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Abstract

The pre-train and fine-tune approach in machine learning has been highly successful
across various domains, enabling rapid task learning by utilizing existing data and
pre-trained models from the internet. We seek to apply this approach to robotic
reinforcement learning, allowing robots to learn new tasks with minimal human
involvement by leveraging online resources. We introduce ROBOFUME, a reset-
free fine-tuning system that pre-trains a versatile manipulation policy from diverse
prior experience datasets and autonomously learns a target task with minimal human
input. In real-world robot manipulation tasks, our method can incorporate data from
an external robot dataset and improve performance on a target task in as little as 3
hours of autonomous real-world experience. We also evaluate our method against
various baselines in simulation experiments. Website: robofume.github.io

1 Introduction

In many domains that involve machine learning, a widely successful paradigm for learning task-
specific models is to first pre-train a general-purpose model from an existing diverse prior dataset,
and then adapt the model with a small addition of task-specific data [1–5]. This paradigm is attractive
to real-world robot learning, since collecting data on a robot is expensive, and fine-tuning an existing
model on a small task-specific dataset could substantially improve the data efficiency for learning
a new task. Pre-training a policy with offline reinforcement learning and then fine-tuning it with
online reinforcement learning is a natural way to implement this paradigm in robotics. However,
numerous challenges arise when using this recipe in practice. First, off-the-shelf robot datasets often
use different objects, fixture placements, camera viewpoints, and lighting conditions compared to
the local robot platform. This causes non-trivial distribution shifts between pre-training and online
fine-tuning data, which makes effectively fine-tuning a robot policy difficult. Second, training or
fine-tuning a policy in the real world often requires extensive human supervision, which includes
manually resetting the environment between trials [6–8] and engineering reward functions [9–11]. In
this work, our goal is to address these two challenges and develop a practical framework that enables
robot fine-tuning with minimal time and human effort.

Over the past few years, there has been a lot of progress in designing efficient and autonomous
reinforcement learning algorithms. Some works propose to reduce the need for manual environment
resets using reset-free RL [9–20], where an agent alternates between running a task policy and a reset
policy during training while updating both with online experience. However, these works do not
leverage diverse off-the-shelf robot datasets. Recent advances in offline RL algorithms have enabled
policies to leverage diverse offline data and improve further via online fine-tuning [21–28], but these
new methods have not been integrated into a system that aims at minimizing human supervision in
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Figure 1: We propose a system that enables autonomous and efficient real-world robot learning. First, we
pre-train a multi-task policy and fine-tune a pre-trained Vision-Language Model (VLM) as a reward model
using diverse off-the-shelf demonstration datasets. Then, we fine-tune the pre-trained policy online reset-free
with the VLM reward model.

the fine-tuning phase. There are also works that propose to eliminate the need for human-specified
reward functions by learning reward prediction models [18, 19, 29, 30], but we found that many
of these proposed models can be brittle when deployed in a real-world RL fine-tuning setup. In
summary, although prior works have presented individual components that are vital to building a
working system for efficient and human-free robot learning, it is not clear which components one
should use to put together such a system and how.

We design ROBOFUME, a system that enables autonomous and efficient real-world robot learning
by leveraging diverse offline datasets and online fine-tuning. Our system operates in two phases.
In the pre-training phase, we assume access to a diverse prior dataset, a few task demonstrations
and reset demonstrations of the target task, and a small collection of sample failure observations
in the target task. From this data, we learn a language-conditioned, multi-task policy with offline
RL. To cope with the distribution shift between the offline dataset and online interactions, we utilize
calibrated offline RL techniques [28] that correct the scale of the learned Q-values by underestimating
the predicted values of the learned policy from offline data. To ensure the online fine-tuning phase
requires minimal human feedback, we propose to utilize large vision-language models (VLMs) to
provide a robust pre-trained representation and fine-tune it with a small amount of in-domain data so
that it is tailored for the reward classification setup. In the fine-tuning phase, a robot adapts the policy
in the real world autonomously by alternating between attempting the task and attempting to reset the
environment to the initial state distribution of the task. Meanwhile, the agent uses the pre-trained
VLM model as a surrogate reward for updating the policy.

