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Abstract

While humans can use parts of their arms other than the hands for manipulations
like gathering and supporting, whether robots can effectively learn and perform
the same type of operations remains relatively unexplored. As these manipulations
require joint-level control to regulate the complete poses of the robots, we develop
AirExo, a low-cost, adaptable, and portable dual-arm exoskeleton, for teleoperation
and demonstration collection. As collecting teleoperated data is expensive and time-
consuming, we further leverage AirExo to collect cheap in-the-wild demonstrations
at scale. Under our in-the-wild learning framework, we show that with only 3
minutes of the teleoperated demonstrations, augmented by diverse and extensive
in-the-wild data collected by AirExo, robots can learn a policy that is comparable
to or even better than one learned from teleoperated demonstrations lasting over 20
minutes. Experiments demonstrate that our approach enables the model to learn a
more general and robust policy across the various stages of the task, enhancing the
success rates in task completion even with the presence of disturbances.

1 Introduction
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Figure 1: The methodology of our in-the-wild
learning framework with low-cost exoskeletons
AirExo. Our learning framework leverages both
teleoperated demonstrations and the extensive and
cheap in-the-wild demonstrations in policy learn-
ing, resulting in a more general and robust policy
compared to training with even more teleoperated
demonstrations.

Robotic manipulation has emerged as a crucial field
within the robot learning community and attracted sig-
nificant attention from researchers. With the advance-
ment of technologies such as deep learning, robotic
manipulation has evolved beyond conventional grasp-
ing [9, 11, 33] and pick-and-place tasks [32, 43], en-
compassing a diverse array of complex and intricate
operations [2, 3, 6, 10].

Most of the current robotic manipulation research
focuses on interacting with the environment solely
with the end-effectors of the robots, which correspond
to the hands of human beings. However, as humans,
we can also use other parts of our arms to accomplish
or assist with various tasks in daily life. For example,
holding objects with lower arms, closing fridge door
with elbow, etc. In this paper, we aim to investigate
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and explore the ability of robots to effectively execute such tasks. To distinguish from the classical
manipulation involving end-effectors, we refer to these actions as whole-arm manipulation. Since
most whole-arm manipulation tasks require the coordinated collaboration of both limbs, we formalize
them into the framework of the bimanual manipulation problem.

Whole-arm manipulation presents challenges for robots, including the risk of collisions due to exten-
sive contact with the environment and the need for precise whole-arm movement. To address these
challenges, we employ joint-level control through imitation learning during robot demonstrations.
Recently, Zhao et al. [46] introduced an open-source low-cost ALOHA system which exhibits the
capability to perform joint-level imitation learning through real-world teleoperated data. ALOHA
system leverages two small, simple and modular bimanual robots ViperX [37] and WidowX [40]
that are almost identical to each other, to establish a leader-follower framework for teleoperation.
Due to the limited payload of the robots, they focus more on fine-grained manipulation. Besides,
their hardwares cannot be seamlessly adapted to other robots commonly employed for laboratory
research or industrial purposes. Similarly, while several literatures [8, 15, 17, 19, 45] also designed
special exoskeletons for certain humanoid robots or robot arms, the cross-robot transferability of their
exoskeletons remain a challenge.

To address the above issues, we develop AirExo, an open-source, low-cost, robust and portable dual-
arm exoskeleton system that can be quickly modified for different robots. All structural components
of AirExo are universal across robots and can be fabricated entirely through 3D printing, enabling
easy assembly even for non-experts. After calibration with a dual-arm robot, AirExo can achieve
precise joint-level teleoperations of the robot. Contributed to its portable property, AirExo enables
in-the-wild data collection for dexterous manipulation without needing a robot. Humans can wear
the dual-arm exoskeleton system, conduct manipulation in the wild, and collect demonstrations at
scale. This breakthrough capability not only simplifies data collection but also extends the reach
of whole-arm manipulation into unstructured environments, where robots can learn and adapt from
human interactions. The one-to-one mapping of joint configurations also reduces the barriers of
transferring policies trained on human-collected data to robots. Experiments show that with our
in-the-wild learning framework, the policy can become more sample efficient for the expensive
teleoperated demonstrations, and can acquire more high-level knowledge for task execution, resulting
in a more general and robust strategy.

