire households.

2 METHOD

The proposed Knolling Bot 2.0 is a comprehensive system that integrates four primary modules, each
designed to address specific challenges in the knolling process.

Visual Perception Model The visual perception model is based on a customized YOLO v8
architecture [31]. As illustrated in Figure 1a, the training process for this model involves three
datasets. The first dataset is derived from simulations using arbitrary cubes. The second dataset
comprises real-world images of arbitrary cubes. The third dataset is more diverse, containing images
of everyday objects such as batteries, electronics, and erasers. The model processes a single (480,
640) RGB image and produces an (N, 4, 2) format dataset, where N represents the number of objects
detected. Each object is associated with four key points, each having two coordinates (x, y). To bridge
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Figure 2: Overview of the Knolling Bot 2.0 modules: (a) Training process of the visual perception
model using three datasets. (b) Self-supervised learning in simulation for training the Graspability
Estimation Model (GEM). (c) Transformer-based knolling model predicting target positions for
objects. (d) Robot behaviors controller executing separation and pick-and-place tasks."

the simulation-to-reality gap, a visual domain randomization technique is applied [32], introducing
variations in brightness, ground textures, and object appearances.

Graspability Estimation Model (GEM) As illustrated in Figure 1b, the self-supervised learning
process used to train the GEM involves a robot arm operating within a simulation environment (Movie
S2). In the simulation, we initialize an arbitrary number of objects, up to a maximum of five, in two
distinct scenarios: crowded and sparse object arrangements. The robot arm attempts to grasp each
object, and upon a successful grasp, the object is removed, creating a new environment configuration.
This dynamic adjustment ensures sample efficiency as the robot continues grasping in the updated
environment, forming a new data pair. This self-generated dataset is then employed to train the GEM
for predicting object graspability.

The model is designed to handle a maximum input length of 5 objects, with each object represented
by 6 features: its location in x, y, yaw, width, length, and a prediction confidence provided by the
visual perception model. When the environment contains more than five objects, the object state list
is partitioned into multiple data pairs for processing. GEM is built around a bidirectional LSTM
network comprising 8 layers and 32 hidden units, with an input size of 6. Activation functions,
including ReLU, are applied to introduce non-linearity, while a Softmax function ensures the output
probabilities are normalized. The model employs CrossEntropyLoss as its loss function, optimizing
it for classification tasks.

Knolling Model The knolling model, depicted in Figure 1c, employs a transformer architecture,
designed to predict the optimal placement of objects on a table. The encoder takes a list of object
state information, such as width and length. The autoregressive nature of the transformer model
is leveraged to predict the target position of objects iteratively. The model training involves two
phases: pre-training and fine-tuning. Pre-training focuses on simpler tasks with fewer objects, while
fine-tuning emphasizes full knolling tasks. Gaussian mixture models (GMM) are used to handle the
inherent variability in object placements.

Robot Arm Controller The robot arm controller, as visualized in Figure 1d, synthesizes the outputs
from the previous models to execute pick and place tasks. It operates in several modes, including
movement between locations, grasping and releasing objects, and object separation. The knolling
model provides target positions, while the visual perception model offers current positions. Cartesian
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Control is employed to ensure smooth trajectories, and the arm can do sweeping or separation
behaviors as required based on the predictions of the grasp-predicting model.

3 Experiments

To evaluate the effectiveness of the Graspability Estimation Model (GEM), we conducted quantitative
experiments comparing it against a baseline method. The baseline relies solely on the prediction
confidence from the visual perception model to determine the graspability of objects. This method
assumes that stacked objects, when viewed from a top-down camera, exhibit specific shapes, leading
to discrepancies between the predicted and actual dimensions of the objects. Thus, the baseline uses
prediction confidence as a heuristic to decide whether the objects can be grasped or not.

For our experiments, we utilized 20,000 data samples from the validation dataset, with each sample
containing 2 to 5 objects. This resulted in a total of 73,777 objects. To ensure a fair comparison,
we treated the threshold as a continuous variable, using an interval of 0.02. We then selected the
threshold value for the baseline that yielded the highest accuracy. Both methods’ prediction errors and
accuracy results are presented in Table 1. We observe a significant improvement in accuracy when
using the GEM over the baseline VP method. The mean prediction error for the GEM is 0.13478,
which is considerably lower than the 0.95588 error of the VP method. The GEM achieves an accuracy
of 95.688%, which is markedly higher than the 77.015% accuracy of the VP method. This substantial
increase in accuracy demonstrates the effectiveness of the GEM in predicting object graspability.
In the confusion matrix (Figure 3), the GEM shows better performance in terms of accuracy and
precision when compared to the baseline VP method. While the GEM tends to be more conservative
in its predictions, leading to a higher FN rate, its significantly reduced FP rate ensures that it is highly
likely to be accurate when it predicts an object as graspable. This makes the GEM a more reliable
model for real-world robotic applications where precision in grasp predictions is crucial.

Table 1: Prediction Errors and Accuracy

Mean Std Min Max Accuracy
VP (Baseline) 0.95588 0.02954 0.53874 0.99324 77.015%
GEM (OM) 0.13478 0.10058 0.11484 0.36035 95.688%

Figure 3: Confusion matrices comparing the baseline Visual Perception (VP) method (left) and our
Graspability Estimation Model (GEM) method (right). The matrices provide a detailed breakdown
of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for both
methods, highlighting the improved accuracy and precision of the GEM

4 Conclusion

In this paper, we introduced Knolling Bot 2.0, a robotic system that integrates visual perception model,
graspability model, knolling model, and robot arm controllers to achieve an arbitrary number of
objects organization. The key contribution in this iteration is incorporating the Graspability Estimation
Model (GEM), which empowers the robot to adeptly handle and organize piles of objects, a common
challenge in real-world settings. In the future, by leveraging DRL, we anticipate achieving more
refined control for downstream tasks, especially in scenarios that require intricate object separation
and closed-loop pick-and-place operations.
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