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Abstract

The inverse reinforcement learning approach to imitation learning is a double-
edged sword. On one hand, it allows the learner to find policies that are robust
to compounding errors. On the other hand, it requires that the learner repeatedly
solve a computationally expensive reinforcement learning (RL) problem. Often,
much of this computation is spent searching over policies dissimilar to the expert’s
and is therefore wasted. In this work, we propose using hybrid reinforcement
learning to curtail this unnecessary exploration by leveraging the fact that rather
than computing the optimal policy for each adversarially chosen reward function,
we merely need to compete with the expert. More formally, we derive a reduction
from inverse RL to hybrid RL that allows us to dramatically reduce interaction
during the inner policy search loop while still maintaining a degree of robustness to
compounding errors. Empirically, we find that our approaches are far more sample
efficient than standard inverse RL and several other baselines that require stronger
assumptions (e.g. generative model access) on a suite of continuous control tasks.

1 Introduction

Broadly speaking, we can break down the approaches to imitation learning into offline algorithms (e.g.
behavioral cloning, [1]) and interactive algorithms (e.g. inverse reinforcement learning [2], DAgger
[3]). The key benefit of interaction in sequential tasks is that it allows the learner to observe the
consequences of their actions and therefore learn to recover from their own mistakes. More formally,
all offline approaches to imitation aren’t robust to the covariate shift between the expert’s state
distribution and the learner’s induced state distribution and therefore can suffer from compounding
errors and poor test-time performance [3, 4]. More colloquially, what you see is what you get. This
is the fundamental reason that for safety-critical tasks like autonomous driving [5, 6, 7] and robust
real-world services like Google Maps [8], interactive approaches like inverse reinforcement learning
continue to provide state-of-the-art performance

Of course, any interactive approach necessarily requires that the learner is able to try out actions in
the environment they will be tested on (or at least in an accurate simulator of it). This interaction can
be unsafe when performed in the real world and of great computational expense when performed
in simulation. In fact, because approaches like inverse reinforcement learning reduce the problem
of imitation to repeatedly solving a reinforcement learning problem, they can end up having to pay
for the exponential interaction complexity of reinforcement learning [9] over and over again. This
motivates our key question: what is the minimal amount of interaction we can perform in imitation
learning while still maintaining robustness to compounding errors?
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If one was to profile a standard inverse reinforcement learning procedure, they would notice that the
majority of computation isn’t spent in the outer loop picking a reward function (which is essentially a
classification problem) and is instead spent in the inner loop, optimizing the chosen reward function
(which is solving a reinforcement learning problem). In essence, the reason reinforcement learning is
computationally expensive is because of exploration: the learner needs to try out all possible actions
in all possible states to figure out what decisions are optimal over the horizon. This means that in
inverse reinforcement learning, the learner often spends the majority of their computational budget
trying out policies that are quite dissimilar to the expert’s in the hope of finding a bit of reward. If we
take a step back, this is rather odd: given our goal is to imitate the expert, we clearly don’t need to be
thinking about policies that are nothing like it. Put differently, when optimizing a potential reward
function, we should only be competing against policies with similar visitation distributions to the
expert. We can therefore narrow our overarching question to the following: how do we focus our
policy search on policies that are similar to the expert’s?

Recent work by [10] has proposed one answer to this question: by resetting the learner to states
from the expert demonstrations during policy search, one can scope down the amount of exploration
the learner does. While this approach comes with strong theoretical guarantees (e.g. polynomial
interaction complexity), it requires the ability to reset the learner to arbitrary states. However, for a
variety of tasks in the real world, we might not be able to reset our learner to an arbitrary state. For
example, for agile robotics, resetting a quadruped to the apex of a back-flip is rather challenging. We
therefore focus on how we can curtail unnecessary exploration without assuming generative model
access to the environment.

