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Abstract

A key challenge for robotic manipulation in open domains is how to acquire diverse
and generalizable skills for robots. Recent progress in one-shot imitation learning
and robotic foundation models have shown promise in transferring trained policies
to new tasks based on demonstrations. This feature is attractive for enabling robots
to acquire new skills and improve their manipulative ability. However, due to
limitations in the training dataset, the current focus of the community has mainly
been on simple cases, such as push or pick-place tasks, relying solely on visual
guidance. In reality, there are many complex skills, some of which may even
require both visual and tactile perception to solve. This paper aims to unlock the
potential for an agent to generalize to hundreds of real-world skills with multi-
modal perception. To achieve this, we have collected a dataset comprising over
110,000 contact-rich robot manipulation sequences across diverse skills, contexts,
robots, and camera viewpoints, all collected in the real world. Each sequence in
the dataset includes visual, force, audio, and action information. Moreover, we also
provide a corresponding human demonstration video and a language description
for each robot sequence. We have invested significant efforts in calibrating all the
sensors and ensuring a high-quality dataset. The dataset is made publicly available.

1 Introduction

Robotic manipulation requires the robot to control its actuator and change the environment following
a task specification. Enabling robots to learn new skills with minimal effort is one of the ultimate
goals of the robot learning community. Recent research in one-shot imitation learning [10} [13]] and
emerging foundation models [3} 5] draw an exciting picture of transferring trained policies to a new
task given a demonstration. This paper shares the same aspiration.

While the future is promising, most research in robotics only demonstrates the effectiveness of their
algorithms on simple cases, such as pushing, picking, and placing objects in the real world. Two main
factors hinder the exploration of more complex tasks in this direction. Firstly, there is a lack of large
and diverse robotic manipulation datasets in this field [3l], despite the community’s long-standing
eagerness for such datasets. The fundamental problem stems from the huge barriers associated with
data acquisition. These challenges include the arduous task of configuring diverse robot platforms,
creating varied environments, and gathering manipulation trajectories, which require significant effort
and resources. Secondly, most methods focus solely on visual guidance control, yet it has been
observed in physiology that humans with impaired digital sensibility struggle to accomplish many
daily manipulations with visual guidance alone [20]]. This indicates that more sensory information
should be considered in order to learn various manipulations in open environments.

NeurIPS 2023 Workshop on Robot Learning: Pretraining, Fine-Tuning, and Generalization with Large Scale
Models, New Orleans, United States of America



Robot-Human Demonstration in 20TB

Multi-robot Multi-modal

£ f . Py
— ¢ o ¢ ‘;3

Q:u —( Diverse envs #
=

Contact rich
6DoF F/T Joint toruqe Tactile

Force

6DoF TCP_Joint angle Gripper
Action

RH20T

110K+ Robot Episodes
110K+ Human Demos
50M+ Frames
140+ Tasks
Multi-view Multi-skill

Water the plant Slice the lotus root with a knife

Well calibrated Human demo.
& Lang. desc.

Wipe the table with a rag  Install the light b

Figure 1: Overview of our RH20T dataset. We adopt multiple robots and setup diverse environments
for the data collection. The robot manipulation episodes include multi-modal visual, force, audio
and action data. For each episode, we collect the manipulation process with well calibrated multi-
view cameras. Our dataset contains diverse robotic manipulation skills and each episode has a
corresponding human demonstration and language description. In total, we provide over 110K robot
episodes and 110K corresponding human demonstration. The dataset contains over 50 million frames
and over 140 tasks.

To address these problems, we revisit the data collection process for robotic manipulation. In most
imitation learning literature, expert robot trajectories are manually collected using simplified user
interfaces like 3D mice, keyboards, or VR remotes. However, these control methods are inefficient and
pose safety risks when the robot engages in rich-contact interactions with the environment. The main
reasons are the unintuitive nature of controlling with a 3D mouse or keyboard, and the inaccuracies
resulting from motion drifting when using a VR remote. Additionally, tele-operation without force
feedback degrades manipulation efficiency for humans. In this paper, we equipped the robot with
a force-torque sensor and employed a haptic device with force rendering for precise and efficient
data collection. With the goal that the dataset should be representative, generalized, diverse and
close to reality, we collect around 150 skills with complicated actions other than simple pick-place.
These skills were either selected from RLBench [18] and MetaWorld [40]], or proposed by ourselves.
Many skills require the robot to engage in contact-rich interactions with the environment, such as
cutting, plugging, slicing, pouring, folding, rotating, etc. We have used multiple different robot arms
commonly found in labs worldwide to collect our dataset. The diversity in robot configurations can
also aid algorithms in generalizing to other robots.