2 AirExo: An Open-Source, Portable, Adaptable, Inexpensive and Robust
Exoskeleton
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Figure 2: AirExo models for different types of robots. Notice that the internal structure of the joints is
standardized, only the linkages are altered to accommodate different robotic arm configurations.

Exoskeleton We employ two Flexiv Rizon arms [12] for experiments in this paper. As a result, the
structural design of AirExo is predominantly tailored to their specifications. Meanwhile, to ensure its
universality, it can be easily modified for use with other robotic arms like UR5 [36], Franka [13] and
Kuka [20], as depicted in Fig. 2. Based on the morphology of our robot system, AirExo is composed
of two symmetrical arms, wherein the initial 7 degree-of-freedoms (DoFs) of each arm correspond
to the DoFs of the robotic arm, and the last DoF corresponds to the end-effector of the robotic arm.
Here, we design a two-finger gripper with 1 DoF as an optional end-effector for each arm. Overall,
AirExo is capable of simulating the kinematics of the robot across its entire workspace, as well as
emulating the opening and closing actions of the end-effectors.
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To improve the wearable experience for operators and concurrently enhance task execution efficiency,
we dimension AirExo to be 80% of the robot’s size, based on the length of the human arm. AirExo
utilizes a dual-layer joint structure with pre-joints and post-joints connected by a metal damping
pivot, as illustrated in Fig. 2(a). Angle encoders with high precision (0.08 degrees) are mounted
on the pre-joints to achieve accurate motion capture. A limiter, consisting of a dual-layer disc and
several steel balls, sets angle limits for each joint, ensuring encoders remain unaffected by bending
moments and reducing failures. In the end-effector of the exoskeleton, we design a handle and a
scissor-like opening-closing mechanism to simulate the function of a two-fingered gripper, while also
facilitating gripping actions by the operator. The two arms of the exoskeleton are affixed to a base,
which is mounted on a vest. This allows the operator to wear it stably, and evenly distributing the
weight of the exoskeleton across the back of the operator to reduce the load on the arms, thereby
enabling more flexible arm motions. Additionally, an adjustable camera mount can be installed on
the base for image data collection during operations.

Except the fasteners, damping pivots, and electronic components, all other components of AirExo
are fabricated using PLA plastic through 3D printing. The prevalence of 3D-printed components
allows the exoskeleton to be easily adapted to different robots. This adaptation entails adjusting
the dimensions of certain components based on the target robot’s specifications and subsequently
reprinting and installing them, without modifying the internal structure. AirExo costs approximately
$600 in total. Please refer to Appendix B for details about AirExo.
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Figure 3: Overview of learning whole-arm manipulations in the wild with AirExo.

Learning in the Wild Our approach to learn whole-arm manipulation in the wild with AirExo
is illustrated in Fig. 3. AirExo serves as a natural bridge for the kinematic gap between humans
and robots. To address the domain gap between images, our approach involves a two-stage training
process. In the first stage, we pre-train the policy using in-the-wild human demonstrations and actions
recorded by the exoskeleton encoders. During this phase, the policy primarily learns the high-level
task execution strategy from the large-scale and diverse in-the-wild human demonstrations. Then,
in the second stage, the policy undergoes fine-tuning using teleoperated demonstrations with robot
actions to refine the motions based on the previously acquired high-level task execution strategy.

We use the state-of-the-art bimanual imitation learning method ACT [46] for policy learning. Our
experiments demonstrate that it can indeed learn the high-level strategy through the pre-training
process and significantly enhance the evaluation performance of the robot and the sample efficiency
of the expensive teleoperated demonstrations.

3 Experiments

In this section, we conduct experiments on 2 whole-arm tasks (Gather Balls and Grasp from the
Curtained Shelf ) to evaluate the performance of the proposed learning method. All demonstration
data are collected by AirExo. Several baselines, including VINN [26], ConvMLP [44], BeT [31] and
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ACT [46] are evaluated in the experiments. We also apply our proposed learning approach to ACT
for learning from in-the-wild demonstrations. Please refer to the Appendix C for more details.
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Figure 4: Experimental Results on the (a) Gather Balls task and (b) Grasp from the Curtained Shelf task.