We evaluate our system by pre-training it on the Bridge dataset [31] and testing it on a diverse set
of real-world downstream tasks: candy sweeping, cloth folding, cube covering, pot lid, and pot
pick-and-place. We find that our system provides substantial improvements over offline-only methods
with as little as 3 hours of real-world training. We perform more quantitative experiments in a
simulation setup, where we illustrate that our method outperforms imitation learning and offline RL
methods that either do not perform fine-tuning online or do not incorporate diverse prior data.

2 ROBOFUME

Our work focuses on designing an efficient and scalable framework for pre-training on a diverse set
of prior demonstrations and autonomously fine-tuning on target tasks. Our system consists of an
offline pre-training phase and an online fine-tuning phase. In Section 2, we discuss how we pre-train
a language-conditioned multi-task policy on diverse data that can be fine-tuned online efficiently.
Online fine-tuning requires a reward function to label successes and failures. In Section 2, we
introduce a VLM-based classifier for providing a reward signal to the policy in the fine-tuning phase.
Finally, in Section 2, we describe how to autonomously adapt the pre-trained policy in the fine-tuning
phase by utilizing the VLM-based reward classifier as a reward signal and chaining forward and
backward behaviors to practice the task with minimal human interventions.

Preliminaries Our method assumes access to a prior dataset Dprior = ∪N
j=1Dj =

∪N
j=1{(s

j
i , a

j
i , s

′j
i )}Ki=1, which consists of demonstrations of N different tasks τ1, . . . τk. We assume

that all demonstration data uses image observations. The method will be tested on a downstream
task τf , which is different from any of the prior tasks. To facilitate learning on the downstream task,
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we also assume the availability of a small set of target task demos Df , target task reset demos Db,
and target task failure states D/. The reset demos Db come from the reset task τb which resets the
environment from an end state of τf to the initial state distribution of τf . The failure states D/
consist entirely of image observations that correspond to unsuccessful states and are collected to aid
with the VLM reward learning. In addition to all the given data (Dprior, Df , Db, D/), each task τ is
also accompanied with a language description l.

Pre-Training a Multi-Task Policy on Diverse Prior Data Prior work has shown that training a policy
using a conservative Q-value function is an effective way to obtain a good policy from an offline
dataset [32, 33]. However, fine-tuning can be critical to learn competent policies as prior data may
not provide sufficient coverage, especially for new tasks or scenes. We leverage CalQL [28] which
modifies the conservative Q-learning algorithm CQL such that it enables efficient online fine-tuning
by enforcing calibration on the Q-function (i.e. making the Q-value of the learned policy no lower
than the Monte-Carlo returns in the prior dataset). CalQL allows us to improve the pre-trained policy
efficiently with respect to online interactions.

CalQL requires the training of an actor and a critic. Since we use image observations, we additionally
train an encoder ϕ(simg) that projects the images into a lower-dimensional space before giving them
as inputs to the actor and critic. The encoder ϕ is a 4-layer CNN, and is optimized exclusively against
the critic loss. To best utilize the multi-task data, we encode task descriptions l using pre-trained
CLIP embeddings, resulting in an embedding z = CLIP(l) which is used as the task representation.
The policy then takes as inputs a concatenation of the encoded image observation ϕ(simg), task
representation z, and proprioceptive information sp, processes the concatenated vector through
an MLP, and produces the output action a. We train the policy π and the critic Q with datasets
Dprior,Df ,Db. After the offline learning phase, the policy and critic contain knowledge of all tasks in
the prior data and the target task.

Fine-Tuning A Vision-Language Model for Rewards To improve the autonomy of the policy fine-
tuning phase, our agent needs to perform online fine-tuning without manually labeled or engineered
reward functions. To achieve this, we propose to fine-tune off-the-shelf vision-language models as
reward predictors. We design a VLM-based reward model that takes the current observation and the
task name as input and outputs a binary label of whether the current observation corresponds to a
successful state or an unsuccessful state with respect to the task. Given a task name (eg. ‘put green
cabbage into sink’), we first use GPT4 to convert the name to a short question that could serve as a
prompt to know if the task has been completed or not (eg. ‘is green cabbage placed in the sink?’).
Then, we pass the converted prompt to a VLM together with the current image of the environment.
The VLM outputs a sparse binary reward, returning success if the ‘yes’ token has a higher probability
than ‘no’ token.