So far, we have collected around 110,000 sequences of robotic manipulation and 110,000 correspond-
ing human demonstration videos for the same skills. This amounts to over 40 million frames of
images for the robotic manipulation sequences and over 10 million frames for the human demonstra-
tions. Each robot sequence contains abundant visual, tactile, audio, and proprioception information
from multiple sensors. The dataset is carefully organized, and we believe that a dataset with such
diversity and scale is crucial for the future emergence of foundation models in general skill learning,
as promising progress has been witnessed in the NLP and CV communities [6}, 311, 22].

2 RH20T Dataset

We introduce our robotic manipulation dataset, Robot-Human demonstration in 20TB (RH20T), to
the community. Fig. [T|shows an overview of our dataset.

2.1 Properties of RH20T

RH20T is designed with the objective of enabling general robotic manipulation, which means that
the robot can perform various skills based on a task description, typically a human demonstration
video, while minimizing the notion of rigid tasks. The following properties are emphasized to fulfill
this objective.

Diversity The diversity of RH20T encompasses multiple aspects. To ensure task diversity, we
selected 48 tasks from RLBench [18]], 29 tasks from MetaWorld [40], and introduced 70 self-
proposed tasks that are frequently encountered and achievable by robots. In total, it contains 147
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Figure 2: (a) Statistics on the amount of robotic manipulation for different tasks. (b) Statistics on the
execution time of different robotic manipulations in our dataset.

tasks, consisting of 42 skills (i.e., verbs). Hundreds of objects were collected to accomplish these
tasks. To ensure applicability across different robot configurations, we used 4 popular robot arms, 4
different robotic grippers, and 3 types of force-torque sensors, resulting in 7 robot configurations.
Details about the robot configurations are provided in Appendix B.

To enhance environment diversity, we frequently replaced over 50 table covers with different textures
and materials, and introduced irrelevant objects to create distractions. Manipulations were performed
by tens of volunteers, ensuring diverse trajectories. To increase state diversity, for each skill,
volunteers were asked to change the environmental conditions and repeat the manipulation 10 times,
including variations in object instances, locations, and more. Additionally, we conducted robotic
manipulation experiments involving human interference, both in adversarial and cooperative settings.

Multi-Modal We believe that the future of robotic manipulation lies in multi-modal approaches,
particularly in open environments, where data from different sensors will become increasingly
accessible with advancements in technology. In the current version of RH20T, we provide visual,
tactile, audio, and proprioception information. Visual perception includes RGB, depth, and binocular
IR images from three types of cameras. Tactile perception includes 6 DoF force-torque measurements
at the robot’s wrist, and some sequences also include fingertip tactile information. Audio data includes
recordings from both in-hand and global sources. Proprioception encompasses joint angles/torques,
end-effector Cartesian pose and gripper states. All information is collected at the highest frequency
supported by our workstation and saved with corresponding timestamps, and the details are given in
Appendix B.

Scale Our dataset consists of over 110,000 robot sequences and an equal number of human se-
quences, with more than 50 million images collected in total. On average, each skill contains
approximately 750 robot manipulations. Fig. 2] (a) provides a detailed breakdown of the number of
manipulations across different tasks in the dataset, showing a relatively uniform distribution. Fig. 2]
(b) presents statistics on the manipulation time for each sequence in our dataset. Most sequences have
durations ranging from 10 to 100 seconds. With its substantial volume of data, our dataset stands as
the largest in our community at present.

2.2 Data Collection and Processing

Unlike previous methods that simplify the tele-operation interface using 3D mice, VR remotes,
or mobile phones, we place emphasis on the importance of intuitive and accurate tele-operation
in collecting contact-rich robot manipulation data. Without proper tele-operation, the robot could
easily collide with the environment and generate significant forces, triggering emergency stops.
Consequently, previous works either avoid contact [[19] or operate at reduced speeds to mitigate these
risks.

Collection Fig. 3| (a) shows an example of our data collection platform. Each platform contains
a robot arm with force-torque sensor, gripper and 1-2 inhand cameras, 8-10 global cameras, 2
microphones, a haptic device, a pedal and a data collection workstation. All the cameras are
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Figure 3: (a) Illustration of our data collection platform. (b) We display the point cloud generated by
fusing the RGBD data from the multi-view cameras mounted in our data collection platform. The red
pyramids indicate the camera poses.

extrinsically calibrated before conducting the manipulation. The human demonstration video is
collected on the same platform by human with an extra ego-centric camera. Tens of volunteers
conducted the robotic manipulation according to our task lists and text description. We make our
tele-operation pretty intuitive and the average training time is less than 1 hour. The volunteers are
also required to specify ending time of the task and give a rating from O to 9 after finishing each
manipulation. 0 denotes the robot enters the emergency state (e.g., hard collision), 1 denotes the task
fails and 2-9 denotes their evaluation of the manipulation quality. The success and failure cases have
aratio of around 10:1 in our dataset.

