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Abstract

The full paper is available here. Pre-training on Internet data has proven to be a
key ingredient for broad generalization in many modern ML systems. For robotics
applications, data remains limited and video, the largest prior source of data avail-
able, offers observation-only experience without the action or reward annotations
that cannot easily be incorporated in robotic learning methods. In this paper, we
develop a system for leveraging large-scale human video datasets in robotic offline
RL, based entirely on learning value functions via temporal-difference learning.
We show that value learning on video datasets learns representations that are more
conducive to downstream robotic offline RL than other approaches for learning
from video data. Our system, called V-PTR, combines the benefits of pre-training
on video data with robotic offline RL approaches that train on diverse robot data, re-
sulting policies that perform better, act robustly, and generalize broadly. On several
manipulation tasks on a real WidowX robot, our framework produces policies that
greatly improve over prior methods. Videos can be found on our project website.

1 Introduction

The full paper is available here. Developing methods capable of acquiring robotic skills that generalize
widely to new scenarios is an important problem in robotic learning. In other areas of machine
learning, broad generalization has been fueled primarily by pre-training on large datasets with a
diversity of behavior. It seems compelling that the same formula may be applied to robotic learning,
but in practice, even our largest robotic datasets contain data for relatively limited tasks and scenarios.
In principle, robotic reinforcement learning (RL) should be able to learn from more general sources
of data like human video, which are far more abundant and capture a broader set of skills, situations,
and interactions. However, these datasets are difficult to incorporate into RL methods that exist today,
since internet-scale video data does not come with action or reward annotations present in typical
robot data.

Motivated by the above desiderata for video pre-training, we aim to develop an approach that pre-
trains on Internet-scale human video to produce representations for downstream offline RL. Our
main contribution is a system, which we call Video Pre-Training for Robots (V-PTR), that fits value
functions to model long-term outcomes achieved when solving tasks on action-free video data.

Concretely, V-PTR pre-trains on human videos by learning an intent-conditioned value function
[5]. This approach eschews self-supervised representation learning objectives utilized in prior
works [14; 11; 15] in favor of a TD value learning objective which reflects downstream finetuning.
Next, we fine-tune on a multi-task robotic dataset, annotated with actions, tasks, and rewards, using
value-based offline RL [10] followed by a target dataset. Each phase gradually incorporates the
knowledge of “what future outcomes can be achieved” (video pre-training), “what robot actions lead
to these outcomes” (robot pre-training), and “how can the desired task be solved” (fine-tuning).
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Our experiments on several manipulation tasks on a real WidowX robot show that by pre-training on
human video data (Ego4D [6]) and multi-task robot data (Bridge data [4]), V-PTR endows downstream
RL methods with improved generalization to different distractors, positions, and other variations
in the workspace compared to prior methods that learn from videos, significantly outperforming
methods like VIP [11] and R3M [14]. To our knowledge, our work presents the first large-scale
demonstration showing that TD-learning alone induces effective video pre-training for robotic RL.

2 Related Work

A number of prior approaches learn representations from video by applying image-level representation
objectives on individual frames like reconstruction [12; 17; 21; 8] or contrastive learning on images
[20]. While these objectives are widely used in computer vision, resulting representations do
not capture any information about environment dynamics. Other approaches model long-term
dynamics from video by predicting the next frame [18], learning value functions [11; 5], running
time-contrastive learning [19; 13], or learning language-video alignment [8].

The most closely related work is value-implicit pre-training (VIP) [11], which pre-trains a value
function using time-contrastive prediction for downstream reward shaping. Both learn value functions
during pre-training, albeit with different algorithms (contrastive BRM learning vs. TD learning),
and different policies (dataset policy vs. intent-conditioned policy) [2; 3]. Furthermore, the system
desiderata differ for VIP and V-PTR: VIP focuses on learning visual reward functions for weighted
behavioral cloning, while we seek value initializations for downstream offline RL.