We use MiniGPT4 [34] as the VLM for receiving (image, task prompt) pairs and answering whether
the task has been successfully completed. We find the zero-shot performance of the pre-trained
VLM to be unsatisfactory. To improve the VLM’s performance for reward modeling, we fine-tune it
using the prior and target task data. In particular, for every demonstration, the last 3 states are used
as success states and the ground truth answer is labeled as ‘Yes’; for all other states, we label the
ground-truth answer as ‘No’. To provide the model with more information about failed states, we
collect a small dataset D/ of images that correspond to unsuccessful states for forward and backward
target tasks. We find that fine-tuning leads to a more accurate reward model.

Autonomous Online Fine-tuning The offline pre-training phase produces a single language-
conditioned policy π(·|s, l) that can perform the target and reset tasks when provided their respective
language instructions lf and lb. The policy is then deployed in a hardware setup for online fine-tuning.

Since we aim for a fully autonomous setup, we roll out the policy in a reset-free manner, alternating
between attempting the target task τf with π(·|s, lf ) and the reset task τb with π(·|s, lb). We use the
fine-tuned VLM from the previous subsection as the sparse reward function for the RL algorithm.
When the VLM predicts the task has been completed successfully, we terminate the episode and
switch the language instruction for the policy to complete the other task. In addition to switching
tasks upon completion as predicted by the VLM, we switch after a fixed number of timesteps (150) to
ensure the robot does not become stuck in bad states. As mentioned in Section 2, we fine-tune the
policy using CalQL with an additional BC regularization term on the critic. We find that without a
BC regularization term, behaviors degrade over the course of training. By constraining the policy to
stay close to the expert demonstrations from the target and reset tasks, the agent becomes less likely
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Figure 2: Performance of our method on three simulated environments. We report the success rate over the
course of training, averaged over three seeds. Our method ROBOFUME outperforms BC, ARIEL+VLM [11],
and MEDAL++ [19] consistently on all three domains.

to exploit false-positives from the VLM reward model. We use the same fixed BC regularization
weight throughout fine-tuning as we did on the offline pre-training phase. Our fine-tuning pipeline is
implemented on top of the implementation of MEDAL++ [19]. Please refer to this work for more
details on our training procedure.

3 Results & Discussion

Task BC ROBOFUME
(OFFLINE)

ROBOFUME
(FT 30K STEPS)

Cloth Covering 45% 60% 80%
Cloth Folding 60% 70% 85%
Candy Sweeping 31% 47% 66%
Pot Lid 60% 40% 95%
Pot PNP 45% 35% 55%

Table 1: Real-robot results on 5 manipulation tasks. Our method
significantly improves over both offline-only and BC performance
after 30k steps of online interaction (2-4 hours).

Real Robot Experiments We eval-
uate ROBOFUME on five different
real-robot manipulation tasks. We
use a WidowX 250 robotic arm with
a single third-person camera (Log-
itech C920, resizing images to 100×
100 pixels). Our method runs au-
tonomously executing back and forth
the target task and the reset target task
for a fixed number of steps or until
the VLM predicts success. More real
robot experimental details are in the
Appendix Section 4.2.

Table 1 shows the results of our method after pretraining (labeled OFFLINE) and after autonomous
fine-tuning (labeled FT 30K STEPS), comparing with a behavior cloning (BC) baseline. BC trains a
language-conditioned policy on all the prior and target data. After 30k steps of autonomous online
interaction, our method shows relative improvement of 51% upon the pre-trained performance, and
outperforms BC by 58% on an average. For pick and place tasks (pot lid and pot pnp), the fine-tuned
policy was more likely to retry if it initially failed to grasp the object. For candy sweeping, BC and
the pre-trained policy were prone to overshooting and pushing on the border of the tray after the first
sweep, while fine-tuning the policy achieved higher success by chaining multiple sweeping attempts.

