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Abstract

Offline reinforcement learning (RL) holds promise as a means to learn high-reward
policies from large static datasets, without need for further environment interactions.
This is especially critical for robotics, where online learning can be prohibitively
expensive. However, a key challenge in offline RL lies in effectively stitching por-
tions of suboptimal trajectories from the static dataset while avoiding extrapolation
errors arising due to a lack of support in the dataset. In this work, we propose
a novel approach that leverages the expressiveness of latent diffusion to model
in-support trajectory sequences as compressed latent skills. This facilitates learning
a Q-function while avoiding extrapolation error via batch-constraining. The latent
space is also expressive and gracefully copes with multi-modal data. We show that
the learned temporally-abstract latent space encodes richer task-specific informa-
tion for offline RL tasks as compared to raw state-actions. This improves credit
assignment and facilitates faster reward propagation during Q-learning. Our method
demonstrates state-of-the-art performance on the D4RL benchmarks, particularly
excelling in long-horizon, sparse-reward tasks.

1 Introduction

Framing offline RL as a generative modeling problem has gained significant traction (Chen et al.
[2021], Janner et al. [2021]); with the performance dependent on the expressive power of the
generative models used. Recently diffusion models (Sohl-Dickstein et al. [2015], Song and Ermon
[2019]), have emerged as state-of-the-art generative models for conditional image-generation (Ramesh
et al. [2022], Saharia et al. [2022]). We model the behavioral policy with diffusion and use this
to avoid extrapolation error through batch-constraining, a method that is highly scalable to
large offline datasets prevalent in robotics. Previous diffusion-based sequence modelling methods in
offline RL diffused over the raw state-action space. However, the low-level trajectory space tends
to be poorly suited for reasoning. Some prior works (Pertsch et al. [2021], Ajay et al. [b]) have
proposed to instead reason in more well-conditioned spaces composed of higher-level behavioral
primitives (skills). Such temporal abstraction has been shown to result in faster and more reliable
credit assignment (Machado et al. [2023], Mann and Mannor [2014]), particularly in long-horizon
sparse-reward tasks. We harness the expressivity of powerful diffusion generative models to
reason with temporal abstraction and improve credit assignment.
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Inspired by the recent successes of Latent Diffusion Models (LDMs) (Rombach et al. [2022], Jun
and Nichol [2023]), we propose learning similar latent trajectory representations for offline RL
tasks by encoding rich high-level behaviors and learning a policy decoder to roll out low-level
action sequences conditioned on these behaviors. The idea is to diffuse over semantically rich
latent representations while relying on powerful decoders for high-frequency details. We perform
state-conditioned diffusion on the learnt latent space and then learn a Q-function over states and
corresponding latents. During Q-learning, we batch-constrain the candidate latents for the target
Q-function using our expressive diffusion prior, thus mitigating extrapolation error. Our final policy
samples latent skills from the LDM, scores the latents using the Q-function and executes the best
behavior with the policy decoder. We refer to our method as Latent Diffusion-Constrained Q-learning
(LDCQ). The proposed latent diffusion skill learning method offers several advantages:

Flexible decoders for high-fidelity actions. The latent diffusion framework allows us to use powerful
decoders for our low-level policy πθ. Previous diffusion works for offline RL (Janner et al. [2022],
Ajay et al. [a]) directly diffused over the raw state-action space, and architectural considerations for
effective diffusion models limited the networks to be simple U-Nets (Ronneberger et al. [2015]). The
separation of the diffusion model from the low-level policy allows us to model πθ using an expressive
autoregressive decoder.
Temporal Abstraction with information dense latent space. Prior works (Pertsch et al. [2021],
Ajay et al. [b]) have learned latent space representations of skills using VAEs. Their use of weaker
Gaussian priors forces them to use higher values of the KL penalty multiplier β to ensure the latents
are well regularized. However, doing so restricts the information capacity of the latent, which limits
the variation in behaviors captured by the latents. Our method allows modeling the dense latent space
with diffusion.
Faster training and inference. Inference with LDMs is significantly faster than having to reconstruct
the entire trajectory every forward pass with a raw trajectory diffusion model.