Gather Balls In Fig. 4(a), experimental results reveal that VINN and ACT excel among non-
parametric and parametric methods respectively, when trained with 50 teleoperated demonstrations.
However, using only 10 teleoperated demonstrations leads to performance degradation for both
methods. Nonetheless, employing our in-the-wild learning framework, assisted by in-the-wild
demonstrations, enables ACT to match the performance of 50 teleoperated demonstrations with just
10, showcasing the enhanced sample efficiency of our framework for teleoperated demonstrations.
We then delve into the experimental results to provide more insights about why and how our learning
framework works. Please refer to the Appendix C.1 for details.

Grasp from the Curtained Shelf Results are shown in Fig. 4(b). Similar to the Gather Balls
task, as the number of teleoperated demonstrations decreases, VINN and ACT both show reduced
success rates, particularly in the later "throw" phase. However, our in-the-wild learning framework
substantially boosts the success rates of ACT in the "grasp" and "throw" phases. Even with just 10
demonstrations lasting approximately 3 minutes, ACT outperforms the original 50 demonstrations
lasting over 20 minutes. This underscores how our in-the-wild framework enhances policy learning
for better success rates in multi-stage tasks.

Disturbances w/wo i.t.w. learning Success / All

Novel Object
✘ 4 / 8
✔ 7 / 8

Different
Background

✘ 2 / 8
✔ 6 / 8

Visual
Distractors

✘ 4 / 8
✔ 8 / 8

Table 1: Results of the robustness experiments on the
Grasp from the Curtained Shelf task.

Robustness Analysis We design three kinds
of disturbances in the Grasp from the Curtained
Shelf task to explore whether in-the-wild learn-
ing improves the robustness of the policy. The
results shown in Tab. 1 demonstrate that our
in-the-wild learning framework can leverage di-
verse in-the-wild demonstrations to make the
learned policy more robust and generalizable to
various environmental disturbances.

4 Conclusion

In this paper, we develop AirExo, an open-source, low-cost, universal, portable, and robust ex-
oskeleton, for both joint-level teleoperation and learning whole-arm manipulations in the wild. Our
proposed in-the-wild learning framework decreases the demand for the resource-intensive teleop-
erated demonstrations. Experimental results demonstrate the effectiveness and robustness of the
policies learned through this approach. In the future, we are excited to see our AirExo collecting
large-scale human demonstrations in unstructured environments and facilitating robot learning.
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Appendices

A Related Works

Imitation Learning Imitation learning has been widely applied in robot learning to teach robots
how to perform various tasks by observing and imitating demonstrations from human experts. One of
the simplest methods in imitation learning is behavioral cloning [27], which learns the policy directly
in a supervised manner without considering intentions and outcomes. Most approaches parameterize
the policy using neural networks [2, 5, 31, 44, 46], while non-parametric VINN [26] leverages the
weighted k-nearest-neighbors algorithm based on the visual representations extracted by BYOL [14]
to generate the action from the demonstration database. This simple but effective method can also
be extended to other visual representations [22, 23, 25, 29] for robot learning. In the context of
imitation learning for bimanual manipulation, Xie et al. [41] introduced a paradigm to decouple the
high-level planning model into the elemental movement primitives. Several literature have focused on
designing special frameworks to solve specific tasks, such as knot tying [18, 34], banana peeling [17],
culinary activities [21], and fabric folding [39]. Addressing the challenge of non-Markovian behavior
observed in demonstrations, Zhao et al. [46] utilized the notion of action chunking as a strategy to
enhance overall performance.