Simulation Experiments We use a suite of simulated robotic manipulation environments to ablate
the contributions of different components of our algorithm. We test on three simulated environments
used in [35]. More simulation experiment details can be found in the Appendix Section 4.3. We
compare our method against the following baselines: (1) BC behavior clones on all prior and target
data; (2) MEDAL++ learns separate forward and backward policies from target forward and backward
task demonstrations and performs reset-free learning using an adversarially trained classifier as a
reward signal; (3) MEDAL++ with prior data modifies MEDAL++ to a single language-conditioned
multi-task policy and adds all prior demonstration data into the replay buffer; (4) ARIEL+VLM
modifies ARIEL [11] to use our VLM reward models as reward signal, instead of a handcrafted
ground-truth reward. As shown in Figure 2 our method ROBOFUME consistently outperforms prior
methods in all tasks, achieving success rates at least 20% higher than all baselines within 200k steps
of online fine-tuning. We also show additional ablations and analysis in Appendix Section 4.4

Discussion We introduced an autonomous framework that leverages existing diverse prior robot
demonstration datasets and improves performance in a new robot manipulation skill by finetuning
online. Integrating this work with new VLM models that can exhibit robust zero-shot performance
on unseen manipulation tasks and improving the reset efficiency of this framework are promising
directions for future research.
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4 Appendix

4.1 Method Details

4.1.1 Details on Pre-training

In addition to updating the policy using CalQL, we regularize policy learning with a behavior cloning (BC)
loss, which encourages the behaviors to stay close to the seen demonstrations. Not only does this regularization
improve the performance of the offline pre-training, but we find that it also makes it less likely for the autonomous
fine-tuning procedure to exploit false positive rewards from the VLM reward model. The weight of the BC
regularization term is chosen such that the scales of the RL loss and the BC loss are similar throughout the
pre-training phase.

4.1.2 Details on Reward Model Design Choice

Leveraging existing vision-language models offers a number of benefits compared to utilizing a pre-trained
visual representation or training a reward model from scratch using in-domain data: First, VLMs are trained on
an Internet-scale dataset that contains diverse image and language contents. Such models possess better inductive
biases and thus, can be more robust to natural shifts, such as perturbations to lighting conditions, or distractor
objects that might be seen at test time. Second, since VLMs can take both visual and language information as
input, they provide a natural interface for communicating the current observation and current task to the model
when requesting a reward label.

4.1.3 Overview of RoboFuME

We present an overview of our system in Algorithm 1.

Algorithm 1: RoboFuME
Initialize agent A = {ϕ, π,Q} and pre-trained VLM r̂.
Initialize forward and backward tasks τf , τb.
// Prepare data and train VLM reward classifier.
Dprior,Df ,Db,D/ ← load_data().
r̂ ← finetune_vlm(r̂, {Dprior,Df ,Db,D/}).
// Offline pre-training phase.
A.update_buffer(Dprior,Df ,Db).
for t = 1 to Toffline do
A.update_params_with_calql().

// Online fine-tuning phase.
s← env.reset(); l← τf .get_task_lang().
for t = 1 to Tonline do

a← A.act(s, l); s′ ← env.step(a).
A.update_buffer({s, a, s′, r̂(s)}).
for i = 1 to Nutd_ratio do
A.update_params_with_calql().

if switch then
// Switch task after a fixed interval.
l← env.switch(τf , τb).get_task_lang().

if interrupt then
// Allow occasional human intervention.
s← env.reset(); l← τf .get_task_lang().

else
s← s′.

4.2 Details on Real Robot Experiments

We run real robot experiments in five real-world tasks, illustrated in Figure 3. For tasks involving deformable
objects (the two cloth tasks) we manually reset the object to the initial forward pose every 15-25 episodes, and
for the rest of the tasks we reset every 30-35 episodes. Tasks that use the kitchen-sink environment (pot lid
and pot pnp) frequently experience episode interruptions when the robot arm applies more than the maximum
allowed torque, for example, when close to the sink borders. All tasks use 50 forward and 50 backward demos
for the target task, and fewer than 20 combined trajectories of failures. We use demos from the BridgeDataV2
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Figure 3: Illustrations of the five real-world evaluation tasks. (a) Sweep candies to the top of the tray. (b) fold
the yellow cloth. (c) cover a red wooden cube using the cloth. (d) place the lid on top of the metallic pot. (e)
move the orange pot from the sink to the drying rack.
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Figure 4: Performance of our method on the Vase simulated task with different actor-critic update
objectives. Fine-tuning with CalQL is critical to obtain stable improvements on this task, as training with CQL,
AWAC, or SAC yields poor performance. We also find that language conditioned policies perform slightly better
than one-hot task IDs in simulation.

[31, 36] for pre-training our language-conditioned policy, selecting approximately 1,000 trajectories with relevant
behaviors per task.