3 Problem Statement and Background

We aim to leverage Internet-scale video data and multi-task robotic data to boost the robustness and
generalization of robotic offline RL. We have access to an Internet-scale video dataset Dy;qe, (€.2.,
the Ego4D dataset [6]), a target dataset, Dyuee; Of a limited number of demonstrations for a given
target task on the robot, and optionally a dataset of multi-task robot behaviors, D;gho (€.g. Bridge
data, RTX data). We formalize the learning problem as maximization of expected reward in an MDP;
please see the appendix for more details.

Our system utilizes a generalized formulation of goal-conditioned RL and temporal-difference
learning. In a nutshell, the goal-conditioned RL problem trains the agent to achieve arbitrary goal
frames g, where rewards are specified by the sparse signal of I (s = g) when the frame is identical to
the goal frame. Although the reward signal is sparse, goals and rewards can be defined by hindsight
relabelling [1]. To learn a policy for the downstream task, we use value-based offline RL methods,
which optimize 7 against a learned Q-function Q” (s, a). The Q-value function measures the expected
long-term reward attained when executing action a at state s, then following policy r thereafter, and
satisfies the Bellman equation Q" (s, a) = r(s,a) + yEy »[Q"(s",a")].

4 Video Pre-Training for Robotic Offline RL

We develop V-PTR, our system that pre-trains general value functions on Internet-scale video data to
extract visual representations useful for downstream RL.
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4.1 Phase 1: Video Pre-Training via TD-Learning

Since the goal of video pre-training is to improve the performance of downstream value-based offline
RL, we turn to learning value functions on the video data as a natural pre-training procedure. We
choose to pre-train by learning an intent-conditioned value function (ICVF), a recently-proposed
general value function that can be efficiently trained on passive data without action labels [5] via
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System overview. Our system, V-PTR, pre-trains in




TD-learning. An ICVF, annotated V (syideo, 8video» Z) cOmputes the value obtained towards reaching a
goal gyideo, assuming the policy intended to reach a different intended goal z, formally defined as

V(Svideos Bvideos Z) = Eg (1)) [ Z YZ]I (svideo = gvideo) ]

We follow [5] and parameterize our estimated value functlon as

V(Svideos 8video> z) := ¢(Sv1deo) T(Z)¢(gV1deo)
where ¢y and ¢/, denote models that transform the observation and the goal observation respectively
into low-dimensional representations, and Tz, a learned mapping aligning the two representations.
At convergence, the ICVF provides a measure of temporal spatiality, and the learned representation
¢o(s) offers useful features for downstream value functions.

4.2 Phase 2: Multi-Task Robot Pre-Training via Offline RL
In the next phase, we refine the learned representation on a multi-task robot dataset, D;opor, to bridge
the domain gap between robot image observations and human video, and to provide information
about the target robot embodiment. The tasks and workspaces in this robot dataset are explicitly
disjoint from the target tasks used in the downstream evaluation.

V-PTR initializes a task-conditioned Q-function and policy with the representation encoder ¢g;,
obtained at the end of phase 1 and trains them using multi-task conservative Q-learning (CQL) [9]

4.3 Phase 3: Fine-Tuning to a Target Task

Finally, we fine-tune the value function and policy to the target task on the target dataset Dyyger. We
follow [10] and treat the target data simply as a new task; fine-tuning involves assigning a new task
identifier to the target data, and continuing multi-task offline CQL on the robot pre-training and target
tasks jointly. To emphasize the target task during fine-tuning, we perform stratified sampling where
90% proportion of the training batch comes from Dygpor and 10% from Digrges.

5 [Experimental Results

We validate the effectiveness of V-PTR in
boosting the generalization of robotic offline
RL by evaluating it in new scenes, compare to
other approaches for incorporating video data,
and performing additional diagnostic experi-
ments to understand how value pre-training
can provide useful representations for down-

stream robotic RL. Videos of our evaluations ~ Figure 2: Examples of setup for complex tasks. We
can be found on our project website. utilize the robot setup from the Bridge dataset [4]. Top:

Two-phase open microwave; Bottom: Sweep beans into
Comparisons to prior methods. We compare  pile with tool.

