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Abstract

Offline meta-reinforcement learning (OMRL) aims to generalize an agent’s knowl-
edge from training tasks with offline data to a new unknown RL task with few
demonstration trajectories. This paper proposes T3GDT: Three-tier tokens to
Guide Decision Transformer for OMRL. First, our approach learns a global to-
ken from its demonstrations to summarize a RL task’s transition dynamic and
reward pattern. This global token specifies the task identity and prepends as the
first token for prompting this task’s RL roll-out. Second, for each time step t, we
learn adaptive tokens retrieved from top-relevant experiences in the demonstra-
tion. These tokens are fused to improve action prediction at timestep t. Third,
we replace lookup table-based time embedding with Time2Vec embedding that
combines time neighboring relationships into better time representation for RL.
Empirically, we compare T3GDT with prompt decision transformer variants and
MACAW across five different RL environments from both MUJOCO control and
METAWORLD benchmarks.

1 Introduction
Offline reinforcement learning [21] aims at approximating the optimal policy given a static dataset
composed of the pre-collected interactions between the agent and the environment. Offline meta
RL (OMRL) [18, 17] proceeds one step further, and the goal is to approximate the optimal policies
for future unseen tasks when given only a few demonstrations from new tasks. During training, an
OMRL agent will train on multiple tasks and learning-to-learn from a few trajectories collected for
each task. During the evaluation, the OMRL agent faces new unseen tasks, and for each unseen
task, the agent will condition on the demonstration to derive the task-specific policy from few-shot
demonstrations. The derived policy then solves RL problems for that task by interacting with the
environment.

Decision transformer (DT) [3] solves the offline RL by recasting the policy learning as a reward-
conditioned sequence generation problem. The approach is gaining momentum for its simplicity
and promising results. Inspired by the recent success of the few-shot generalization ability of the
prompt-based language model framework, prompt decision transformer (PDT) [29] improves the
DT via a prepended trajectory prompt formulation and uses the prompt sequence right before a test
RL task’ roll-out trajectory as the prefix of the input to the transformer.

In this paper, we propose a new method T3GDT: Three-Tier Tokens to Guide Decision Transformer
for OMRL. The first component in the T3GDT is to learn a guiding token to specify a new task’s
identity from its demonstrations; we call this a global token . The second set of guiding tokens from
the T3GDT is designed to help the action generation at a concrete timestep t. We name these to-
kens, adaptive tokens , and learn them by retrieving relevant experience from demonstrations for cus-
tomized guidance. The third component is about a better time token representation. We revise DT’s
lookup table-based time embedding with Time2Vec, a new time embedding method. Time2Vec
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Figure 1: The overall framework of the model T3GDT. The left panel summarizes the fusion process.
The global token learns transition dynamic and reward function for task recognition; the adaptive to-
kens provide customized guidance for action generation at each t; the Time2Vec is light-weighted
and encodes neighborhood timesteps into similar embedding vectors.

is more parameter efficient and encodes neighborhood timesteps into more similar embedding vec-
tors. We use the global token as a prefix and summation-based embedding fusions for the adaptive
tokens and time token to guide the decision transformer architecture for in-context learning-based
few-shot policy generation in OMRL.

Overall, this paper makes the following contributions:

1. In T3GDT , the action generation will condition on learned three-tier tokens. Global token,
learned from the transition dynamic and reward function, captures the task identity. Adap-
tive tokens, retrieved from the demonstrations, provide customized guidance for each action
generation. Time tokens enable the agent to represent time better with fewer parameters.

2. Our empirical results demonstrate the competitive performance of T3GDT on environ-
ments from both MUJOCO control and the METAWORLD benchmarks. T3GDT outper-
forms SOTA baselines and is more effective than the full model fine-tuning baseline.