4.3 Details on Simulation Experiments

We consider three bin-sorting tasks in which different objects (a vase, a tiny bench, and a dumbbell weight)
have to be placed on the correct bin based on the language instruction, given only a sparse binary reward. We
provide 10 forward and reset demonstrations for each task, 30 failure demos, and 10 demos each for 20 prior
tasks that show picking and placing diverse objects on the same environment. For all methods that require online
experience, we reset the environment every 1,000 environment steps, i.e. every 25 episodes of interactions.

4.4 Ablations and Analysis

Ablations on RL Algorithm Design Choices. We evaluate our method trained with different critic and actor
optimization procedures on the Vase simulated task, shown in Figure 4. Training with CalQL was the only
method that yielded strong improvements in this task, with the other methods either failing completely or
obtaining very poor performance. We find that training without the CalQL stabilizes training, while the losses
for other methods would explode given the limited data.

Ablations on Reward Models. We compare our VLM reward function against other choices of automatic
reward functions on the Vase simulated task in Figure 5. VICE [37] adversarially trains a binary classifier
using positive samples from successful demonstrations, and labeling online experience as negative. We find
that offline pre-training sufficiently limits the exploitation of the frozen VLM reward, outperforming VICE and
thus, bypassing the need for adversarially trained reward functions. Such adversarial training can often learn to
discriminate based on spurious shifts in the real world, such as lighting or scene changes, leading to instability in
training outside simulation. VIP [29] trains a representation function such that the distance in representation
space between the current observation and a goal image can be used to construct a dense reward function. We
find that in the Vase simulated task, VIP fails to obtain good behaviors. Qualitatively, we observe VIP to be
prone to false positives, which are exploited by the RL algorithm. To test the importance of the VLM large-scale
pre-training compared to our fine-tuning procedure, we train a CNN classifier from scratch using the same data
as we used to fine-tune the VLM, leading to unsatisfactory performance compared to fine-tuning a VLM.

How Accurate is the VLM Reward? We analyze the performance of the VLM reward over the course of
fine-tuning for real-robot experiments. In Table 2, we report the false positive rate, false negative rate, accuracy,
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Figure 5: Performance of our method on the simulated Vase task using different reward functions. Our
method uses a fine-tuned VLM reward function and outperforms VICE rewards, whereas CNN and VIP rewards
fail to improve online.

Task FP FN Accuracy Precision

Cloth Covering 6.3% 80.9% 89.4% 15.3%
Cloth Folding 1.2% 59.8% 84.1% 92.0%
Pot PNP 6.1% 81.3% 86.9% 24.3%

Table 2: VLM reward model accuracy during real robot fine-tuning. The low false positive (FP) rate
indicates that online training has minimal reward exploitation.

and precision metrics for the VLM reward. The metrics are computed on the data collected during fine-tuning
against a hand-engineered ground truth reward. We observe that while false negative rates are high, false positive
rates are low across all tasks. This asymmetry is crucial for successful RL fine-tuning, as RL policies can
learn poor behaviors by exploiting false positives, but labeling some successful rollouts as negatives does not
necessarily impede learning.

Is the learned policy robust to distractors? We find that policies learned by ROBOFUME (both offline and
after fine-tuning) to be more robust to scene distractors on the candy sweeping task, as reported in Table 3. The
policies were trained without any distractors, but multiple objects not seen during training were placed in the
background during evaluation. ROBOFUME policies retained 68% of its original performance, compared to
BC which retained only 10% of its original performance. We hypothesize that BC might be more sensitive to
spurious features, whereas ROBOFUME learns from more predictive features, leading to more robust policies.

How Important is Diverse Prior Data and Language Conditioning? We ablate the contribution of diverse
prior data and language-conditioned policies to ROBOFUME by evaluating the offline performance on the candy
sweeping task, reported in Table 4. When pre-training without using prior data, that is, exclusively using target
data, our method is able to sweep less than half the amount of candies on average. Similarly, we find that one-hot
task encodings perform substantially worse than language-conditioned policies, as the prior dataset used in
real-robot training is larger and more diverse compared to the simulation experiments.

