
Language Models as Zero-Shot Trajectory Generators

Teyun Kwon, Norman Di Palo, Edward Johns
The Robot Learning Lab

Department of Computing
Imperial College London

{john.kwon20, n.di-palo20, e.johns}@imperial.ac.uk

Abstract

Large Language Models (LLMs) have recently shown promise as high-level plan-
ners for robots. However, it is often assumed that LLMs do not possess sufficient
knowledge to be used directly for the low-level skills themselves. In this work,
we now address this assumption thoroughly, and study how well a single task-
agnostic prompt, without any in-context examples, can directly predict dense
trajectories for 26 real-world language-based tasks, such as “open the bottle cap”
and “wipe the plate with the sponge”. Videos are available at: https://www.robot-
learning.uk/language-models-trajectory-generators.

Figure 1: (A) A selection of the tasks which we use to study and evaluate the performance of a single,
task-agnostic LLM prompt, without any in-context examples. (B) A taxonomy of requirements of
LLM-based zero-shot methods from the recent literature. We investigate whether LLMs can predict
trajectories for a range of tasks, assuming access to only vision models.

1 Introduction

In recent years, Large Language Models (LLMs) have attracted significant attention and acclaim for
their remarkable capabilities in reasoning about common, everyday tasks [Brown et al., 2020, OpenAI,
2023, Touvron et al., 2023, Anil et al., 2023]. This widespread recognition has since led to efforts in
the robotics community to adopt LLMs for high-level task planning [Wang et al., 2023]. However, for
low-level control, existing proposals have relied on auxiliary components beyond the LLM, such as
pre-trained skills, motion primitives, trajectory optimisers, and numerous language-based in-context
examples (Fig. 1 B). Given the lack of exposure of LLMs to physical interaction data, it is often
assumed that LLMs are incapable of low-level control [Huang et al., 2023, Yu et al., 2023a, Ahn
et al., 2022].

NeurIPS 2023 Workshop on Robot Learning: Pretraining, Fine-Tuning, and Generalization with Large Scale
Models, New Orleans, United States of America

https://www.robot-learning.uk/language-models-trajectory-generators
https://www.robot-learning.uk/language-models-trajectory-generators


However, until now, this assumption has not been thoroughly examined. In this paper, we now inves-
tigate if LLMs have sufficient understanding of low-level control to be adopted as full-stack zero-shot
dense trajectory generators for robot manipulators, without the need for the aforementioned auxiliary
components. We provide an LLM with access to off-the-shelf object detection and segmentation
models, and then require all remaining reasoning for trajectory generation to be performed by the
LLM itself. We also require that the same task-agnostic prompt is used for all tasks, without any
in-context examples.

Given these requirements, we studied whether a prompt could be designed to solve a range of tasks
taken from the recent literature, such as “open the bottle cap” and “wipe the plate with the sponge”.
And through this investigation, we demonstrate, for the first time, that a pre-trained LLM, when
provided with only an off-the-shelf object detection and segmentation model, can guide zero-shot a
robot manipulator by outputting a dense trajectory of poses, without the need for pre-trained
skills, motion primitives, trajectory optimisers, or in-context examples.

2 Problem Formulation

Assumptions and Constraints We design a task-agnostic prompt to study the zero-shot control
capabilities of LLMs with the following assumptions: (1) no pre-existing motion primitives, policies
or optimisers: the LLM should output the full trajectory itself ; (2) no in-context examples: we study
the ability of LLMs to reason about tasks given their internal knowledge alone, and no part of any
task is mentioned in the prompt, either in the form of examples or instructions; (3) the LLM can
query a pre-trained vision model to obtain information about the scene, but should autonomously
generate, parse and interpret the inputs and outputs; (4) no additional pre-training or fine-tuning on
robotics-specific data: we focus our research on pre-trained and widely available models, so that our
work can be reproduced effortlessly even with limited compute budget. Details of the real-world
experimental setup are presented in Appendix D.

Task Selection In pursuit of objectivity, we opt to benchmark our zero-shot LLM-guided robotic
control against a challenging repertoire of everyday manipulation tasks. We recreated 26 everyday
manipulation tasks from recent robotics papers published at leading conferences [Ahn et al., 2022,
Xiao et al., 2022, Brohan et al., 2022, Yu et al., 2023b], often tackled by relying on hundreds of
manual demonstrations. Success criteria are human-evaluated and designed to mirror those proposed
in the original papers. We randomise the positions and orientations of the objects for each of the five
test trials, provide the task description in natural language to the LLM, and then no additional human
feedback or intervention is allowed. The full list of tasks is shown in Appendix B.