2 Method
2.1 Formulation
RL task can be formalized as a Markov decision process M := ⟨S,A,R, T , β⟩, which consists
of a state space S, an action space A, a reward function R : S × A → R, a transition dynamic
T : S × A → S, and an initial state distribution s0 ∼ β. A policy π : S → A will interact with
the environment. At each timestep t ≥ 0, an action at ∼ π(st) is output by the policy π and gets
applied to the environment. After the agent performs action at, the environment transitions into the
next state st+1 ∼ T (st, at) and produces a scalar reward rt ∼ R(st, at) as a feedback measuring
the quality of the action at. During the evaluation phase, the optimality of the policy πM is measured
as the accumulated reward within a time horizon T 1:

π∗
M = argmax

π

T∑
t=0

rt. (1)

Instead of learning by interaction, in offline RL, the agent will learn from a static historical inter-
action trajectories, where each trajectory includes {s0, a0, r0, s1, a1, r1, · · · , sT , aT , rT }. OMRL
targets at learning an agent that can approximate π∗

Mj
for unseen tasks Mj given a handful of

demonstrations by learning from multiple training tasks {Mi}ni=1
2. To achieve positive cross-

task knowledge transfer, OMRL assumes different tasks share the same state, same action space,
and differ in their transition dynamics and the reward functions [31]. We denote training tasks
as a set: {Mi := ⟨S,A,RMi , TMi , βMi⟩}ni=1. Similarly, we denote testing tasks as {Mj :=

⟨S,A,RMj , TMj , βMj ⟩}n
′

j=1. Every training task Mi (or test task Mj) is associated with a set of
demonstration trajectory denoted as DMi (or DMj for test task Mj) that is composed of only
a few, for instance, like 5 or 10, historical interaction trajectories from this RL task. The agent

1We focus on the environments with finite time horizon, but the definition generalizes to T = ∞. We also
skip the constant discount factor for a better reading experience.

2Here we abuse the notations a little, using M denotes both an RL task and its MDP, for few math notations.
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will learning-to-learn using training tasks’ demonstration sets to derive task-specific policy πMi (or
πMj during the evaluation). Training tasks {Mi}ni=1 are associated with a set of roll-out trajec-
tories denoted as {OMi

}ni=1, on which we train their derived task-specific policies {πMi
}ni=1 to

approximate {π∗
Mi

}ni=1. After training, the derived task-specific policy πMj
is supposed to well-

approximate π∗
Mj

.

Offline RL sequences have a unique property: for each t and task Mi, adjacent tokens r̂i,t, si,t, ai,t
are with different modalities, and the transition from timestep t → t + 1: r̂i,t, si,t, ai,t →
r̂i,t+1, si,t+1, is fully determined by the transition dynamic TMi and the reward function RMi ,
which capture the task identity of Mi. Given the demonstration DMi , the agent should learn the
task identity to guide the future action generation. This global token is coarse for action generation
at each t. Adaptive guidance is desired for decision making at different timesteps. The agent should
retrieve location-relevant experience from the demonstration set to imitate. Lastly, an intelligent
agent is supposed to be time aware. Therefore, it can make customized decisions at different phases
to handle complicated tasks. Given a sampled roll-out trajectory segment Segmentz(OMi

) from
Mi:

[r̂zi,o, s
z
i,o, a

z
i,o, · · · , r̂zi,o+k, s

z
i,o+k, a

z
i,o+k], (2)

We introduce the global token and adaptive tokens learning from Segmentz(DMi), detailing the
Time2Vec time embedding and knowledge fusion. We describe the overall framework in Figure 1.

Learning Global Token. When generating an RL sequence, the Markov transition dynamic and
the reward function determine the transition across different timesteps. So we propose to learn
the global token by summarizing the RL transition dynamic and reward pattern from timestep
t → t + 1. The global token helps the agent to distinguish different tasks. Concretely, every
data tuple (r̂z,∗i,t , s

z,∗
i,t , a

z,∗
i,t , s

z,∗
i,t+1, r̂

z,∗
i,t+1) contains a screenshot of the TMi

and RMi
. We concate-

nate the data tuple along the feature dimension as one data for the global token learning. Assume
Segmentz(DMi) contains T such transition tuples, we apply the mean aggregator as set operator
to learn the global token gzMi

to enjoy its permutation invariant property [32, 28]:

gzMi
=

1

T

T∑
t=0

σ(hθg ([r̂
z,∗
i,t , s

z,∗
i,t , a

z,∗
i,t , s

z,∗
i,t+1, r̂

z,∗
i,t+1])), (3)

where σ is the GELU activation, hθg is a linear layer with learnable parameters θg .