Teleoperation Demonstration data play a significant role in robotic manipulation, particularly in
the methods based on imitation learning. For the convenience of subsequent robot learning, these
demonstration data are typically collected within the robot domain. A natural approach to gather such
demonstrations is human teleoperation [24], where a human operator remotely controls the robot to
execute various tasks. Teleoperation methods can be broadly categorized into two classes based on
their control objectives: one aimed at manipulating the end-effectors of the robots [2, 7, 10, 16, 30,
44] and one focused on regulating the complete poses of the entire robots, such as exoskeletons [8,
15, 17, 35, 45] and a pair of leader-follower robots [46]. For whole-arm manipulation tasks, we need
to control the full pose of the robots, which makes exoskeletons a relatively favorable option under
this circumstance.

Learning Manipulation in the Wild Despite the aforementioned teleoperation methods allow us
to collect robotic manipulation data, the robot system is usually expensive and not portable, posing
challenges to collect demonstration data at scale. To address this issue, previous research has explored
the feasibility of learning from interactive human demonstrations, i.e. in-the-wild learning for robotic
manipulation [1, 4, 19, 28, 33, 42]. In contrast to the costly robot demonstrations, in-the-wild
demonstrations are typically cheap and easy to obtain, allowing us to collect a large volume of such
demonstrations conveniently.

Typically, there are two primary domain gaps for learning manipulation in the wild: (1) the gap
between human-operated images and robot-operated images, and (2) the gap between human kine-
matics and robot kinematics. The former gap can be solved through several approaches: by utilizing
specialized end-effectors that match the end-effectors of the robots [19, 42]; by initially pre-training
with in-the-wild data and subsequently fine-tuning with robot data [33]; or by applying special image
processing technique to generate agent-agnostic images [1]. The latter gap is currently addressed
by applying structure from motion algorithms [33, 42], adopting a motion tracking system [28], or
training a pose detector [1, 38] to extract the desired poses. However, these methods are not suitable
for whole-arm dexterous manipulation, since motion tracking usually focuses on the end-effector,
and pose detector is vulnerable to visual occlusions and does not map to the robot kinematics.

Therefore, in this paper, we develop a low-cost and portable exoskeleton to serve as a bridge between
human motion and robot motion. It can be applied not only to the teleoperation of robots but also as a
powerful tool for learning manipulation in the wild.

B AirExo

Design Objectives From the preceding discussions, we summarize the following 5 key design
objectives of an exoskeleton: (1) affordability; (2) adaptability; (3) portability; (4) robustness and (5)
maintenance simplicity. AirExo is designed based on these objectives.
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(1) Affordability. The exoskeleton system should be priced at a low level that ensures affordability
for a broad spectrum of laboratories and even individual enthusiasts.

(2) Adaptability. The exoskeleton system should be readily adjustable to accommodate various
robots without necessitating any modifications the internal joint structure.

(3) Portability. The exoskeleton system should exhibit a lightweight and ergonomic construction,
facilitating maneuverability and an extensive array of motions.

(4) Robustness. The exoskeleton system should possess robust durability, enabling it to endure
extended operational periods dedicated to demonstration data collection.

(5) Maintenance Simplicity. The components comprising the exoskeleton system should be engi-
neered with an emphasis on simplicity. Assembly ought to be achievable without the requirement
of specialized tools, and during maintenance, only a minimal number of components need to be
disassembled.

Calibration and Teleoperation Since AirExo shares the same morphology with the dual-arm robot
except for the scale, the calibration process can be performed in a quite straightforward manner.
After positioning the robot arms at a specific location like a fully extended position, and aligning the
exoskeleton to match the robot posture, we can record the joint positions {q(c)i }d

i=1 and the encoder
readings {p(c)i }d

i=1 of AirExo, where d denotes the DoFs. Consequently, during teleoperation, we
only need to fetch the encoder readings {pi}d

i=1 and transform them into the corresponding joint
positions {qi}d

i=1 using Eqn. (1), and let the robot moves to the desired joint positions:

qi = min
(

max
(

q(c)i + ki(pi − p(c)i ),qmin
i

)
,qmax

i

)
, (1)

where ki ∈ R is the coefficient controlling direction and scale, and qmin
i ,qmax

i denote the joint angle
limits of the robotic arms. Typically, we set k =±1, representing the consistency between the encoder
direction of the exoskeleton and the joint direction of the robot. For grippers, we can directly map the
angle range of the encoders to the opening and closing range of the grippers for teleoperation.