We propose to use hybrid reinforcement learning [11, 12, 13] to speed up the policy search component
of inverse reinforcement learning. In online RL, one trains a policy that does well on the distribution
of data it induces. In offline RL, one trains a policy that does well on an offline dataset. In hybrid RL,
one trains a policy to do well on both (e.g. by using data from both buffers when fitting a Q-function).
The upshot of this balanced training procedure is that rather than competing against an arbitrary
policy (as we do in online RL and therefore need to pay for extensive exploration), we only ask the
learner to compete against policies covered by the offline dataset. With hybrid RL, we get the same
theoretical guarantees as offline RL [12] but do not require implementing explicit pessimism (which
can be finicky and intractable theoretically) while retaining a higher degree of robustness to covariate
shift as our learner gets to observe their own trajectories. Given our goal is to compete with the
expert, we propose to simply use the expert demonstrations as the offline dataset for hybrid RL. In
short, our key insight is that we can use hybrid RL as the policy search procedure in IRL to curtail
exploration while maintaining some degree of robustness to compounding errors. More explicitly,
the contributions of our work are two-fold:

1. We provide a hybrid inverse RL (HyPE) algorithm and discuss its performance guarantees.
We show that while in the worst case, HyPE can suffer from compounding errors, it is more robust to
them than purely offline approaches like behavioral cloning.

2. We demonstrate that on continuous control tasks, HyPE is significantly more sample efficient
than standard IRL. In addition to out-performing standard IRL and behavioral cloning, we also find
that on some tasks, we are able to sometimes out-perform and never significantly under-perform the
FILTER algorithm of [10], which requires the ability to reset the learner to arbitrary states.

We begin by formalizing our method before moving onto experimental results.

2 Designing a Hybrid Inverse Reinforcement Learning Algorithm

We consider a finite-horizon Markov Decision Process (MDP) [14] parameterized by ⟨S,A, T , r, T ⟩
where S, A are the state and action spaces, T : S × A → ∆(S) is the transition operator, r :
S × A → [−1, 1] is the reward function, and T is the horizon. In the inverse RL setup, we see
trajectories generated by an expert policy πE : S → ∆(A), but do not know the reward function. Our
goal is to find a policy that, no matter what reward function we are evaluated under, performs as well
as the expert. We cast this problem as a zero-sum game between a policy player and an adversary
that tries to pick out differences between expert and learner policies [4]. More formally, we optimize
over policies π : S → ∆(A) ∈ Π and reward functions f : S ×A → [−1, 1] ∈ Fr. For theoretical
simplicity, we assume that our strategy spaces (Π and Fr) are convex and compact, that Fr is closed
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Algorithm 1 Hybrid Policy Emulation (HyPE)
Input: Demos. DE , Policy class Π, Reward class Fr, Hybrid RL oracle HyRL
Output: Trained policy π
Initialize f1 ∈ Fr

for i in 1 . . . N do
// Take a no-regret step over rewards (e.g. via OGD)
fi+1 ← fi + η∇f (J(πi, f)− J(πE , f))
// Perform an expert-competitive response over policies
πi+1 ← HyRL(D = DE , r̂ = −fj)

end for
Return πi with the lowest validation error.

under negation, and that r ∈ Fr, πE ∈ Π. We assume access to an efficient oracle that fulfills the
following contract of returning a policy that competes with those covered by an offline dataset:
Definition 2.1 (Dataset-Competitive Response DCR[ϵ]). Given a dataset of trajectories D and a
reward function r̂, DCR(D, r̂) returns a policy π such that

J(π∗, r̂)− J(π, r̂) ≤ ϵT 2, (1)

where ϵ is a constant, T is the horizon of the problem, and π∗ is the optimal policy covered by the
offline dataset, i.e.

π∗ ∈ argmax J(π, r̂) s.t.
∥∥∥∥ ρπ
ρD

∥∥∥∥
∞

< C, (2)

where ρπ refers to the state-action visitation distribution of π and C is some constant.