2 Latent Diffusion Reinforcement Learning

2.1 Two-Stage LDM training

Latent Representation and Low-Level Policy. The first stage in training the latent diffusion model
is comprised of learning a latent trajectory representation. This means, given a dataset D of H-length
trajectories τH represented as sequences of states and actions, s0,a0, s1,a1, · · · sH−1,aH−1, we
want to learn a low-level policy πθ(a|s, z) such that z represents high-level behaviors in the trajectory.
This is done using a β-Variational Autoencoder (VAE) (Kingma and Welling, Higgins et al. [2016]).
Specifically, we maximize the evidence lower bound (ELBO):

L(θ, ϕ, ω) = EτH∼D[Eqϕ(z|τH)[

H−1∑
t=0

log πθ(at | st, z)]− βDKL(qϕ(z | τH) || pω(z | s0))] (1)

where qϕ represents our approximate posterior over z given τH , and pω represents our conditional
Gaussian prior over z, given s0. Note that unlike BCQ, which uses a VAE’s conditional Gaussian
prior as the state-conditioned generative model, our latent diffusion model only uses the β-VAE to
learn a latent space to diffuse over. As such, the prior pω is simply a loose regularization of this latent
space, and not a strong constraint. This is facilitated by the ability of latent diffusion models to later
sample from such complex latent distributions. Prior works (Pertsch et al. [2021], Ajay et al. [b]) have
learned latent space representations of skills using VAEs. Their use of weaker Gaussian priors forces
them to use higher values of the KL penalty multiplier β to ensure the latents are well regularized.
However, doing so restricts the information capacity of the latent, which limits the variation in
behaviors captured by the latents. The low-level policy πθ is represented as an autoregressive model
which can capture the fine details across the action dimensions, and is similar to the decoders used by
Ghasemipour et al. [2021] and Ajay et al. [b].

Latent Diffusion Prior. For training the diffusion model, we collect a dataset of state-latent pairs
(s0, z) such that τH ∼ D is a H-length trajectory snippet, z ∼ qϕ(z | τH) where qϕ is the VAE
encoder trained earlier, and s0 is the first state in τH . We want to model the prior p(z | s0), which is
the distribution of the learnt latent space z conditioned on a state s0. This effectively represents the
different behaviors possible from the state s0 as supported by the behavioral policy that collected
the dataset. To this end, we learn a conditional latent diffusion model pψ(z | s0) by learning the
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time-dependent denoising function µψ(zt, s0, t), which takes as input the current diffusion latent
estimate zt and the diffusion timestep t to predict the original latent z0:

L(ψ) = Et∼[1,T ],τH∼D,z0∼qϕ(z|τH),zt∼q(zt|z0)[min{SNR(t), γ}(|| z0 − µψ(zt, s0, t) ||2)] (2)

We use DDPM (Ho et al. [2020]) to sample from the diffusion prior in this work due to its simple
implementation. As proposed in Ho and Salimans, we use classifier-free guidance for diffusion. This
modifies the original training setup to learn both a conditional µψ(zt, s0, t) and an unconditional
model. The unconditional version, is represented as µψ(zt,Ø, t) where a dummy token Ø takes the
place of s0. The following update is then used to generate samples: µψ(zt,Ø, t) + w(µψ(zt, s0, t)−
µψ(zt,Ø, t)), where w is a tunable hyper-parameter. Increasing w results in reduced sample diversity,
in favor of samples with high conditional density.
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Figure 1: Latent Diffusion Reinforcement Learning Overview a) We first learn the latent space
and low-level policy decoder by training a β-VAE over H-length sequences from the demonstrator
dataset. b) We train a latent diffusion prior conditioned on s0 to predict latents generated by the VAE
encoder. c) After learning the high level Q function using BCQ, we score latents sampled by the prior
with this Q function and execute the low-level policy πθ conditioned on the argmax latent.