Same as all DTs, T3GDT uses a causal transformer [22] for auto-regressive sequence modeling. To
guarantee the global token gzMi

will guide the action generation at all timsteps t, we prepend it right
before Segmentz(OMi

).

Learning Adaptive Tokens. The guidance from the global token gzMi
can be coarse when facing

a specific action learning. The agent should condition on adaptive tokens. At each t, the action azi,t
heavily depends on the current rtg r̂zi,t and the state szi,t. We look back to the demonstration trajectory
by retrieving the top-relevant experience. Concretely, we compare the similarity between [r̂zi,t, s

z
i,t]

with those rtg-state pairs in Segmentz(DMi
) and retrieve the top-m similar rtg-state-action tuples:

{[r̂z,∗i,t,m, sz,∗i,t,m, az,∗i,t,m]} = KNN([r̂zi,t, s
z
i,t] ⇆ Segmentz(DMi), m),

where ⇆ represents the Euclidean distance comparison and the retrieval process. To summarize
those top-m tuples, we use their mean as the final adaptive tokens at t.

[r̂z,∗i,t , s
z,∗
i,t , a

z,∗
i,t ] =

1

m

∑
m

hθa([r̂
z,∗
i,t,m, sz,∗i,t,m, az,∗i,t,m]), (4)

where hθa is a linear layer with learnable parameters θa.

Learning to Embed Time Tokens. An intelligent RL agent should represent time well. The lookup
table-based time encoding is parameter heavy and independently encodes each t. The parameter
size of this lookup table-based embedding layer grows linear with maximum length T . Also, this
embedding does not consider the value and spatial relationship between time tokens when learning
time representations. This is certainly less ideal. We propose to apply Time2Vec [12, 6] for the
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Figure 2: Meta-testing average performance of T3GDT against baselines run over three random
seeds facing unseen tasks. The x-axis represents the training epoch and y-axis is the average accu-
mulated return on testing tasks.

time embedding to enable the agent to be time aware. Time2Vec projects a scalar time step t to an
embedding vector of h dimension:

T2V(t)[i] =

{
ωit/T + φi, if i = 1.

sin (ωit/T + φi), if 1 < i ≤ h.
(5)

Here we need to learn parameter θt := {ωi, φi}. Time2Vec contains a fixed number of parameters
agnostic of the max timestep T . It can encode periodical events into the embedding. Moreover, adja-
cent timesteps have closer embeddings. Overall, Time2Vec is light-weighted, parameter efficient,
and adjacency aware.

Before feeding into the causal transformer, the global token and the retrieval-enhanced rtg, states,
action tokens will go through four different linear layers to project them to hidden spaces of the
same dimensionality h as the time embedding. The projected tokens at each timestep will be added
with their corresponding time embedding vector.

3 Results
We design experiments to demonstrate the few-shot ability of the T3GDT on two RL benchmarks:
MUJOCO control [26] and METAWORLD [31]. Three continuous control meta-environments of
robotic locomotion are CHEETAH-DIR, CHEETAH-VEL, and ANT-DIR. Two other robotic arm
manipulation environments, REACH and PICK&PLACE, are from METAWORLD, the results for
REACHand PICK&PLACE are in the appendix. We have PDT, PTDT [8], and PDT-FT (PDT with
full model finetuning) as baselines :

T3GDT achieves consistent improvements over all baselines. T3GDT achieves the best results
compared with baselines on all five meta-environments. The major results are available in Figure 2
and Table 3. Table 3 shows that the two PDT variations including PDT-FT and PTDT show marginal
improvements over PDT, and require either extra forward or backward passes for gradient estima-
tion. On the other hand, T3GDT gains significant improvements on CHEETAH-VEL, CHEETAH-
DIR, ANT-DIR, and PICK&PLACE environments. The agent trained with T3GDT largely surpassed
the offline data collection policy R̄(DMj

) on three out of five environments and achieved closer
approximations on the other two: CHEETAH-VEL and REACH. Figure 2 shows that T3GDT is
training efficient with respect to the update, especially for the training epoch 0 → 1,000. T3GDT
quickly converges to better task-specific policies compared with other baselines. T3GDT outper-
forms full fine-tuning baseline. While T3GDT performs in-context learning, fine-tuning based
approach performs in-parameter learning. It calculates/estimates the gradient on the data sampled
from the few-shot demonstration. The agent trained with PDT already fits the demonstration set ide-
ally. Therefore, extra updates bring marginal benefits. On the other hand, T3GDT design enables
stronger in-context learning. It is more efficient and stable.