After calibration, the majority of angles within the valid range of the robot arms can be covered by
the exoskeleton. Given that the workspaces of most tasks fall within this coverage range, we can
teleoperate the robot using the exoskeleton conveniently and intuitively. If a special task t needs a
wider operation range, we can simply scale the exoskeleton range using coefficients ki, and apply
task-specific joint constraint [qt,min

i ,qt,max
i ] instead of original kinematic constraint in Eqn. (1) for

better teleoperation performance.

Learning in the Wild Here, we add more details of our in-the-wild learning framework with
AirExo. For in-the-wild whole-arm manipulation learning, we install a camera (or cameras under
multi-camera settings) on the camera mount of AirExo in roughly the same position(s) as the camera(s)
on the robot. Using this configuration, images from both teleoperated demonstrations and in-the-wild
demonstrations exhibit a relatively similar structure, which is advantageous for policy learning.

As previously discussed in Sec. 2, we resize the exoskeleton to ensure its wearability. Some concerns
may arise regarding whether this scaling adjustment could impact the policy learning process. Here,
we argue that it has a minimal effect on our learning procedure. Firstly, the core kinematic structure,
essential for our learning framework, remain unaffected by the resizing. Thus human demonstrations
preserve the fundamental dynamics of the system. Secondly, our approach does not impose strict
alignment requirements between human demonstration images and robot images. We find that similar
visual-action pairs collected by our exoskeleton effectively support the pretraining stage, without
demanding precise visual matching between human and robot demonstrations.

C Experiments

In this section, we furnish additional details pertaining to the experiments as well as present more
experimental results.
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C.1 Gather Balls

Task Two clusters of cotton balls are randomly placed on both sides of the tabletop (40 balls per
cluster). The goal is to gather these balls into the designated central triangular area using both arms.
The process of this contact-rich task is illustrated in Fig. 5.

(a) initial state (b) gather with the right arm (c) gather with the left arm (d) final state

Figure 5: Definition of Gather Balls task. The goal is to gather the balls into the central triangular area, which
is highlighted in light blue. The red dashed arrows denote the motions of the robot arms. Sponge paddings are
used to envelop the external surface of the robot arms to diminish the mechanical failures arising from contacts.

Metrics We consider the percentage of balls being allocated within the central triangular area as
the task completion rate c (if a ball is precisely on the line, it is considered a half), including both the
completion rates of the left arm and the right arm. Simultaneously, task success is defined as the task
completion rate exceeding a certain threshold δ . In this experiment, we set δ = 40%,60%,80%. We
also record the collision rate to gauge the precision of the operations.

Methods We employ VINN [26] and its variants that alter the visual representations [22, 23, 29]
as non-parametric methods. Other methods include ConvMLP [44], BeT [31] and ACT [46]. All
of them are designed for joint-space control or can be easily adapted for joint-space control. We
apply our proposed learning approach to ACT for learning from in-the-wild demonstrations. For all
methods, we carefully select the hyper-parameters to ensure better performance.

Protocols The evaluation is conducted on a workstation equipped with an Intel Core i9-10980XE
CPU. The time limit is set as 60 seconds per trial. Given that all methods can operate at approximately
5Hz, resulting in a total of 300 steps for the evaluation, the time constraint proves sufficient for
the task. We conduct 50 consecutive trials to ensure stable and accurate results, calculating the
aforementioned metrics.

# Demos Method Completion Rate c (%) ↑ Success Rate (%) ↑
Teleoperated In-the-Wild Overall Left Right c ≥ 80 c ≥ 60 c ≥ 40

50 - VIP [22] + NN 27.74 0.02 55.45 0 0 36
50 - VC-1 [23] + NN 52.54 32.53 72.55 4 42 74
50 - MVP [29] + NN 55.10 58.55 62.00 12 62 76
50 - VINN [26] 76.88 75.73 78.03 58 84 94
50 - ConvMLP [44] 15.56 2.35 28.78 0 0 2
50 - BeT [31] 24.66 7.38 41.95 0 2 32
50 - ACT [46] 75.61 94.63 56.60 54 70 100

10 - VINN [26] 68.68 60.28 77.08 36 76 88
10 - ACT [46] 64.31 91.95 36.68 24 60 96
10 50 ACT [46] 73.76 88.83 58.70 62 72 88
10 100 ACT [46] 75.15 75.63 74.68 56 80 88

Table 2: Experimental results on the Gather Balls task.