3 Prompt Development

Full Prompt The core motivation of our work is to investigate whether LLMs can inherently guide
robots with minimal dependence on specialised external models and components, in order to provide
effective and useful insights for the robotics community. Through this investigation, we designed
a single task-agnostic prompt for a range of everyday manipulation tasks, which does not require
any in-context examples or task-specific guidance. Fig. 2 illustrates the main information flow in our
framework, showing how the task-agnostic prompt interfaces with the vision models and the robot.

Through our experiments outlined in this section, our final prompt formulation instructs the LLM to
self-summarise and decompose the predicted plan into steps, before generating Python code which,
when run by a standard Python interpreter, outputs a dense trajectory of poses for the end-effector to
follow. We include details fundamental to all tasks, such as coordinate definitions, as well as functions
available for the LLM to call, such as detect_object. We also include instructions which aim to
improve the correctness and reliability of the generated trajectories, such as guidance on step-by-step
reasoning, code generation, and collision avoidance. The full prompt is shown in Appendix E.

We evaluated the full prompt on a set of diverse tasks from the recent literature, such as grasping,
rearranging, drawing, wiping, and more. The task success rates, shown in Appendix B, reveal that
LLMs, when equipped with an off-the-shelf vision model and no external motion primitives, policies,
or optimisers, exhibit notable proficiency in executing the majority of these tasks zero-shot, by
directly predicting a dense trajectory of end-effector poses.

2



Figure 2: An overview of the pipeline. (1) The main prompt along with the task instruction is
provided to the LLM, from which it (2) generates high-level natural language reasoning steps before
outputting Python code (3) to interface with a pre-trained object detection model and execute the
generated trajectories on the robot. (4) After task execution, an off-the-shelf object tracking model
is used to obtain object poses, which are then provided to the LLM as numerical values to detect
whether the task was executed successfully or not.

Table 7-1

Remove 
instruction to 
break down 
trajectory into 
steps

1.6

generate 
everything one 
pass

3.2

Remove 
instruction to 
include in the step 
by step plan when 
to lower gripper to 
make contact with 
the object, if 
necessary

3.2

Remove 
instruction to 
document each 
function it defines, 
and removing that 
it should define 
general, reusable 
functions, but also 
new functions if 
required

3.2

Remove 
instruction to 
name each 
trajectory with a 
number for 
smooth motion 

3.4

Taking out a 
specific phrase in 
the collisions 
avoidance section 
of the prompt

3.4

remove headings 3.4

SU
CC

ES
S 

RA
TE

 (
%)

0

20

40

60

80

100

FULL PROMPT
to chain the trajectory for smooth motion
to describe how best to approach the object
for entire collision avoidance section
to describe the part of the object most suitable for interaction
to describe the shape of the motion trajectory
section headings
to clear objects and the tabletop to avoid collisions
to name each trajectory variable with a number for smooth motion
to define reusable as well as specific functions, and annotate them
to plan when to lower the gripper to make contact with the object
to break down the trajectory generation and execution into steps
to break down the trajectory into steps

ABLATION STUDIES ON THE MAIN PROMPT
Table 7-1-1

Remove 
instructions to 
break down the 
trajectory into 
steps

32 0 0 0 0 0 0 0 0 0 0 0 0

Remove 
instructions to 
break down the 
trajectory 
generation and 
execution into 
steps

0 64 0 0 0 0 0 0 0 0 0 0 0

Remove 
instructions to 
include in the plan 
when to lower the 
gripper to make 
contact with the 
relevant object

0 0 64 0 0 0 0 0 0 0 0 0 0

Remove 
instructions to 
annotate each 
function definition, 
and define 
reusable as well 
as specific 
functions

0 0 0 64 0 0 0 0 0 0 0 0 0

Remove 
instructions to 
name each 
trajectory variable 
with a number for 
smooth motion