4 Conclusion
Recasting the offline meta reinforcement learning (OMRL) task as a conditional sequence genera-
tion problem using transformers is promising. In this work, we propose a new model T3GDT for
OMRL. We first learn the global token gzMi

to encode the transition dynamic and the reward func-
tion, which specify new task’ identities. Then local adaptive tokens are retrieved as the top-relevant
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experience from new task demonstrations. We also introduce the Time2Vec for better time em-
bedding representations. The learned three-tier tokens guide the DT for action generations in new
RL tasks’ roll-out trajectories. Our method improves over SOTA baselines by providing DT with
stronger in-context guidance learned from few shot demonstrations.
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A Related Work

Offline RL as Sequence Generation. Treating policy learning in offline RL as a sequence gen-
eration problem via the language model is gaining momentum since DT [3]. Concurrent work is
trajectory transformer [11]. TT discretizes independently every dimension of the state, action, and
reward. It models both environment and the policy. During the evaluation, TT adapts beam search
for planning. Bootstrapped Transformer [27] incorporates the idea of bootstrapping and leverages
the learned model to self-generate more offline data to further boost the sequence model training.
ESPER [19] analyzes that DT fails in the stochastic environment because the rtg term depends on
environment stochasticity. It proposes to cluster trajectories and conditions the learning on aver-
age cluster returns. Brandfonbrener et.al [2] theoretically show that the successful scenarios for
the return-conditioned decision transformer would require a stronger assumption on the sample
complexity. Furuta et.al [4] suggests that DT is performing hindsight information matching and
generalizing DT by replacing the rtg term with various other statistics of the future trajectory.

OMRL. Offline meta reinforcement learning (OMRL) targets approximating the task-specific op-
timal policy given a handful of static demonstrations from the task. MACAW [18] formalizes
the OMRL setup and proposes to combine MAML with value-based RL. It increases the expres-
sive power of the meta-learner by using the advantage regression as a subroutine in the inner loop.
Most existing OMRLmethods are adapted from online meta-RL approaches, still rely on context-
conditioned policy trained by TD-learning [25], which may lead to suboptimal performance.

Based on our knowledge, PDT [29] is the first work reframing the OMRL as a conditional sequence
generation problem. It gains significant improvements by investigating the transformer architec-
ture’s strong ability to learn from a few examples and then generalize. Both T3GDT and PDT distill
the policy in the offline dataset to the DT. AD [14] proposes to distill the RL algorithm to the DT
by collecting a large enough offline dataset covering the learning history of the algorithm. Another
loosely-related line of work is under the multi-task RL angle [23, 5, 4, 24, 30, 33]. However, the
main target of the multi-task RL is learning one agent to handle all training tasks, instead of gener-
alizing to future unseen tasks.

Retrieval-Enhanced Transformers. Retrieval enhanced transformer models are widely explored
for various NLP tasks, we provide a short description on the related work in this line.

Rarely developed for RL, retrieval-enhanced transformers for NLP are well-explored. In the NLP
domain, a small language model equipped with a retrieval module is capable of achieving on-par
performance on various tasks compared with large language models [1, 13, 9]. The pretrained
language models save the world knowledge in parameters and the retrievers capture the factual
knowledge in a modular and interpretable paradigm. REALM [7] firstly proposes to jointly train
end-to-end a retrieval system with an encoder language model for open-domain QA. Atlas [10]
trained a retriever together with a seq2seq model and demonstrated its strong few-shot learning
capabilities on various language tasks. It outperforms a 540B parameters model despite having 50x
fewer parameters. RAG [15] designs finetuning approach for language models and neural retrievers
for language generation. Besides, Peng et.al [20] retrieve exemplar text from training data as ‘soft
templates’ for text summarization; Li et.al [16] design lexical-level similarity based retrieval for text
style transfer; UVLP [34] propose retrieval-based multi-granular alignment for vision-and-language
cross-modality alignment, etc.