2.2 Q-Learning with Diffusion Skill Prior

We collect a replay buffer B for the dataset D of H-length trajectories and store transition tuples
(st, z, rt:t+H , st+H) from τH ∼ D, where st is the first state in τH , z ∼ qϕ(z | τH) is the
latent sampled from the VAE approximate posterior, rt:t+H represents the γ-discounted sum of
rewards accumulated over the H time-steps in τH , and st+H represents the state at the end of
H-length trajectory snippet. The Q-function is learned with temporal-difference updates (Sutton and
Barto [2018]), where we sample a batch of latents for the target argmax using the diffusion prior
pψ(z | st+H). This should only sample latents which are under the support of the behavioral policy,
and hence with the right temporal abstraction, allows for stitching skills to learn an optimal policy
grounded on the data support. This is a form of BCQ as proposed by Fujimoto et al. [2019]. The
resulting Q update can be summarized as:

Q(st, z)← (rt:t+H + γHQ(st+H , argmax
zi∼pψ(z|st+H)

(Q(st+H , zi)))) (3)

2.3 Policy Execution

The final policy for LDCQ comprises generating candidate latents z for a particular state s using the
latent diffusion prior z ∼ pψ(z | s). These latents are then scored using the learnt Q-function and
the best latent zmax is decoded using the VAE autoregressive decoder a ∼ πθ(a | s, zmax) to obtain
H-length action sequences which are executed sequentially. Note that the latent diffusion model is
used both during training the Q-function and during the final evaluation phase, ensuring that the
sampled latents do not go out-of-support.
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3 Offline RL Benchmarks

We investigate the effectiveness of our Latent Diffusion Reinforcement Learning methods on the
D4RL offline RL benchmark suite (Fu et al.). We compare with Behavior Cloning and several
state-of-the-art offline RL methods. Diffuser (Janner et al. [2022]) and Decision Diffuser (Ajay
et al. [a]) are prior raw trajectory diffusion methods. In maze2d and AntMaze tasks we use H = 30,
in kitchen tasks we use H = 20 and in locomotion and adroit tasks we use H = 10. The other
hyperparameters which are constant across tasks are provided in the supplemental material. In Table
1, we compare performance across tasks in the D4RL suite. We would like to highlight our results
in the sparse reward AntMaze, FrankaKitchen and Adroit simulated robotics control tasks which
are known to be quite challenging in D4RL, with most algorithms performing poorly since they
require long horizon reasoning. In the maze navigation tasks, we also evaluate the performance of
our goal-conditioned (LDGC) variant (described in supplemental material).

Table 1: Performance comparison on D4RL tasks. LDGC only evaluated in goal-directed maze tasks.

Dataset BC BCQ CQL IQL DT Diffuser DD LDCQ (Ours) LDGC (Ours)
maze2d-large-v1 5.0 6.2 12.5 58.6 18.1 123.0 - 150.1 ± 2.9 206.8 ± 3.1

antmaze-medium-diverse-v2 0.0 0.0 53.7 70.0 0.0 45.5 24.6 68.9 ± 0.7 75.6 ± 0.9
antmaze-large-diverse-v2 0.0 2.2 14.9 47.5 0.0 22.0 7.5 57.7 ± 1.8 73.6 ± 1.3

kitchen-partial-v0 38.0 31.7 50.1 46.3 42.0 - 57.0 67.8 ± 0.8 -
kitchen-mixed-v0 51.5 34.5 52.4 51.0 50.7 - 65.0 62.3 ± 0.5 -

halfcheetah-medium-expert-v2 55.2 64.7 91.6 86.7 86.8 88.9 90.6 90.2 ± 0.9 -
walker2d-medium-expert-v2 107.5 57.5 108.8 109.6 108.1 106.9 108.8 109.3 ± 0.4 -
hopper-medium-expert-v2 52.5 110.9 105.4 91.5 107.6 103.3 111.8 111.3 ± 0.2 -

halfcheetah-medium-v2 42.6 40.7 44.0 47.4 42.6 42.8 49.1 42.8 ± 0.7 -
walker2d-medium-v2 75.3 53.1 72.5 78.3 74.0 79.6 82.5 69.4 ± 3.5 -
hopper-medium-v2 52.9 54.5 58.5 66.3 67.6 74.3 79.3 66.2 ± 1.7 -