0 0 0 0 68 0 0 0 0 0 0 0 0

Remove 
instructions to 
clear objects and 
the tabletop to 
avoid collisions

0 0 0 0 0 68 0 0 0 0 0 0 0

Remove prompt 
section headings

0 0 0 0 0 0 68 0 0 0 0 0 0

Remove 
instructions to 
describe the 
shape of the 
motion trajectory

0 0 0 0 0 0 0 72 0 0 0 0 0

Remove 
instructions to 
describe the part 
of the object most 
suitable for 
interaction

0 0 0 0 0 0 0 0 72 0 0 0 0

Remove entire 
collision 
avoidance section

0 0 0 0 0 0 0 0 0 76 0 0 0

Remove 
instructions to 
describe how best 
to approach the 
object

0 0 0 0 0 0 0 0 0 0 76 0 0

Remove 
instructions to 
chain the 
trajectory for 
smooth motion

0 0 0 0 0 0 0 0 0 0 0 76 0

ORIGINAL 
PROMPT

0 0 0 0 0 0 0 0 0 0 0 0 76

PROMPT

Remove prompt…

1

Figure 3: We investigate the effect of removing parts of the main prompt on task success rates.

Prompt Ablations During the design of this full prompt, we identified several challenges when
using LLMs for low-level control, without access to other external dependencies. In this section, we
now outline these challenges which motivated the final design of the prompt, and accompany them
with results from ablation studies conducted across a diverse set of tasks (Fig. 3). The tasks used for
these ablation studies are shown in Fig. 20 in Appendix F.

(1) LLMs often require step-by-step reasoning to solve complex or long-horizon tasks. Prior
work has shown that the reasoning capabilities of LLMs can be improved by asking them to break
down the task at hand in a step-by-step manner [Wei et al., 2022, Kojima et al., 2022], and adopting
this strategy, we prompt the LLM to break down the trajectory into a sequence of sub-trajectory steps.
We find that, without including these prompt components, the LLM often omits key trajectory steps
required to execute the task successfully, such as lowering the gripper to reach and grasp the object,
and opening and closing the gripper. Indeed, the first three columns in Fig. 3 show that prompting the
LLM to think step by step resulted in the highest performance increase.

(2) LLMs can be prone to write code which results in errors, both syntactically and semantically.
While much improvements have been made in the domain of code generation by LLMs [Chen et al.,
2021, OpenAI, 2023], their outputs can still throw errors, as well as produce undesirable results
when executed. In order to mitigate this, and inspired again by the power of LLMs performing an
internal monologue with natural language reasoning, we prompt the LLM to document any functions

3



it defines with their expected inputs and outputs, and their data types. In addition, we include a
prompt to define reusable functions for common motions (for example, linear trajectory from one
point to another), to prevent instances where, as a notable example, it would hard-code the height
of the gripper inside a function definition, and reuse that function for another sub-trajectory step
which should have been executed at a different height. Similarly, we prompt the LLM to name each
sub-trajectory step variable with a number to relate it to each of the steps in the high-level trajectory
plan, and to minimise the chance of omitting a sub-trajectory step. The effects of removing these
prompt components are, again, noticeable (fourth and fifth columns in Fig. 3).

(3) LLMs are trained on limited grounded physical interaction data. Due to the scarcity of
grounded physical interaction data in their training corpora [Hoffmann et al., 2022], LLMs often
fail to take into account possible collisions between the objects being manipulated. We therefore
prompt the LLM to pay attention to the dimensions of the objects, which could help with avoiding
collisions. We also include in the prompt a specific phrase which we noticed during our investigation
was being used frequently by the LLM for its internal reasoning (“clear objects and the tabletop").
Our experiments show that, while removing this particular phrase from the collision avoidance prompt
lowered performance (sixth column in Fig. 3), LLMs do possess some inherent understanding of
possible collisions between different objects (tenth column in Fig. 3).

(4) LLMs often fail to reason about complex trajectories. In a manner similar to the first
challenge, we employ a multi-step strategy, where initially, we ask the LLM to generate a textual
description of the shape of the motion trajectory as internal reasoning (for example, shaking involves
a sinusoidal motion), before outputting the actual trajectory required to execute the task. This has
been shown to be beneficial in prior work [Yu et al., 2023a], and indeed this result is also reflected in
the eighth column in Fig. 3.