V-PTR to approaches that do not utilize video

data (PTR [10], BC [4]), as well as other methods for video pre-training (R3M [14], MVP [22; 15],
and VIP [11]). Following the protocols in these prior works, we fine-tune all these representations
with imitation learning on multi-task and target robot data (phases 2 and 3). Additionally, we train
VIP with CQL for an apples-to-apples comparison to V-PTR.

5.1 Real-World Results

Open
Microwave

Sweep
Beans

Table 1: Task success rates of V-PTR and prior methods on several manipulation tasks over 12 trials. Note
that V-PTR outperforms all prior methods, including those approaches that freeze the learned representation, use
imitation learning for downstream control, or use only robot data.

Video pre-training No videos No robot data
Task V-PTR (Ours) R3M+BC MVP+BC VIP+CQL VIPy,,+CQL PTR V-PTR w/o phase 2
» Croissant from bowl 7112 0/12 4712 2/12 0/12 3/12 5/12
2 Sweet potato on plate 6/12 0/12 1/12 0/12 0/12 1712 1712
<ZD 8 Knife in pot 6/12 0/12 0/12 0/12 0/12 0/12 0/12
Z  Cucumber in pot 5/12 0/12 1/12 0/12 0/12 1/12 1/12
A Total 24748 0/48 6/48 2/48 0/48 5748 7748
2 Croissant from bowl 8/12 0/12 3/12 2/12 0/12 0/12 3/12
= % Sweet potato on plate 4712 0/12 2/12 0/12 0/12 1/12 2/12
§§ Khnife in pot 4/12 0/12 0/12 1/12 0/12 0/12 0/12
.2 Cucumber in pot 4/12 0/12 0/12 1/12 0/12 0/12 1/12
A Total 20/48 0/48 5/48 4/48 0/48 1/48 6/48
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Our main results are summarized in Table  Table 2: Performance of V-PTR, VIP, and PTR on more
1. First, we evaluate the performance of  complex tasks. V-PTR outperforms PTR as well as VIP
the policy trained by V-PTR as we vary the with both CQL or BC with reward shaping from [11].

robot’s initial pose and the position of ob-

jects in scene. Then, we test performance No QL
after adding novel distractors to the scene. Task V-PTR VIP [11]+CQL PTR[10] VIPrevara [11]
We al V-PTR i detail t Open Microwave 5/12 2/12 0/12 0/12

¢ also compare V- In more detail to Sweep Beans  6/12 5/12 2/12 2/12

VIP (which also uses similar video data)
on more complex tasks (“open microwave”
and “sweep beans”) in Table 2. Specifically, we compare to different variants of VIP as discussed
above (VIP+CQL; VIP ewara) and find that V-PTR outperforms these variants.

5.2 Visualizations and Diagnostic Experiments

Video pre-training via V-PTR improves target value estimation. We visualize the learned value
function on frames from different rollouts in Figure 3 (left), where the true value function should
monotonically increase throughout a successful rollout. In the presence of distractor objects, V-PTR
obtains smoother and more monotonic value functions compared to PTR or VIP.
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Figure 3: Left: Visualizing the learned values V(s,). Note that V-PTR values tend to be much smoother than
those from PTR and VIP, especially on held-out rollouts with novel distractors. Right: Grad-CAM visuals.
V-PTR focuses on more pertinent objects (the gripper, and the target object) than the compared methods

To more precisely measure the ability of V-PTR to fit downstream value functions, we train a SARSA
value function (for which we may compute a closed-form optimal solution) on top of frozen pre-
trained representations from PTR (no video data), VIP [11], and V-PTR, and report the error between
the predicted value and the ground-truth value on a held-out dataset in Figure 3 (middle). V-PTR
attains the smallest fitting error compared to both PTR and VIP.