B More Results

In this section, we first provide a summary of the environments we used, and then show the results on
two other robotic arm manipulation environments, REACH and PICK&PLACE, from METAWORLD.
See table 1 and figure. 3.

Table 1: A summary of the environments we used.
Env S&A-dim # Training Tasks # Test Tasks Description Variation

CHEETAH-VEL 20 & 6 35 5 A cheetah robot to run to achieve a target velocity Target velocity
CHEETAH-DIR 20 & 6 2 2 A cheetah robot run to attain high velocity along forward or backward Direction

ANT-DIR 27 & 8 45 4 A 8-joint ant agent to achieve high velocity along the specified direction Goal Direction
REACH 39 & 4 15 5 A Sawyer robot to reach a target position in 3D space Goal Position

PICK&PLACE 39 & 4 45 5 A Sawyer robot to pick and place a puck to a goal position Puck and goal positions
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Figure 3: Meta-testing average performance of T3GDT against baselines run over three random
seeds facing unseen tasks. The x-axis represents the training epoch and y-axis is the average accu-
mulated return on testing tasks.

Table 2: Few-shot performance of the T3GDT for various environments. In the table, ‘C-Vel’, ‘C-
Dir’, and ‘A-Dir’ represent the ‘CHEETAH-VEL’, ‘CHEETAH-DIR’, and ‘ANT-DIR’ environment
respectively. We report the average and the standard deviation for three random seeds.

Models C-Vel C-Dir A-Dir Reach Pick&Place

R̄(DMj ) -23.5 900.4 351.47 4832.8 535.7

MACAW −120.3± 38.6 500.8± 80.4 253.5± 3.8 3847.2± 74.4 450.8± 45.4
PDT −37.9± 4.6 933.2± 11.4 375.6± 11.7 4827.2± 7.3 497.5± 34.8
PTDT −39.5± 3.7 941.5± 3.2 378.9± 9.3 4830.5± 2.9 505.2± 3.7

PDT-FT −40.1± 3.8 936.9± 4.8 373.2± 10.3 4828.3± 6.5 503.2± 3.9

T3GDT −26.7± 2.3 959.4± 4.0 383.3± 10.4 4832.2± 5.2 569.5± 5.1

C Ablation Studies

Ablation studies to show how learned tokens help. We learn three-tier tokens to guide decision
transformer for OMRL. In this subsection, we empirically investigate how each tier of token helps
with ablation studies. The ablation studies are designed to isolate each component and investigate
their roles. Concretely, we have three variants: T3GDT wo G, which omits global token, T3GDT
wo A, which omits adaptive tokens, and finally T3GDT wo T, in which we replace the proposed
Time2Vec with the previously used lookup table. Table 4 (See Appendix) compares the results
of all three variants and the full model on two robotic locomotion controls and one Sawyer robot
control.

We design the global token gzMi
to learn from the transition dynamic TMi

and the reward function
RMi

, which are necessary and sufficient conditions for task distinguishment. Without the global
token gzMi

, the agent is confused with the task identity. For meta-learning environments where the
test task identities differ significantly, the variant T3GDT wo G has drastically worse performance.
For example, test tasks in CHEETAH-DIR include controlling a robot running to attain high velocity
along either a forward or backward direction. The agent makes poor quality decisions if it fails at
direction recognition. Figure 4(a) contains the accumulated rewards for both forward and backward
test tasks. The agent trained with T3GDT wo G fails to recognize forward tasks, on which the
accumulated reward is < −1, 000, see the blue dashed curve at the bottom. To further investigate
the role of the gzMi

, we visualize their 2D projections in Figure 5 (See Appendix). Global tokens
from different tasks gzMi

are well isolated and clustered from the same task.

In some cases, task identities are more similar to each other. For example for the CHEETAH-VEL,
as described in Table 1, the variation is the target velocity, which is uniformly sampled from the
range of 0 to 3. Similar task identities lead to closer task-specific policies. In this case, the role
of the global token gzMi

will be downplayed, and the help from adaptive tokens will be dominant.
Therefore, the performance of the variant T3GDT wo A, which removes the adaptive tokens, will be
significantly impacted. See Figure 4(d) for the visualizations of all variants. Similar discussion goes
to the PICK&PLACE environment, where the goal position of the objection is uniformly sampled
within a square space, see the last column in Table 4 (See Appendix).
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Table 3: Few-shot performance of the T3GDT for various environments. In the table, ‘C-Vel’, ‘C-
Dir’, and ‘A-Dir’ represent the ‘CHEETAH-VEL’, ‘CHEETAH-DIR’, and ‘ANT-DIR’ environment
respectively. We report the average and the standard deviation for three random seeds.