(5) LLMs often fail to reason about how to interact with objects. In our experiments, we found
that LLMs often simplified and failed to reason about more intricate details of object interaction, such
as realising that some objects require interaction with a specific part (for example, the rim of a bowl,
or the handle of a pan). In order to enable the LLM to detect the most suitable object part to interact
with, we prompt it to describe the object part in high-level natural language, and we see in the ninth
column in Fig. 3 that this results in more tasks being executed successfully.

4 Further Investigations

In this section, we conduct further ablation studies regarding (1) the modality of the trajectory
generation (whether to output the trajectory directly in numerical values as language tokens, or to
generate Python code which, when executed, outputs the trajectory), (2) the extent to which each
output modality is executable by the robot, and (3) the ability of LLMs to detect whether a task was
executed successfully or not and subsequently re-plan the trajectory. We present the full details of
these investigations in Appendix C. The tasks used for these ablation studies are shown in Fig. 21 in
Appendix F.

4



Acknowledgments

The authors wish to thank Kamil Dreczkowski, Georgios Papagiannis and Pietro Vitiello for their
valuable discussion and feedback during the writing of the paper.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

OpenAI. GPT-4 Technical Report. arXiv e-prints, art. arXiv:2303.08774, March 2023. doi: 10.
48550/arXiv.2303.08774.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open Foundation
and Fine-Tuned Chat Models. arXiv e-prints, art. arXiv:2307.09288, July 2023. doi: 10.48550/
arXiv.2307.09288.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. PaLM 2 Technical Report.
arXiv e-prints, art. arXiv:2305.10403, May 2023. doi: 10.48550/arXiv.2305.10403.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A Survey on Large Language Model based Autonomous Agents.
arXiv e-prints, art. arXiv:2308.11432, August 2023. doi: 10.48550/arXiv.2308.11432.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. VoxPoser:
Composable 3D Value Maps for Robotic Manipulation with Language Models. arXiv e-prints, art.
arXiv:2307.05973, July 2023. doi: 10.48550/arXiv.2307.05973.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
Rewards for Robotic Skill Synthesis. arXiv e-prints, art. arXiv:2306.08647, June 2023a. doi:
10.48550/arXiv.2306.08647.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do As I Can, Not As I Say:
Grounding Language in Robotic Affordances. arXiv e-prints, art. arXiv:2204.01691, April 2022.
doi: 10.48550/arXiv.2204.01691.

Ted Xiao, Harris Chan, Pierre Sermanet, Ayzaan Wahid, Anthony Brohan, Karol Hausman, Sergey
Levine, and Jonathan Tompson. Robotic Skill Acquisition via Instruction Augmentation with
Vision-Language Models. arXiv e-prints, art. arXiv:2211.11736, November 2022. doi: 10.48550/
arXiv.2211.11736.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. RT-1: Robotics
Transformer for Real-World Control at Scale. arXiv e-prints, art. arXiv:2212.06817, December
2022. doi: 10.48550/arXiv.2212.06817.

Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Brohan, Su Wang, Jaspiar Singh,
Clayton Tan, Dee M, Jodilyn Peralta, et al. Scaling Robot Learning with Semantically Imagined
Experience. arXiv e-prints, art. arXiv:2302.11550, February 2023b. doi: 10.48550/arXiv.2302.
11550.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in

5

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Neural Information Processing Systems, volume 35, pages 24824–24837. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 22199–22213. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating Large
Language Models Trained on Code. arXiv e-prints, art. arXiv:2107.03374, July 2021. doi:
10.48550/arXiv.2107.03374.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training Compute-Optimal Large Language Models. arXiv e-prints, art. arXiv:2203.15556, March
2022. doi: 10.48550/arXiv.2203.15556.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 9493–9500, May 2023. doi:
10.1109/ICRA48891.2023.10160591.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics:
Design principles and model abilities. Technical Report MSR-TR-2023-8, Microsoft,
February 2023. URL https://www.microsoft.com/en-us/research/publication/
chatgpt-for-robotics-design-principles-and-model-abilities/.

J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, and N. Mansard. Whole-
body model-predictive control applied to the hrp-2 humanoid. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3346–3351, Sep. 2015. doi: 10.1109/
IROS.2015.7353843.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033,
Oct 2012. doi: 10.1109/IROS.2012.6386109.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. RT-2: Vision-Language-Action
Models Transfer Web Knowledge to Robotic Control. arXiv e-prints, art. arXiv:2307.15818, July
2023. doi: 10.48550/arXiv.2307.15818.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. PaLM-e: An embodied
multimodal language model. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 8469–8488. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
driess23a.html.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al.
Flamingo: a visual language model for few-shot learning. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 23716–23736. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf.