4.5 More Related Works

Offline RL. Offline RL algorithms [32, 33, 38–41] provide a framework for initializing robot manipulation
policies from offline demonstrations or interaction datasets. Such algorithms can also be extended to include an
online fine-tuning phase after training a policy offline [21–28]. Our work utilizes a recent offline RL algorithm,
calibrated Q-learning (CalQL) [28], a state-of-the-art method that effectively learns from offline data and
continuously improves the policy’s performance online by explicitly correcting the scale of the learned Q-values.
We show that integrating CalQL helps our framework effectively utilize diverse prior datasets that have large
distribution shifts from real-world online interactions.

Reset-free RL. Training an RL policy on a real robot typically requires manual environment resets. To eliminate
such need to manually reset environments, prior works have studied approaches to learn robot policies in a
‘reset-free’ setup. Some work [9, 13, 15, 17, 20] cast the ‘reset-free’ learning problem as a multi-task learning
problem, observing that by learning a set of tasks where some of the tasks could reset others, an agent could
then be trained to perform all of those tasks without needing manual resets. Other works [10–12, 14, 16, 18, 19]
learn both a task policy and a reset policy for performing the task and resetting to the initial state distribution.
Our work takes an approach between the two classes of approaches, learning a language-conditioned multi-task
policy that can perform both the target task and the reset for the target task. Most of these prior works learn
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Task BC ROBOFUME
(offline)

ROBOFUME
(fine-tuned @30k)

Candy Sweeping 31% → 3% 47% → 31% 66% → 45%

Table 3: Robustness of learned policy to distractors. Entries in this table show the performance of the learned
policy “before”→ “after” adding distractors to the scene in the candy-sweeping task. Our system learns a policy
that is much more robust to the distractors.

Task ROBOFUME
(offline)

ROBOFUME
w/o Prior Data

ROBOFUME w/o
Language Cond.

Candy Sweeping 47% 23% 13%

Table 4: Evaluating effectiveness of prior data and language conditioned policies. Results show that using
prior data and using language conditioning positively affected the offline performance of our system.

from scratch rather than incorporating prior data and assume that a reward function is available. ARIEL [11]
combines incorporating prior data with reset-free learning but assumes a hand-crafted reward function for each
environment. They also collect their own prior dataset on the same robot hardware set-up as their target task.
MEDAL++ [19] learns a reward classifier with demonstration and online interaction data via adversarial training,
but does not consider incorporating diverse prior data. Leveraging diverse, off-the-shelf prior demonstration
datasets is desirable since these datasets are readily available to use and can help a system obtain a policy
initialization for efficient fine-tuning on a target task. Our system offers an approach to both incorporate diverse
prior data and improve the autonomy of the fine-tuning phase by learning a model for predicting rewards. In
particular, we found out that by leveraging diverse demonstration data, our system requires only about 3 hours of
training in the real world compared to 10-30 hours in MEDAL++.

Reward learning. Early works have studied the problem of learning a reward or cost function in imitation
learning. These works leverage inverse optimal control (IOC) or inverse reinforcement learning (IRL) to extract
a reward function directly from expert demonstrations [42–44]. With the advent of deep neural networks, more
recent works have explored learning a reward model for an imitation learning or RL policy [18, 19, 37, 45–48].
When using classifier-based reward models in reinforcement learning, RL agents can exploit the learned model
by exploring states unseen during classifier training, tricking the model to output incorrect rewards. To solve
such an exploitation issue, many works that learn reward models leverage adversarial learning, where a system
learns a discriminator that identifies states similar to those in demonstrations as positives and those visited by
the policy as negatives [18, 19, 37, 46]. However, prior work has found this training objective to be sensitive
to distribution shifts between offline and online setups, such as lighting and camera view changes [49]. In this
work, we fine-tune vision language models (VLM), pre-trained on internet-scale data, to construct a reward
model. Large scale pre-training can learn representations that are robust to natural variations such as lighting,
camera shifts and distractors [29, 50].

Leveraging pre-trained representations as reward predictors. Several recent works have shown positive
results in utilizing pre-trained vision models [29, 51], large language models (LLMs) [52] or vision language
models (VLMs) [53] as reward predictors. We tried VIP [29], a method that pre-trains a visual representation
for generating dense reward functions for novel robotic tasks, and found it insufficient for the real-world robot
fine-tuning setup. In this work, we fine-tune a pre-trained VLM [34] and find that it performs most effectively
as a reward model. Our proposed system is flexible and can easily be adapted to use other pre-trained visual
representations and VLMs.
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