For simplicity, we ignore finite sample issues and errors introduced by function approximation
and therefore set C = ∞. Critically, various hybrid RL algorithms essentially provide the above
guarantee. (e.g. HyQ [12] or HAC / HNPG [13]). For our use of this oracle, we will set ρD = ρE ,
providing an expert-competitive response, which we denote hereafter as ECR[ϵ].

A key detail in the above definition is that rather than guaranteeing it will return a policy that is
covered by the offline dataset, hybrid RL instead guarantees we will return a policy that competes
with any policy covered by the offline data. The reason this distinction matters is that we cannot
simply treat the above oracle as performing a "best-response" over the covered policy class, which
would allow us to plug in ECR into the standard setup for a dual inverse RL algorithm [4]. Instead, we
generalize the proof strategy of [10] to allow for an arbitrary ECR (rather than the specific algorithm,
NRPI [15], they use). We then use hybrid RL to provide this ECR, improving the computational
efficiency of our procedure without requiring the ability to reset the learner to an arbitrary state.

We outline our full approach in Algorithm 1. We prove the following performance guarantee on the
policies returned by HyPE in Appendix A.
Theorem 2.2 (HyPE Performance Guarantee). Assume we run HyPE with a hybrid RL oracle that
satisfies ECR[ϵ]. Let π1, . . . , πN denote the sequence of policies we compute and π̄ their average.
Also, let f1, . . . , fN denote the sequence of rewards we compute and ϵ̄ their average regret. Then, we
have that

J(πE , r)− J(π̄, r) ≤ ϵ̄T + ϵT 2 (3)

2.1 HyPE vs. Behavioral Cloning.

The above bound indicates that in the worst case, policies produced by HyPE can suffer from
compounding errors, in contrast to those produced by standard inverse RL [4]. However, this worst-
case analysis hides the fact that on less contrived problems, HyPE will perform better than a purely
offline approach like behavioral cloning that do not observe the consequences of their own chosen
actions. We illustrate this fact with a simple example.
Example 2.3. Consider the following two-lane MDP. At each timestep, the agent must move right.
At each timestep, they can either stay in the same lane or switch lanes. The goal is to stay in the top
lane, which provides a constant reward of +1. We see data from an optimal expert.
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The learner can chose between two deterministic policies (teal and orange) that share the black prefix
and then diverge. We visualize a rollout from each of these policies in the below figure. For s3:T in
the top row, both policies always take the action to stay in the top row.

s1

s2

s2

s3

s3

. . .

. . .

s4

s4

sT

sT

Figure 1: A simple two-lane problem where the learner’s goal is to stay in the top lane and they are
able to choose between the orange and teal policies. HyPE does better than offline methods here.

We can directly calculate that J(π, r) = T − 1 and J(π, r) = 1. However, both policies have an
equivalent behavioral cloning loss – i.e. for the zero/one loss, ℓBC(π) = EsE ,aE∼ρE

[1(aE ̸= π(sE)],
ℓBC(π) = ℓBC(π) =

1
T . Thus, for a purely offline method, we wouldn’t be able to break ties between

these policies. Let’s say our reward class is Fr = {r, 1 − r}. Then, regardless of the policy we
picked, the adversary would always play r. For any ϵ < T−1

T 2 , an ECR[ϵ] must return the orange
policy, which means an algorithm like HyPE would always return the best policy in our class.

3 Experimental Results
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Figure 2: On all tasks considered, HyPE uniformly achieves the highest reward. Further performance
gap between HyPE and other algorithms increases as environments increase in difficultly. We plot the
interquartile mean as recommended by [16]. Standard errors are computed across 5 seeds.

We conduct experiments with the Mujoco benchmark suite [17]. We train experts using Soft Actor
Critic [18] and then present all learners with 64 expert demonstrations. As a simple behavioral
cloning baseline matches expert performance under these conditions [4], we harden the problem
by introducing randomization: with probability ptremble, a random action gets executed in the
environment rather than the one the policy chose. Our expert data is free from these corruptions. We
also present results on the antmaze-large tasks from [19], but with ptremble = 0.