6

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://www.microsoft.com/en-us/research/publication/chatgpt-for-robotics-design-principles-and-model-abilities/
https://proceedings.mlr.press/v202/driess23a.html
https://proceedings.mlr.press/v202/driess23a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf


Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. WizardMath: Empowering Mathematical Reasoning
for Large Language Models via Reinforced Evol-Instruct. arXiv e-prints, art. arXiv:2308.09583,
August 2023. doi: 10.48550/arXiv.2308.09583.

Luca Medeiros. Langsam: Language segment-anything. https://github.com/luca-medeiros/
lang-segment-anything, 2023. Accessed: 2023-10-01.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding DINO: Marrying DINO with Grounded
Pre-Training for Open-Set Object Detection. arXiv e-prints, art. arXiv:2303.05499, March 2023.
doi: 10.48550/arXiv.2303.05499.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, et al. Segment Anything. arXiv
e-prints, art. arXiv:2304.02643, April 2023. doi: 10.48550/arXiv.2304.02643.

Ho Kei Cheng and Alexander G. Schwing. Xmem: Long-term video object segmentation with
an atkinson-shiffrin memory model. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Gio-
vanni Maria Farinella, and Tal Hassner, editors, Computer Vision – ECCV 2022, pages 640–658,
Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-19815-1.

7

https://github.com/luca-medeiros/lang-segment-anything
https://github.com/luca-medeiros/lang-segment-anything


A Related Work

While previous works have made significant strides in leveraging LLMs for various aspects of robotic
control [Wang et al., 2023], several limitations and dependencies on external modules persist. The
core motivation of our work is to investigate whether these limitations are inherent, or if LLMs
can be deployed to encompass the full control stack, going from language to a dense trajectory of
end-effector poses. In this section, we provide an overview of the relevant literature and highlight key
distinctions between prior approaches and our research focus.

Predefined Motion Primitives A subset of prior works, including Code as Policies [Liang et al.,
2023] and ChatGPT for Robotics [Vemprala et al., 2023], have predominantly employed LLMs to
address the high-level planning aspect of robotic control. These approaches often rely on predefined
movement primitives or pre-trained skills (such as SayCan [Ahn et al., 2022]) to execute lower-level
actions, thereby only partially solving the control stack. In contrast, our investigation aims to push
these boundaries by demonstrating that LLMs can delve deeper into the control stack, predicting all
lower-level actions for the robot autonomously, in the form of a dense trajectory of poses.

External Trajectory Optimisers VoxPoser [Huang et al., 2023] and Language to Rewards [Yu et al.,
2023a] have explored the use of LLMs to shape optimal regions for robot movement, significantly
contributing to trajectory planning. However, these methods still necessitate external optimisers, such
as Model Predictive Control (MPC) [Koenemann et al., 2015, Todorov et al., 2012], to compute the
precise trajectory of actions. Our research deviates from this paradigm by showcasing that LLMs are
capable of autonomously shaping and generating their own trajectories. This includes the generation
of trajectories as lists of end-effector positions and orientations computed as language tokens or the
prediction of code snippets that can generate these trajectories, thus removing the reliance on external
optimisers.

Use of In-Context Examples Previous approaches such as VoxPoser [Huang et al., 2023], Code
as Policies [Liang et al., 2023], and SayCan [Ahn et al., 2022] have relied heavily on providing
in-context examples to the LLM input. However, these methods can encounter challenges when
extrapolating beyond the demonstrated tasks. In contrast, our research illustrates that, even by relying
on their internal understanding alone, LLMs exhibit the capacity to comprehend and solve a diverse
range of manipulation tasks, thus broadening the scope of applicability and adaptability in the real
world and reducing the reliance on human expertise.

Robotics-Specific Pre-Training and Fine-Tuning Recently, Brohan et al. [2023], Driess et al.
[2023] demonstrated that a Vision Language Model (VLM) [Alayrac et al., 2022] can be fine-tuned on
a large robotics-related data set of actions to enable zero-shot language-conditioned control. However,
both the VLM weights and the compute capacity to fine-tune them are unavailable to most research
groups: therefore, we focus our investigation on widely available LLMs and vision models [OpenAI,
2023], and tackle many tasks from the recent literature not included in the work by Brohan et al.
[2023].