Processing We preprocess the dataset to provide a coherent data interface. The coordinate frame of
all robots and force-torque sensors are aligned. Different force-torque sensors are tared carefully. The
end-effector Cartesian pose and the force-torque data are transformed into the coordination system of
each camera. Manual validation is performed for each scene to ensure the camera calibration quality.
Fig.[3| (b) shows an illustration of rendering different component of the data in a unified coordinate
frame and demonstrates the high-quality of our dataset. The detailed data format and data access
APIs are provided on our website.

3 Discussion and Conclusion

In this paper we present the RH20T dataset for diverse robotic skill learning. We believe it can
facilitate many areas in robotics, especially for robotic manipulation in novel environments. We open
source the dataset and hope to promote the development of our community. In the future, we hope to
extend our dataset to broader robotic manipulation, including dual-arm and multi-finger dexterous
manipulation.

References

[1] Michal Bednarek, Piotr Kicki, and Krzysztof Walas. On robustness of multi-modal fu-
sion—robotics perspective. Electronics, 9(7):1152, 2020.

[2] Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and
Vikash Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic
augmentations and action chunking. arXiv preprint arXiv:2309.01918, 2023.

[3] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[4] Alessandro Bonardi, Stephen James, and Andrew J Davison. Learning one-shot imitation from
humans without humans. IEEE Robotics and Automation Letters, 5(2):3533-3539, 2020.



[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Jasmine Hsu, Julian Ibarz,
Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan Julian, Dmitry
Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav
Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta,
Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo, Grecia Salazar,
Pannag R. Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan,
Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun
Xu, Tianhe Yu, and Brianna Zitkovich. RT-1: robotics transformer for real-world control at
scale. In Robotics: Science and Systems (RSS), 2023.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models

are few-shot learners. Advances in Neural Information Processing Systems (NeurIPS), 33:
1877-1901, 2020.

[7] Shaowei Cui, Rui Wang, Junhang Wei, Jingyi Hu, and Shuo Wang. Self-attention based visual-
tactile fusion learning for predicting grasp outcomes. IEEE Robotics and Automation Letters, 5
(4):5827-5834, 2020.

[8] Sudeep Dasari and Abhinav Gupta. Transformers for one-shot imitation learning. In Conference
on Robot Learning (CoRL), pages 2071-2084. PMLR, 2020.

[9] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning.
In Conference on Robot Learning (CoRL), volume 100, pages 885-897. PMLR, 2019.

[10] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAl Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in
Neural Information Processing Systems (NeurIPS), 30, 2017.

[11] Mark Edmonds, Feng Gao, Xu Xie, Hangxin Liu, Siyuan Qi, Yixin Zhu, Brandon Rothrock,
and Song-Chun Zhu. Feeling the force: Integrating force and pose for fluent discovery through
imitation learning to open medicine bottles. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3530-3537. IEEE, 2017.

[12] Nima Fazeli, Miquel Oller, Jiajun Wu, Zheng Wu, Joshua B Tenenbaum, and Alberto Rodriguez.
See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion.
Science Robotics, 4(26):eaav3123, 2019.

[13] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual
imitation learning via meta-learning. In Conference on Robot Learning (CoRL), pages 357-368.
PMLR, 2017.

[14] Maxwell Forbes, Michael Chung, Maya Cakmak, and Rajesh Rao. Robot programming by
demonstration with crowdsourced action fixes. In Proceedings of the AAAI Conference on
Human Computation and Crowdsourcing, volume 2, pages 67-76, 2014.

[15] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese,
and Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video
demonstration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8565-8574, 2019.

[16] Tiancheng Huang, Feng Zhao, and Donglin Wang. One-shot imitation learning on heterogeneous
associated tasks via conjugate task graph. In International Joint Conference on Neural Networks
(IJCNN), pages 1-8. IEEE, 2021.

[17] Stephen James, Michael Bloesch, and Andrew J Davison. Task-embedded control networks for
few-shot imitation learning. In Conference on Robot Learning (CoRL), pages 783-795. PMLR,
2018.

[18] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):
3019-3026, 2020.

[19] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey
Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning.
In Conference on Robot Learning (CoRL), pages 991-1002. PMLR, 2021.