Results and Analyses The detailed experimental results on the Gather Balls task are shown in
Tab. 2. We then delve into the experimental results to provide more insights about why and how our
learning framework works. When analyzing the failure cases of different methods in the experiments
in Fig. 6(a), we find that the ACT policy trained solely on teleoperated demonstrations exhibits an
issue of imbalance between accuracies of two arms, with better learning outcomes for the left arm.
This imbalance becomes more pronounced as the number of teleoperated demonstrations decreases
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Figure 6: Analyses of methods on the Gather Balls task. Here we define the overall completion rate over 80%
as success. (a) We analyze the failure causes of each method in every trial. (b) We amortize the inaccuracy (both)
rate evenly into the inaccuracy (left) and inaccuracy (right) rates, and draw a comparison plot of failure modes
for different methods. (x,y) means the policy is trained with y in-the-wild demonstrations then x teleoperated
demonstrations. The dashed lines represent contour lines with the same success rate, and the regions with light
blue background imply a more balanced policy between left and right arms. (c) t-SNE visualizations of the
ground-truth actions and the policy actions w/wo in-the-wild learning on the validation set.

to 10. With the help of the in-the-wild learning stage, the policy becomes more balanced between
two arms even with fewer teleoperated demonstrations, as shown in Fig. 6(b). From Fig. 6(c), we
also observe that the policy focuses more on learning the motions of the right arm when cooperated
with in-the-wild learning, as highlighted in red dashed circles, while keeping the accurate action
predictions on the left arm. We believe that this is attributed to the extensive, diverse, and accurate
in-the-wild demonstrations provided by AirExo, enabling the policy to acquire high-level strategy
knowledge during the pre-training stage. Consequently, in the following fine-tuning stage, it can
refine its actions based on the strategy, thus avoiding learning actions blindly from scratch.

C.2 Grasp from the Curtained Shelf

Task A cotton toy is randomly placed in the center of a shelf with curtains. The goal is to grasp
the toy and throw it into a bin. To achieve it, the robot needs to use its right arm to push aside the
transparent curtain first, and maintain this pose during the following operations. The process of this
multi-stage task is illustrated in Fig. 7.

(a) Reach in (b) Push aside (c) Approach (d) Grasp (e) Throw

Figure 7: Definition of the Grasp from the Curtained Shelf task. The robot needs to (a) reach in its right arm to
the transparent curtain and (b) push aside the curtain, then (c) approach the object with its left arm, (d) grasp the
object and finally (e) throw the object.

Metrics, Methods, and Protocols We calculate the average success rate at the end of each stage
as metrics. Based on the experimental results on the Gather Balls task, we select VINN [26]
and ACT [46] as methods in experiments, as well as ACT equipped with our in-the-wild learning
framework. The evaluation protocols are the same as the Gather Balls task, except that the time limit
is 120 seconds (about 400 steps) and the number of trials is 25.

Results The detailed experimental results on the Grasp from the Curtained Shelf task are shown
in Tab. 3.

D Future Works

In the future, we will investigate how to better address the image gap between in-the-wild data in the
human domain and teleoperated data in the robot domain, enabling robots to learn solely through
in-the-wild demonstrations with AirExo, thus further reducing the learning cost.
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# Demos Method Success Rate (%) ↑
Teleoperated In-the-Wild Reach in Push aside Approach Grasp Throw

50 - VINN [26] 100 96 92 60 48
50 - ACT [46] 100 100 100 84 84

10 - VINN [26] 100 84 84 60 44
10 - ACT [46] 100 100 96 72 44
10 50 ACT [46] 100 100 96 76 76
10 100 ACT [46] 100 100 100 92 88

Table 3: Experimental results on the Grasp from the Curtained Shelf task.
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