In summary, while prior research has made notable strides in harnessing LLMs for robotics, often
focusing on specific components of the control stack or relying on external modules, our investigation
represents a departure from these paradigms. We explore the potential of LLMs to provide end-to-end
solutions, encompassing the entire control stack from language comprehension to the prediction of
dense robot trajectories. This approach not only expands the capabilities of LLM-guided robotics,
but it also offers a promising avenue for enhancing human-robot interaction and task execution.

8



B Evaluation Results on the Final Prompt FormulationTable 1

Without 
replanning

Without 
replanning

ATTEMPT 2 ATTEMPT 3 WIth Replanning Sum with and 
without replanning

pick the chip bag 
on the left of the 
table

80 4 0 4

pick the rightmost 
can

80 4 0 1 1 5

pick the fruit in the 
middle

100 5 0 5

pick the chip bag 
which is to the 
right of the can

80 4 1 1 5

knock over the left 
bottle

40 2 0 0 0 2

move the fruit 
which is on the 
right towards the 
bottle

100 5 0 5

move the banana 
near the pear

40 2 0 0 0 2

push the bottle on 
the left side to the 
orange

40 2 1 0 1 3

move the can to 
the bottom of the 
table

40 2 0 0 0 2

move the lonely 
object to the 
others

20 1 0 0 0 1

push the can 
towards the right

80 4 0 4

use the sponge to 
clean the can

60 3 1 1 4

place the apple in 
the bowl

80 4 1 1 5

pick the apple 
from the bowl and 
place it on the 
table

100 5 0 5

wipe the plate 
with the sponge

60 3 0 3

shake the mustard 
bottle

100 5 0 5

stir the mug with 
the spoon

0 0 0 0 0

draw a five-
pointed star 10cm 
wide on the table 
with a pen

40 2 0 2

drop the ball into 
the cup

60 3 0 3

align the bottle 
vertically

60 3 1 1 4

open the bottle 
cap

60 3 0 3

insert the bread 
into the toaster

40 2 0 2

pick up the bowl 0 0 0 1 1 1

move the pan to 
the left

60 3 0 3

wipe the table 
with the sponge, 
while avoiding the 
plate on the table

20 1 0 1

draw a circle 
10cm wide with its 
centre at 
[0.0,0.3,0.0] with 
the gripper closed

80 4 0 4

AVERAGE 58.4615384615385

pick the chip bag on the left of the table
pick the rightmost can

pick the fruit in the middle
pick the chip bag which is to the right of the can

knock over the left bottle
move the fruit which is on the right towards the bottle

move the banana near the pear
push the bottle on the left side to the orange

move the can to the bottom of the table
move the lonely object to the others

push the can towards the right
use the sponge to clean the can

place the apple in the bowl
pick the apple from the bowl and place it on the table

wipe the plate with the sponge
shake the mustard bottle

stir the mug with the spoon
draw a five-pointed star 10cm wide on the table with a pen

drop the ball into the cup
align the bottle vertically

open the bottle cap
insert the bread into the toaster

pick up the bowl
move the pan to the left

wipe the table with the sponge, while avoiding the plate on the table
draw a circle 10cm wide with its centre at [0.0,0.3,0.0] with the gripper closed

AVERAGE
0 20 40 60 80 100

MAIN PROMPT SUCCESS RATE ON 26 TASKS

TASK SUCCESS RATE (%)

1

Figure 4: Success rates of the best-performing prompt in our investigation on 26 manipulation tasks.

C Additional Details to Further Investigations

(1) How should we guide the output of the LLM? And how should the final trajectory be
represented? In this set of experiments, we explore the optimal way to guide the LLM to output
the final trajectories. Specifically, we conduct ablation studies to evaluate the role of two key factors:
(1) whether the LLM outputs a series of internal high-level natural language reasoning steps, as
explored in Sec. 3 and following prior works [Wei et al., 2022, Kojima et al., 2022, Brohan et al.,
2023], or the final trajectory directly; and (2) whether the trajectory is presented as a list of numerical
values or as code for trajectory generation.