[20] Roland S Johansson, J Randall Flanagan, and Roland S Johansson. Sensory control of object
manipulation. Sensorimotor control of grasping: Physiology and pathophysiology, pages
141-160, 20009.

[21] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic
reinforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

[22] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollér, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

[23] Michelle A Lee, Yuke Zhu, Peter Zachares, Matthew Tan, Krishnan Srinivasan, Silvio Savarese,
Li Fei-Fei, Animesh Garg, and Jeannette Bohg. Making sense of vision and touch: Learning
multimodal representations for contact-rich tasks. IEEE Transactions on Robotics, 36(3):
582-596, 2020.

[24] Fengming Li, Qi Jiang, Wei Quan, Shibo Cai, Rui Song, and Yibin Li. Manipulation skill
acquisition for robotic assembly based on multi-modal information description. IEEE Access, 8:
6282-6294, 2019.

[25] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured
data. In Robotics: Science and Systems (RSS), 2021.

[26] Zhao Mandi, Fangchen Liu, Kimin Lee, and Pieter Abbeel. Towards more generalizable one-
shot visual imitation learning. In IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2022.

[27] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
Gao, John Emmons, Anchit Gupta, Emre Orbay, et al. Roboturk: A crowdsourcing platform
for robotic skill learning through imitation. In Conference on Robot Learning (CoRL), pages
879-893. PMLR, 2018.

[28] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and generalization
of motor skills by learning from demonstration. In IEEE International Conference on Robotics
and Automation (ICRA), pages 763-768. IEEE, 2009.

[29] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu,
Evan Shelhamer, Jitendra Malik, Alexei A Efros, and Trevor Darrell. Zero-shot visual imitation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 2050-2053, 2018.

[30] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau B616ni, and Sergey Levine. Vision-
based multi-task manipulation for inexpensive robots using end-to-end learning from demonstra-
tion. In IEEE International Conference on Robotics and Automation (ICRA), pages 3758-3765.
IEEE, 2018.

[31] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on
Machine Learning (ICML), pages 8821-8831. PMLR, 2021.

[32] Nathan Ratliff, ] Andrew Bagnell, and Siddhartha S Srinivasa. Imitation learning for locomotion
and manipulation. In 2007 7th IEEE-RAS International Conference on Humanoid Robots, pages
392-397. IEEE, 2007.

[33] Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav Gupta. Multiple interactions made
easy (mime): Large scale demonstrations data for imitation. In Conference on Robot Learning
(CoRL), pages 906-915. PMLR, 2018.

[34] Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni
Ben Amor. Language-conditioned imitation learning for robot manipulation tasks. Advances in
Neural Information Processing Systems (NeurIPS), 33:13139-13150, 2020.

[35] Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
Philippe Hansen-Estruch, Quan Vuong, Andre He, et al. Bridgedata v2: A dataset for robot
learning at scale. arXiv preprint arXiv:2308.12952, 2023.

[36] Zheng Wu, Wenzhao Lian, Vaibhav Unhelkar, Masayoshi Tomizuka, and Stefan Schaal. Learn-
ing dense rewards for contact-rich manipulation tasks. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 6214-6221. IEEE, 2021.



[37]

[38]

[39]

[40]

[41]

[42]

Taozheng Yang, Ya Jing, Hongtao Wu, Jiafeng Xu, Kuankuan Sima, Guangzeng Chen, Qie
Sima, and Tao Kong. Moma-force: Visual-force imitation for real-world mobile manipulation.
arXiv preprint arXiv:2308.03624, 2023.

Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Gupta, Pieter Abbeel, and Lerrel
Pinto. Visual imitation made easy. In Conference on Robot Learning (CoRL), volume 155,
pages 1992-2005. PMLR, 2020.

Tianhe Yu, Chelsea Finn, Sudeep Dasari, Annie Xie, Tianhao Zhang, Pieter Abbeel, and Sergey
Levine. One-shot imitation from observing humans via domain-adaptive meta-learning. In
Robotics: Science and Systems (RSS), 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning, pages 1094-1100. PMLR, 2019.

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter
Abbeel. Deep imitation learning for complex manipulation tasks from virtual reality teleopera-
tion. In IEEE International Conference on Robotics and Automation (ICRA), pages 5628-5635.
IEEE, 2018.

Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei
Bai, Mrinal Kalakrishnan, Sergey Levine, and Chelsea Finn. Watch, try, learn: Meta-learning

from demonstrations and rewards. In International Conference on Learning Representations
(ICLR), 2019.



Appendices

A Related work

We briefly review related works in robotic manipulation datasets, zero/one-shot imitation learning,
and vision-force learning methods.