What kind of visual cues do representations trained by V-PTR capture? We probe which parts
of the image are attended to by the learned policy for V-PTR and other baselines, by utilizing Grad-
CAM [16] to mark patches of the frame that influence the output of the learned policy in green. We
observe that V-PTR policies discard the scene background and focus on cues like the object and
gripper positions while PTR and VIP place higher focuses on the scene background.

6 Discussion and Conclusion

We designed V-PTR, which uses value function pre-training on the large-scale Ego4D video dataset [6]
and the robot Bridge dataset [4] for downstream robotic learning. While V-PTR outperforms prior
methods for learning from video, we found that all the current methods remain sensitive to deviations
in workspace height, camera angle, and robot configurations. There also exist many opportunities to
scale, like multi-robot datasets, larger human video datasets with language, or larger models. We are
quite excited about the promise of using RL-like value pre-training on video data for improving the
general ability of robot learning algorithms.
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Appendices

A Problem Statement and Background

We aim to leverage Internet-scale video data and multi-task robotic data to boost the robustness and
generalization of robotic offline RL. We formulate the robot skill learning problem as the problem of
maximizing infinite-horizon discounted reward in a Markov decision process (MDP).

Formal problem statement. We assume access to two pre-training datasets: an Internet-scale
video dataset Dyiqeo (€.g., the Ego4D dataset [6]) and a target dataset, Diyger Of a limited number
of demonstrations for a given target task on the robot. Additionally we are also provided a dataset
of multi-task robot behaviors, D;por, Which may not contain any data relevant to the target task.
The video dataset Dyigeo consists of sequences of frames (i.e., observations in the MDP), with

no action or rewards. Denoting a frame as s;;, we define Dyigeo := { (si0.8i1,") }7:1' The
target dataset, Dyger, comprises of a few demonstrations of the target task on the robot Dyyeeer : =
{(Si,o,ai,o,ri,o,si,b ) }Lg[’ where the reward, r;; is annotated to be +1 only on the final three
timesteps of the demonstration (following [10]). The multi-task robot dataset D;gp is organized
identically to the target robot dataset, but with an additional task annotation on each trajectory t;,
which is specified either as a one-hot identifier or by natural language. Our goal is train policy
7 which maximizes the y-'di.s<.:0unted gumulative rewarq, Es~pp.ag.ce i [Zfo:o Y'r(se, a,)] , stgrting
from a more diverse set of initial states indicated by the distribution p, than what was observed in the
target dataset (e.g., more variation in distractor objects).

Background. Our system utilizes a generalized formulation of goal-conditioned RL and temporal-
difference learning for pre-training value functions. In a nutshell, the goal-conditioned RL problem
trains the agent to achieve arbitrary goal frames g, where rewards are specified by the sparse signal of
I (s = g) when the frame is identical to the goal frame. Although the reward signal is sparse, goals and
rewards can be defined by hindsight relabelling [1]. To learn a policy for the downstream task, we use
value-based offline RL methods, which optimize 7 against a learned Q-function Q” (s, a). The Q-value
function measures the expected long-term reward attained when executing action a at state s, then
following policy 7 thereafter, and satisfies the Bellman equation Q" (s, a) = r(s,a) + yEy o [Q"(s",a")].

B Full System Description: V-PTR

In this section, we will provide further details regarding the 3 phases of V-PTRIn particular, we will
describe the video pre-training with ICVF [5] as well as Multi-robot pretraining with PTR [10],
describing both the networks present during training as well as the objective function.

B.1 Video Pre-Training with ICVF

Network. We define the visual backbone fy(s) to be a ResNet50-v2 model, which outputs a 2048-
dimensional vector. The ICVF heads ¢, 1, T are 2-layer MLPs with hidden dimensions of 256 and a
final dimension of 256. The ICVF is then defined as V(s, g,z) = ¢(f(s))"T(f(z))y(f(g)) for video
frames s, g, z.