The results, summarised in Fig. 5 A, offer valuable insights. Notably, our findings for (1) align
with the recent literature [Wei et al., 2022, Kojima et al., 2022, Chen et al., 2021], highlighting
the efficacy of an intermediate, internal reasoning in facilitating task success. Regarding (2), our
investigation shows that outputting code that generates the trajectory outperforms predicting the

Table 2

With replanning 63.8461538461538

SU
CC

ES
S 

RA
TE

 (
%)

40

50

60

70

80

58.5
63.8

With replanning
Without replanning

(D) SUCCESS RATES WITH 
AND WITHOUT REPLANNING

Table 2-1

Code out (w lang 
summary)

100

EX
EC

UT
AB

LE
 O

UT
PU

TS
 (

%)

80

85

90

95

100

94.3

100

Code out (w lang summary)
Numbers out (w lang summary)

(C) PERCENTAGE OF 
EXECUTABLE OUTPUTS

Table 2-2

Open/Close 
gripper functions

Binary gripper 
action

57.1428571428571

SU
CC

ES
S 

RA
TE

 (
%)

0

20

40

60

80

100

57.1
71.4

Open/Close gripper functions
Binary gripper action

(B) ABLATION STUDIES ON 
THE GRIPPER ACTION OUTPUT

SU
CC

ES
S 

RA
TE

 (
%)

0

20

40

60

80

100

45.7 48.6
62.9

71.4

Code out (w lang summary)
Numbers out (w lang summary)
Code out (w/o lang summary)
Numbers out (w/o lang summary)

(A) ABLATION STUDIES ON 
THE ACTION OUTPUT

1

Figure 5: (A) We compare different output modalities and the use of internal language reasoning
for planning. (B) We compare different modalities for controlling the gripper. (C) We measure
the percentage of control outputs from the LLM that are directly executable by the robot. (D) We
demonstrate the ability of LLMs to detect failures and re-plan autonomously.

9



trajectory directly as language tokens in the form of a list of numerical poses for the end-effector to
follow. In particular, we observe that presenting trajectories as numerical values or as code yields
similar performance for most tasks, with distinctions emerging in cases involving more intricate
trajectories (for example, drawing a circle or a five-pointed star), where outputting code that generates
such trajectories prevails (60% success rates for code output compared to 10% for numerical output).
This suggests a fundamental property of LLMs for control: while not trained on physical interactions
and trajectories, their understanding of code, mathematical and geometrical structures [OpenAI,
2023, Luo et al., 2023] can bridge these two modes of thinking. Once the overall trajectory shape
has been identified by the LLM, while it can be challenging to follow it directly in numbers, it is
proficient at generating code that follows the desired paths.

Additionally, we investigate the optimal way of letting the LLM control the gripper open or close
action: we compare using a binary variable a ∈ {0, 1} or explicit functions open_gripper,
close_gripper. Our results, in Fig. 5 B, demonstrate that the LLM achieves better performance
when using explicit functions, while using a binary variable leads to more errors. A notable failure
case stemmed from the LLM hard-coding the gripper state to be open in one of the functions it defined
for itself, and when the same function was used to generate the object approach and lift sub-trajectory
steps, the gripper failed to close and grasp the object. Having explicit functions to open and close the
gripper, on the other hand, allowed a decoupling of these fundamental actions and enabled them to be
called at any time during the overall trajectory generation plan.

(2) How often is the output of the LLM formatted such that it is executable by the robot?
Giving full-stack control to the LLM poses the risk of receiving wrongly formatted outputs that
cannot be executed by the robot. In this ablation, we study whether generating a list of numerical
poses, or code that generates the desired trajectory, leads to executable outputs more often. If an error
is thrown by our pipeline given the output of the LLM, we provide the LLM with the error message
and ask it to correct the output, for up to three times. Measuring the percentage of executable outputs
(Fig. 5 C) demonstrates that outputting code results in 100% of executable trajectories, while direct
numerical values cannot be parsed even after three self-corrections for some episodes.

Figure 6: Our experiments demonstrate that LLMs can interpret the trajectories of objects to detect
successful and unsuccessful episodes.

10



Figure 7: (1) The LLM attempts to grasp the
bowl by the centroid, recognises failure, and
(2) proposes a new plan. (3) On its third at-
tempt, it successfully grasps the bowl.