Dataset Our community has been striving to create a large-scale and representative dataset for
a significant period of time. Previous research in one-shot imitation learning has either collected
robot manipulation data in the real world [13]] or in simulation [26]]. However, their datasets are
usually small and the tasks are simple. Some attempts have been made to create large-scale real
robot manipulation datasets [9} [14} [19] 21, 27 33]]. For example, RoboTurk [27] developed a
crowd-sourcing platform and collected data on three tasks using mobile phone-based tele-operation.
MIME [333] collected 20 types of manipulations using Baxter with kinesthetic teaching, but they were
limited to a single robot and simple environments. RoboNet [9]] gathered a significant amount of
robot trajectories with various robots, grippers, and environments. However, it mainly consists of
random walking episodes due to the challenges of performing meaningful skills. BC-Z [19] presents
a manipulation collection of 100 “tasks”, but as pointed out in [26]], they are combinations of 9 verbs
and 6-15 objects. Similarly, RT-1 [5] and RoboSet [2] also collect large-scale manipulation datasets
but focus on a limited set of skills. Concurrently to our work, BridgeData V2 [35]] collects a dataset
with 13 skills across 24 environments. In this paper, we present a larger dataset with a wider range
of skills and environments, with more comprehensive information. More importantly, all previous
datasets put less emphasize on contact-rich manipulation. Our dataset focus more in this case and
include the crucial force modality during manipulation.

Zero/One-shot Imitation Learning The objective of training policies that can transfer to new
tasks based on robot/human demonstrations is not new. Early works [32} 28} [14] focused on imitation
learning using high-level states such as trajectories. Recently, researchers 13} [10} 411 [17} 39} 30,
29,142 [151 134, 141 138, 18| 251, [19} [26] have started exploring raw-pixel inputs with the advancement
of deep neural networks. Additionally, the requirement of demonstrations has been reduced by
eliminating the need for actions. Recent approaches have explored various one-shot task descriptors,
including images [[17, 4], language [34} 25,15} 2], robot video [13} 18, 26], or human video [39,[19].
These methods can be broadly classified into three categories: model-agnostic meta-learning [[13|
39,117, 14, 42]], conditional behavior cloning [10, 18, 19,15, [26]], and task graph construction [15}16]].
While significant progress has been made in this direction, these approaches only consider visual
observations and primarily focus on simple robotic manipulations such as reach, pick, push, or place.
Our dataset offers the opportunity to take a step further by enabling the learning of hundreds of skills
that require multi-modal perception within a single imitation learning model.

Multi-Modal Learning of Vision and Force Force perception plays a crucial role in manipulation
tasks, providing valuable and complementary information when visual perception is occluded. The
joint modeling of vision and force in robotic manipulation has recently garnered interest within
the research community [L1} 24} [12] 23| [1} [7, 136]. However, most of these studies overlook the
asynchronous nature of different modalities and simply concatenate the signals before or after the
neural network. Moreover, the existing research primarily focuses on designing multi-modal learning
algorithms for specific tasks, such as grasping [7]], insertion [23]], twisting [11], or playing Jenga [12].
A recent attempt [37]] explores jointly imitating the action and wrench on 6 tasks respectively. Overall,
the question of how to effectively handle multi-modal perception at different frequencies for various
skills in a coherent manner remains open in robotics. Our dataset presents an opportunity for exploring
multi-sensory learning across diverse real-world skills.



B Data details

Conf. Robot Gripper 6DoF F/T Sensor  Tactile
Cfg1l Flexiv Dahuan AG95 OptoForce N/A
Cfg2 Flexiv Dahuan AG95  ATI Axia80-M20 N/A
Cfg3 URS WSGS50 ATT Axia80-M20  N/A
Cfg4  URS Robotig-85 ATT Axia80-M20  N/A
Cfg5 Franka Franka Franka N/A

Cfg6  Kuka Robotig-85 ATI Axia80-M20 N/A
Cfg7  Kuka Robotig-85 ATI Axia80-M20  uSkin

Table 1: Hardware specification of different configurations.

Conf. | Modal Size Frequency
RGB image 1280x720%3 10 Hz
Depth image 1280x720 10 Hz
Binocular IR image 1280720 10 Hz
Cfg 1-7 Robot joint angle 6/7 10 Hz
Robot joint torque 6/7 10 Hz
Gripper Cartesion pose 6/7 100 Hz
Gripper width 1 10 Hz
6DoF F/T 6 100 Hz
Audio N/A 30 Hz
Cfg7 | Tactile 2x16x%3 200 Hz

Table 2: Data information of different configurations. The first 9 data modality are the same for all
robot configurations. The last data modality of fingertip tactile sensing is only available in Cfg 7.
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