halfcheetah-medium-replay-v2 36.6 38.2 45.5 44.2 36.6 37.7 39.3 41.8 ± 0.4 -
walker2d-medium-replay-v2 26.0 15.0 77.2 73.9 66.6 70.6 75.0 68.5 ± 4.3 -
hopper-medium-replay-v2 18.1 33.1 95.0 94.7 82.7 93.6 100.0 86.2 ± 2.5 -

pen-human 34.4 68.9 37.5 71.5 - - - 74.1 -
hammer-human 1.2 0.3 4.4 1.4 - - - 1.5 -
door-human 0.5 0.0 9.9 4.3 - - - 11.8 -
relocate-human 0.0 -0.1 0.2 0.1 - - - 0.3 -
pen-cloned 37.0 44.0 39.2 37.3 - - - 47.7 -
hammer-cloned 0.6 0.4 2.1 2.1 - - - 2.8 -
door-cloned 0.0 0.0 0.4 1.6 - - - 1.1 -
relocate-cloned -0.3 -0.3 -0.1 -0.2 - - - -0.2 -

carla-lane-v0 17.2 -0.1 20.9 18.6 - - - 24.7 -

4 Conclusion

In this work, we showed that offline RL datasets comprised of suboptimal demonstrations have
expressive multi-modal latent spaces which can be captured with temporal abstraction and is well
suited for learning high-reward policies. With a powerful conditional generative model to capture
the richness of this latent space, we demonstrated that the simple batch-constrained Q-learning
framework can be directly used to obtain strong performance. Our biggest improvements come from
long-horizon sparse reward tasks, which most prior offline RL methods struggled with, even previous
raw trajectory diffusion methods. Our approach also required no task-specific tuning, except for the
sequence horizon H . We believe that latent diffusion has enormous potential in offline RL and our
work has barely scratched the surface of possibilities.
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A Training Details

A.1 Source Code

The source code is available at: https://github.com/ldcq/ldcq.

A.2 Network Architecture

A.2.1 Variational Autoencoder

Encoder. For learning the latent trajectory representation, our VAE uses an architecture similar to
Ajay et al. [b]. The encoder consists of two stacked bidirectional GRU layers, followed by mean and
standard deviation heads which are each a 2 layer MLP with RELU activation for the hidden layers.
The mean output head is a linear layer. The standard deviation output head is followed by a SoftPlus
activation function to ensure it is always positive. The hidden layer dimension is fixed to 256.

Decoder. For the low-level policy decoder, we use an auto-regressive policy network similar to that
described in EMAQ (Ghasemipour et al. [2021]), in which each element of the action vector has its
own MLP network, taking as input the current state, latent representation, and all previously-sampled
action elements. The complete action vector is sampled element-by-element, with the most recently
sampled element becoming an input to the network for the next element. These MLP networks
consists of 2 layers followed by 2 layers of mean and standard deviation heads similar to the encoder
network. The mean output head is a linear layer and the standard deviation output head is followed by
a SoftPlus activation. Again, ReLU activation is used after all hidden layer and the hidden dimension
is fixed to 256.

A.2.2 Diffusion Prior

The diffusion prior is a deep ResNet (He et al. [2016]) architecture consisting of 8 residual blocks. It
takes as input a vector representing a latent trajectory z and outputs a denoised version of the latent.
The hidden blocks are of dimensions: [128, 32, 16, 8, 16, 32, 128]. Similar to a U-Net (Ronneberger
et al. [2015]), the initial blocks are connected by residual connections to the later blocks having
the same hidden dimension. The diffusion timestep t is encoded with a 256-dimensional sinusoidal
embedding and then further encoded with a 2-layer MLP. The conditioning state s is also encoded by
a 2 layer MLP. In each residual block, the state and time encodings are concatenated with the current
layer activation for conditioning. When training the unconditional diffusion model for classifier-free
guidance, the state input is given as a vector of zeros to represent a null vector.