B.2 Multi-robot pretraining with PTR

Networks. We mirror the experimental setup of [10], with no modifications except for a different
visual backbone. PTR uses CQL [9] as the base offline RL method, meaning it trains two Q functions,
a separate policy, and delayed target copies of the Q-functions. Each network is represented by a
3-layer MLP head with width of 256, after the visual representation. To make comparisons between
PTR and V-PTR exact, we also use separate encoders for the actor and critic, although both are
initialized at the beginning of Phase 2 using the same visual representation as learned during Phase 1.
We refer to [10] for a more complete description.

C Environment Setup and Dataset Details

In this section, we will describe the setup for our experimental results with respect to both the
real-world experiments and the sim diagnostic experiments. There will be a description of the task
setup as well as the corresponding datasets associated with the tasks.



C.1 Description of State and Action Space

Our state and action description follows that of PTR [10]. The state is a 128x128 RGB image captured
from an over-the-shoulder camera, a one-hot vector identifying which task is to be performed, the
position and rotation of the end-effector, and how much the gripper is closed. The action is the
translational and angular velocity of the robot end-effector, as well as how much the gripper is closed.
Rotations and angular velocities are expressed using Euler angles.

C.2 Description of Real Robotic Setup

‘We mirror our real-world experimental setup from Bridge [4] and PTR [10]. In particular, we designed
and evaluated the performance of our method under several distinct conditions in 2 different toy
kitchen domains. The robot that is used is a 6-DoF WidowX 250 robot with a fixed side camera. The
scene in which the robot was placed in was a toy kitchen with elements such as stove tops, sinks,
microwaves, and food objects found in the scene. A picture of our setup is found in Figure 4.

Figure 4: Real-robot experiments. We utilize the setup from the Bridge dataset [4]. The bridge dataset is
collected on a 6-DoF WidowX 250 robot, with a fixed side camera placed in diverse toy-kitchens. Observations
for the tasks consist of one 128 x 128 RGB image from a side camera, as well as robot proprioception. Left: task
objects and containers for the tasks that we study. Right: Evaluation setup pick place environment.

We evaluate several pick place tasks, in which the agent has to place an object into a container
amongst distractors found in the scene. Distractor objects in this scene can include other objects and
containers that may have even been shown to be corresponding to different tasks.

C.3 Description of Video Pre-Training Dataset

The Video Pre-training Dataset that we utilize in Stage 1 of our method, PTR, is Ego4D [6]. We
used the same pre-processed Ego4D dataset as in R3M [13] and VIP [11]. In particular, long videos
that are raw in nature are clipped to be shorter consisting of 10-150 frames. From here, the clipped
video is decomposed into individual frames that are pre-processed with a random crop at the video
level. The frame is then resized and center-cropped to be of size 224 x 224 x 3. These processed video
frames are then fed into the replay buffer to be individual transitions for the ICVF objective [5].

C.4 Description of Real-World Multi-Task Robot Datasets

For the pre-training and target datasets in Stage 2 of V-PTR for the real-world multi-task training,
we utilize subsets of the Bridge Dataset [4]. Mirroring the setup of Scenario 3 in PTR [10], the
pre-training data comprises of all pick-and-place data found in the bridge dataset except for any
demonstration data collected in the toy kitchen that was evaluated on. For the target dataset, we
collect 44 new demonstrations for each of the 4 tasks: Removing Croissant from Colander, Placing
Khnife in Pot, Placing Sweet Potato on Plate, and Placing Cucumber in Bowl. A total of 218 successful
demonstrations were collected with a human demonstrator using an Oculus Quest Headset for Phase
3 of V-PTR.