We compare five algorithms: behavioral cloning [1], IQLearn [20] (an interactive approach that
eliminates the inner loop of inverse RL at the cost of a secondary regression), standard inverse
reinforcement learning (using techniques like gradient penalties and decaying learning rates as
suggested by [21] to improve performance over naive implementations), FILTER [10], and HyPE.
In all three of the IRL variants, because it leads to significantly better performance, we re-label
data with the current reward function during policy improvement rather than keeping the reward
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labels that were set when data was added to the replay buffer. We note that this differs from the
standard implementation of IRL [4, 21, 10, 22] and might be of independent interest. Essentially,
both FILTER and HyPE can be seen as extensions of the standard IRL setup where we perform an
expert-competitive response rather than a true best response. In FILTER, we perform an ECR by
resetting the learner to states from the expert demonstrations. In HyPE, we perform an ECR by using a
batch that is a 50/50 mixture of learner and expert data when performing policy updates.

In Figure 2, we see that across the board, HyPE does no worse than its next closest competitor,
significantly out-performing techniques that require stronger assumptions like FILTER. Importantly,
we also see that constraining the policy space of the learner never leads to worse performance
compared to standard IRL (MM in the figures). We also consistently out-perform a behavioral cloning
baseline, highlighting the importance of interaction for mitigating compounding errors. We observe
that the performance of IQLearn grows increasingly unstable and deteriorates as the difficulty of the
environment increases, while HyPE consistently achieves the best performance across environments.
Finally, we find using both resets and a mixed batch is important for performance on the two antmaze
environments. We hypothesize that for problems with hard exploration, using both techniques is
critical to curtail unnecessary exploration. In summary, our experimental results show that HyPE
is able to inherit the benefits of interaction without having to pay for the full price of unstructured
exploration, which agrees with our theory.
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A Proofs

We begin by stating our key proof technique for general zero-sum games before specializing to
inverse RL.

A.1 Two Player Zero-Sum Games with Relative Best Responses

Theorem A.1. Consider a two-player zero-sum game maxx∈X miny∈Y ℓ(x, y) with payoff ℓ that is
concave in x and convex in y. Given access to a no-regret online convex optimization algorithm over
X and a relative best response oracle over Y that guarantees to output a y s.t. ℓ(y, x)− ℓ(yE , x) ≤ ϵ,
we are able to compute an average iterate ȳ in T rounds such that

max
x∈X

ℓ(x, ȳ)− ℓ(x, yE) ≤ ϵ+
RegX (T )

T
. (4)

Proof. By the convexity of ℓ in y and Jensen’s inequality, we have that

max
x∈X

ℓ(x, ȳ)− ℓ(x, yE) ≤
1

T

T∑
t=1

ℓ(x, yt)− ℓ(x, yE). (5)

Define ℓt(x) = ℓ(x, yt)− ℓ(x, yE). Thus, to prove our original claim, it is sufficient to upper-bound

max
x∈X

1

T

T∑
t=1

ℓt(x). (6)

From our relative best response, we directly have that

∀t ∈ [T ], ℓ(xt, yt)− ℓ(xt, yE) ≤ ϵ⇒ ∀t ∈ [T ], ℓt(xt) ≤ ϵ. (7)

By the definition of regret of our x selection strategy, we have that

max
x∈X

1

T

T∑
t=1

ℓt(x)− ℓt(xt) ≤
RegX (T )

T
. (8)

Rearranging terms, this tells us that

max
x∈X

1

T

T∑
t=1

ℓt(x) ≤
RegX (T )

T
+

1

T

T∑
t=1

ℓt(xt) ≤
RegX (T )

T
+ ϵ. (9)

where the last inequality comes from the definition of the relative best response. This completes the
proof. We note that via the no-regret property of our x selection strategy, the first term tends to 0 as
N →∞.