A.2.3 Q-networks

The Q-networks take as input the state s, latent z and consist of a 5 layer MLP with 256 hidden
units in the first 3 layers, 32 hidden units in the third layer, and finally a linear output layer. We use
GELU activation function between hidden layers. LayerNorm (Ba et al. [2016]) is applied before
each activation.

A.3 Hyperparameters

The hyperparameters which are constant across tasks for the different stages of our proposed method
are given in Tables 2, 3 and 4.

Table 2: β-VAE hyperparameters
Parameter Value
Learning rate 5e-5
Batch size 128
Epochs 100
Latent dimension (z) 16
β 0.05
Hidden layer dimension 256
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Table 3: Diffusion training hyperparameters
Parameter Value
Learning rate 1e-4
Batch size 32
Epochs 300
Diffusion steps (T ) 500
Drop probability (For unconditional prior) 0.1
Variance schedule linear
Sampling algorithm DDPM
γ (For Min-SNR-γ weighing) 5

Table 4: Q-Learning hyperparameters
Parameter Value
Learning rate 5e-4
Batch size 128
Discount factor (γ) 0.995
Target net update rate (ρ) 0.995
PER buffer α 0.7
PER buffer β Linearly increased from 0.3 to 1, Grows by 0.03 every 3000 steps
Diffusion samples for batch argmax 500

A.4 Hardware

The models were trained on NVIDIA RTX A6000. Since different tasks have different dataset sizes,
the model training times changes across tasks. Depending on the task, training the β-VAE took
between 3-7 hours, the diffusion prior took between 4-12 hours and the Q-Learning took between 3-5
hours.

B Latent Diffusion Goal Conditioning (LDGC)

Diffuser (Janner et al. [2022]) proposed framing certain navigation problems as a sequence inpainting
task, where the last state of the diffused trajectory is set to be the goal during sampling. We can
similarly condition our diffusion prior on the goal to sample from feasible latents that lead to the
goal. This prior is of the form pψ(z | s0, sg), where sg is the target goal state. Since with latent
diffusion, the training of the low-level policy alongside the VAE is done separately from the diffusion
prior training, we can reuse the same VAE posterior to train different diffusion models, such as this
goal-conditioned variant. At test time, we perform classifer-free guidance to further push the sampling
towards high-density goal-conditioned latents. For tasks which are suited to goal conditioning, this
can be simpler to implement and achieves better performance than Q-learning. Also, unlike Diffuser,
our method does not need to have the goal within the planning horizon of the trajectory. This allows
our method to be used for arbitrarily long-horizon tasks.

C Latent Diffusion-Constrained Planning (LDCP)

In this section, we explore another method to derive a policy for offline RL with latent diffusion other
than our proposed methods Latent Diffusion-Constrained Q-Learning (LDCQ) and Latent Diffusion
Goal Conditioning (LDGC). This is a model-based method which learns a temporally abstract world
model of the environment from offline data. Specifically, we learn a temporally abstract world model
pη(st+H | st, z) that predicts the state outcome of executing a particular latent behavior after H steps.
That is, given the current state st and a latent behavior z the model predicts the distribution of the
state st+H . This is trained in a supervised manner by sampling transition tuples (st, z, st+H) from
τH ∼ D and minimizing the objective:

L(η) = EτH∼D || pη(st+H | st, z)− st+H ||2 (4)

where η are the parameters of the temporally abstract world model pη .
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In goal-reaching environments, we leverage this model to do planning using the diffusion prior. We
sample n latents zi (1 ≤ i ≤ n) using the diffusion prior for the current state st, and use the learnt
dynamics model to compute predicted future state sit+H for each latent zi. These final states are
then scored using a cost-function J and the latent corresponding to the best final state is chosen for
execution. Note that sampling latents from the diffusion prior ensures that the world model is not
queried on out-of-support data. We refer to this method as Latent Diffusion-Constrained Planning
(LDCP).