(3) Can LLMs recognise unsuccessful trajectories,
and adapt their plan? Next, we delve into the
ability of LLMs to recognise and respond to failures
during task execution, as shown in Fig. 6. Our exper-
iments demonstrate that, by analysing the numerical
trajectories of objects, LLMs can autonomously de-
tect failure outcomes and initiate re-planning to rec-
tify them. We therefore demonstrate that LLMs pos-
sess not only the ability to generate trajectories, but
also to discern whether they represent successful
or unsuccessful episodes, given the tasks requested
by the user.

When a failure is identified, the LLM modifies the
original plan to tackle the possible issue. In Fig. 5
D, we demonstrate that this leads to improved perfor-
mance on several tasks, without the need for any hu-
man intervention. As a notable example, the LLM al-
ways fails at grasping a bowl on its first try (Fig. 4), at-
tempting to grasp it by the centroid (Fig. 7). Through
a sequence of two re-planning iterations, however,
the LLM adapts its trajectory and then successfully
grasps the bowl by its rim, leading to an increase
from 0% to 20% in the overall task execution success
rate.

D Real-World Experimental Setup

Figure 8: Example observations received by
the robot at the start of the task.

We run our experiments on a Sawyer robot equipped
with a 2F-85 Robotiq gripper. We use two Intel Re-
alSense D435 RGB-D cameras, one mounted on the
wrist of the robot, and the other fixed on a tripod, to
observe the environment. The wrist-mounted camera
captures a top-down view of the environment at the
beginning of an episode (Fig. 8), which is used by a
vision model if queried by the LLM. We utilise a pre-
trained object detection model, LangSAM [Medeiros,
2023] (based on Grounding DINO [Liu et al., 2023]
and Segment Anything [Kirillov et al., 2023]), and
3-D bounding boxes of the queried objects are cal-
culated from the segmentation maps returned by
LangSAM and provided to the LLM. The LLM then
leverages this visual understanding of the environ-
ment to plan and then execute the trajectory in an
open loop, and XMem [Cheng and Schwing, 2022] is
used to track the segmentation maps over the entire
duration of the task, which is then later used for de-
tecting if the task was successful or not. We define a
trajectory as a list of poses for the end-effector to follow. More concretely, the LLM should generate
a list of 4-D poses x, y, z, θz (three dimensions for position, one dimension for rotation), as well as
either an open_gripper or a close_gripper command. We use GPT-4 [OpenAI, 2023] for the
LLM.

11



E Prompts and Ablations

Figure 9: The full main prompt.

12



Figure 10: The full prompt with the highlighted sections removed for the ablation studies on the main
prompt.

13



Figure 11: The full prompt with the highlighted sections removed for the ablation studies on the main
prompt (continued).

Figure 12: The full prompt with the highlighted sections removed for the ablation studies on the main
prompt (continued).

14



Figure 13: The full main prompt modified for ablation studies on the gripper action output.

Figure 14: The full prompt used for evaluating the LLM’s ability to generate trajectories directly in
numbers as language tokens, without generating high-level natural language reasoning steps.

15



Figure 15: The full main prompt modified for evaluating the LLM’s ability to generate trajectories
directly in Python code, without generating high-level natural language reasoning steps.

Figure 16: The full prompt used for evaluating the LLM’s ability to generate trajectories directly in
numbers as language tokens, after having generated high-level natural language reasoning steps.

16



Figure 17: Task success detection prompt.

Figure 18: Task summary prompt, as part of task re-planning.

Figure 19: Task re-planning prompt, to be appended to the main prompt if the LLM detects that the
task has failed and needs to be re-planned and retried.

17



F Tasks for Ablation Studies

Figure 20: List of tasks selected for the main prompt ablation studies.

Figure 21: List of tasks selected for the action output ablation studies.

G Sample LLM Output

Figure 22: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen"
task.

18



Figure 23: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen"
task (continued).

19



Figure 24: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen"
task (continued).

20



Figure 25: Sample LLM output on the “draw a five-pointed star 10cm wide on the table with a pen"
task (continued).

21


	Introduction
	Problem Formulation
	Prompt Development
	Further Investigations
	Related Work
	Evaluation Results on the Final Prompt Formulation
	Additional Details to Further Investigations
	Real-World Experimental Setup
	Prompts and Ablations
	Tasks for Ablation Studies
	Sample LLM Output