A.2 Proof of Theorem 2.2

Theorem A.2 (HyPE Performance Guarantee). Assume we run HyPE with a hybrid RL oracle that
satisfies ECR[ϵ]. Let π1, . . . , πN denote the sequence of policies we compute and π̄ their average.
Also, let f1, . . . , fN denote the sequence of rewards we compute and ϵ̄ their average regret. Then, we
have that

J(πE , r)− J(π̄, r) ≤ ϵ̄T + ϵT 2 (10)

Proof. We essentially follow the same proof structure as our above general template, with X mapping
to Fr and the relative best-response oracle mapping to ECR[ϵ].

By Jensen’s inequality, we have that

J(πE , r)− J(π̄, r) ≤ max
f∈Fr

J(πE , f)− J(π̄, f) ≤ max
f∈Fr

N∑
i=1

J(πE , f)− J(πi, f). (11)
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Notice that ∀i ∈ [N ], the ECR[ϵ]-property of our hybrid reinforcement learning oracle guarantees
that

J(πE ,−fi)− J(πi,−fi) = J(πi, fi)− J(πE , fi) ≤ ϵT 2 (12)

Define the loss we feed to our no-regret reward learning algorithm as ℓi(f) = 1
T (J(πi, f) −

J(πE , f)) ∈ [−1, 1]. Then, by the definition of regret of our reward-selection strategy, we have that

max
f∗∈Fr

1

N

N∑
i=1

(J(πi, f
∗)− J(πE , f

∗))− (J(πi, fi)− J(πE , fi)) ≤ ϵ̄T, (13)

Adding the second term to both sides, we get that

max
f∗∈Fr

1

N

N∑
i=1

(J(πi, f
∗)− J(πE , f

∗)) ≤ 1

N

N∑
i=1

(J(πi, fi)− J(πE , fi)) + ϵ̄ (14)

≤ ϵT 2 + ϵ̄T, (15)

where the last inequality comes from the ECR[ϵ] property. This completes the proof of the desired
claim. We note that via the no-regret property of our reward-selection strategy, the first term tends to
0 as N →∞.

B Implementation Details

We use Optimistic Adam [23] for all policy and discriminator optimization, and gradient penalties
[24] to stabilize our discriminator training for all algorithms. Our policies, value functions, and
discriminators are all 2-layer ReLu networks with a hidden size of 256. We sample 4 trajectories to
use in the discriminator update at the end of each outer-loop iteration. For our discriminator, we start
with a learning rate of 8e− 4 and decay it linearly over outer-loop iterations.

B.1 Mujoco Tasks

For the Mujoco Tasks (HalfCheetah, Hopper, Walker, and Humanoid), we use the Soft Actor Critic
[18] implementation provided by [25] for policy optimization for both the expert and the learner. We
use the hyperparameters in Table 1 for all experiments. We train behavioral cloning for 300,000 steps.

PARAMETER VALUE

BUFFER SIZE 1E6
BATCH SIZE 256
γ 0.98
τ 0.02
TRAINING FREQ. 64
GRADIENT STEPS 64
LEARNING RATE LIN. SCHED. 7.3E-4
POLICY ARCHITECTURE 256 X 2
STATE-DEPENDENT EXPLORATION TRUE
TRAINING TIMESTEPS 1E6

Table 1: Expert and learner hyperparameters for SAC.

We use the best response variant of FILTER from [10] with α = 0.5. Each outer loop iteration lasts
for 10000 steps of environment interaction.

B.2 D4RL Tasks

For the two antmaze-lage tasks, we use the data provided by [19] as out expert demonstrations. We
append goal information to the observation for all algorithms following the example in [10].

For our policy optimizer, we build upon the TD3+BC implementation of [26] with the default
hyperparameters. For behavioral cloning, we run the TD3+BC optimizer for 500k steps while zeroing
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out the component of the actor update that depends on rewards. For MM, FILTER, and HyPE, we
pretrain the policy with 10,000 steps of behavioral cloning. We use α = 1.0 for FILTER.

Each outer loop iteration lasts for 5000 steps of environment interaction.
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