Models C-Vel C-Dir A-Dir Reach Pick&Place

R̄(DMj
) -23.5 900.4 351.47 4832.8 535.7

MACAW −120.3± 38.6 500.8± 80.4 253.5± 3.8 3847.2± 74.4 450.8± 45.4
PDT −37.9± 4.6 933.2± 11.4 375.6± 11.7 4827.2± 7.3 497.5± 34.8
PTDT −39.5± 3.7 941.5± 3.2 378.9± 9.3 4830.5± 2.9 505.2± 3.7

PDT-FT −40.1± 3.8 936.9± 4.8 373.2± 10.3 4828.3± 6.5 503.2± 3.9

T3GDT −26.7± 2.3 959.4± 4.0 383.3± 10.4 4832.2± 5.2 569.5± 5.1
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Figure 4: Ablation studies on CHEETAH-VEL CHEETAH-DIR, and PICK&PLACE. In (a)(b)(c),
we compare each ablation with the full model on CHEETAH-DIR. Test tasks include running for-
ward and backward. We show the accumulated reward for each task. The solid lines represent the
full model T3GDT for both tasks. The dashed lines represent the result of each ablation version.
For CHEETAH-DIR, the global token is more important. In (d) and (e), we show the results for
CHEETAH-VEL and PICK&PLACE, where the adaptive tokens are more important. Curves repre-
sent the average accumulated reward on test tasks.

As in Figure 4(c) and 4(d), the introduced Time2Vec time embedding accelerates the convergence
speed, especially at the beginning of the training phase. We attribute the advantage to the fewer
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Figure 5: 2D projections of the global tokens gzMi
.

parameters contained in the Time2Vec. The improvement brought by the Time2Vec surpasses
both global and local tokens for PICK&PLACE.

Table 4: We design ablation studies by removing the global token gzMi
, local tokens, and replacing

the Time2Vec with lookup table for time embedding.

Models C-Vel C-Dir Pick&Place

T3GDT wo A -47.8 ± 8.1 950.0 ± 9.7 499.0 ± 33.7
T3GDT wo G -33.0 ± 1.4 680.8 ± 106.9 568.0 ± 5.5
T3GDT wo T -31.3± 4.2 941.6± 4.1 432.5 ± 19.0

T3GDT -26.7 ± 2.3 959.4 ± 4.0 569.5 ± 5.1

Table 5: The robustness of T3GDT for different hyperparameter combinations.

Env
k′ = 10 k′ = 25

m = 3 m = 5 m = 3 m = 5

A-Dir 369.7±16.7 380.0±2.4 374.7± 1.7 390.5±5.3
C-Dir 958.5±9.0 962.8±4.3 962.4± 7.0 963.8 ± 3.1
C-Vel -28.1±4.5 -26.5±1.4 -27.4±1.7 -25.7±1.5

T3GDT is robust to hyperparameters. Labeling the reward for each timestep within a full episode
requires labor. It is desirable if we can still achieve OMRL goal with a few rtg-state-action tuples
rather than full episodes as demonstrations. In this subsection, instead of conditioning on knowl-
edge from a full demonstration trajectory for roll-out sequence generation, we show how T3GDT
performs when learning both the global and adaptive tokens from only a few rtg-state-action tuples.
We note the number of tuples as k′. Moreover, when learning the adaptive tokens, we use KNN to
retrieve the top-m similar rtg-state-action tuples and take their average as the adaptive tokens, see
Eq.(4). Therefore, the retrieved size m is another important hyperparameter. We run T3GDT with
various combinations of the (m, k′) and report both the mean and standard deviation across three
random seeds.

Table 5 shows that T3GDT is robust with respect to different hyperparameter combinations. T3GDT
is data efficient and does not have a strict requirement on the demonstration trajectories’ length. It
can achieve on-par performance by learning global and adaptive tokens from only a short demon-
stration trajectory whose length is k′ = 10.
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