Table 3: The hyperparameters used by V-PTR. After pre-training on multi-task robot data, in the second pre-
training phase V-PTR fine-tunes the representation using multi-task CQL [9] on diverse robot data. Finally the
third fine-tuning phase aims to customize this policy for the target task. The above table presents hyperparameters
for V-PTR that we utilize in our experiments.

Hyperparameters

a 0.1, 1,5,10

policy architecture ResNet-50, ViT-B
critic architecture ResNet-50, ViT-B
policy learning rate le-4

critic learning rate 3e-4

reward scale 11

reward bias -1

batch size 64

D Evaluation Details

In this section, we will provide how real and simulated environments were evaluated fairly across our
method and baselines. This protocol is similar in nature to the one presented in PTR [10].

D.1 Evaluation Protocol for Real-World Experiments

To evaluate a policy in the real world, we loop through 4 starting gripper transformations that move
the gripper to the left front, right front, left rear, and right rear of the kitchen environment. For each of
these starting transformations, we evaluate a total of 3 times: once with the object to pick up directly
underneath the gripper and twice with it shifted slightly so that the policy cannot simply move straight
down from the starting location. For each of these evaluations, we let the policy run for 60 time steps.

For our experiments testing generalization to novel distractor objects, we place two novel distractor
objects into the scene. We shift the locations of these objects between each evaluation and switch out
the objects themselves when we change start transforms so that each combination of distractors is
evaluated 3 times.

When taking objects out of containers, we do not count knocking over the container so that the object
falls out as a success - the gripper must lift up the object in the air and set it outside the container.

E Experimental Details for V-PTR and Baseline Methods

E.1 CQL Finetuning [10]

For our second pre-training phase on multi-task robot data and fine-tuning on target data, we utilized
CQL [9] as the downstream offline RL algorithm. Following the design decisions in the official
implementation of PTR [10], we utilized a variant of Bellman backup that computes the target value
by performing a maximization over target values computed for n = 4 actions sampled from the policy
at the next state (max_q_backup). In each domain, we swept over the alpha values of ¢ = 0.1, 1, 5, 10.
‘We built our code upon the CQL implementation from https://github.com/Asap7772/PTR [10].

E.2 MVP|[21; 15]

For masked autoencoding (MAE)-based methods such as MVP [15], we loaded in the pre-trained
PyTorch Checkpoints for the ViT-Base model. For this method, we kept the pre-trained representation
frozen and finetuned a Multi-Layer Perceptron (MLP) that takes in the class token of the ViT as input
to the model and outputs an action dimensional vector. The output of the MAE is normalized with
layer normalization. Other hyperparameters follow the CQL fine-tuning section.

E.3 VIP[11] and R3M [13]

Prior methods have shown that TD-based updates with networks with batch normalization have
instabilities during training. Given this, methods such as VIP and R3M that utilize a standard ResNet-
50 [7] backbone with batch normalization do not finetune stably for methods such as CQL. For this
reason, any comparisons using standard ResNet 50 either use frozen batch statistics, or are trained
with a behavioral cloning objective.


https://github.com/Asap7772/PTR

All hyperparameters described above are summarized in Table 3.

F Reducing the Number of Fine-Tuning Demonstrations

We examine how reducing the number of demonstrations from 44 to 10 degrades performance in
Table 4. V-PTR continues to significantly outperform baselines.

Table 4: Task success rates of V-PTR and prior methods with only 10 demonstrations. As should be expected,
the performances of all approaches, including ours, degrade with less data, but V-PTR performs significantly
better than other pre-training methods.

Video pre-training No videos

Task V-PTR (Ours) VIP[11]+CQL PTR[10]
Croissant out of Colander 4/12 1/12 0/12
Sweet Potato on Plate 5/12 0/12 0/12
Knife in Pan 2/12 0/12 0/12
Cucumber in Pot 4/12 0/12 0/12
Open Microwave 8/12 2/12 4/12
Sweep Beans 2/12 0/12 5/12
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