The cost-function which we use for the goal-reaching environments is the Euclidean distance to the
goal. We can also extend this planning to horizons greater than H by further sampling latents for each
future state sit+H (1 ≤ i ≤ n). This means, after sampling n latents for st with the diffusion prior, we
further sample n more latents for each of the future states sit+H . This increases the ‘planning depth’
d. The final states at the last level of planning are then scored using the cost-function and the latent at
the first level which led to that final state is chosen for execution. This procedure complexity grows
exponentially and thus the planning depth has to be restricted. For a planning depth of d, there are nd
model calls. We found a planning-depth of d = 2 to be sufficient for all navigation environments
achieving state-of-the-art results. Thus, with a latent sequence horizon of H = 30, our total planning
horizon is 60. The results are tabulated in Table 5.

Table 5: Performance comparison on D4RL navigation tasks with LDCP.
Dataset BC BCQ CQL IQL DT Diffuser DD LDCQ (Ours) LDGC (Ours) LDCP (Ours)
maze2d-large-v1 5.0 6.2 12.5 58.6 18.1 123.0 - 150.1 ± 2.9 206.8 ± 3.1 184.3 ± 3.8

antmaze-medium-diverse-v2 0.0 0.0 53.7 70.0 0.0 45.5 24.6 68.9 ± 0.7 75.6 ± 0.9 77.0 ± 1.1
antmaze-large-diverse-v2 0.0 2.2 14.9 47.5 0.0 22.0 7.5 57.7 ± 1.8 73.6 ± 1.3 59.7 ± 1.3

C.1 Visualizing Model Predictions

Learning a world model also allows us to visualize the effect of executing any given latent behavior.
This means, even when the model is not used for planning, like in LDCQ, it can be used to compute
the final state that will be reached for every latent behavior from a particular state. This information
can be used to understand if the model is learning reasonable behavior modes.

Figure 2: Visualizing model predictions: Visualization of future states with latents sampled from
the diffusion prior at a T-intersection in antmaze-large-diverse-v2 D4RL task. We can see multimodal
future state predidctions corresponding to 3 possible directions at the T-intersection.

We plot the xy-coordinates of our abstract world model pη(st+H | st, z) predictions at a T-intersection
of AntMaze large environment for latents sampled from our diffusion prior z ∼ pψ(z | st) in Figure 2
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to demonstrate this. The plot shows that the diffusion prior sampled latents which go in all the three
directions at the T-intersection.

D Temporal abstraction induces multi-modality in latent space

In this section, we study how the horizon length H affects the latent space and provide empirical
justification for learning long-horizon latent space representations. For our experiment, we consider
the kitchen-mixed-v0 task from the D4RL benchmark suite (Fu et al.). The goal in this task is to
control a 9-DoF robotic arm to manipulate multiple objects (microwave, kettle, burner and a switch)
sequentially, in a single episode to reach a desired configuration, with only sparse 0-1 completion
reward for every object that attains the target configuration. As Fu et al. states, there is a high degree
of multi-modality in this task arising from the demonstration trajectories because different trajectories
in the dataset complete the tasks in a random order. Thus, before starting to solve any task, the policy
implicitly needs to choose which task to solve and then generate the actions to solve the task. Given a
state, the dataset can consist of multiple behavior modes, and averaging over these modes leads to
suboptimal action sequences. Hence, being able to differentiate between these tasks is desirable.

We hypothesize that as we increase our sequence horizon H , we should see better separation between
the modes. In 3, we plot a 2D (PCA) projection of the VAE encoder latents of the starting state-action
sequences in the kitchen-mixed dataset. With a lower horizon, these modes are difficult to isolate
and the latents appear to be drawn from a Normal distribution Figure 3). However, as we increase
temporal abstraction from H = 1 to H = 20, we can see three distinct modes emerge, which
when cross-referenced with the dataset correspond to the three common tasks executed from the
starting state by the behavioral policy (microwave, kettle, and burner). These modes better capture
the underlying variation in an action sequence, and having picked one we can run our low-level
policy to execute it. As demonstrated in our experiments, such temporal abstraction facilitates easier
Q-stitching, with better asymptotic performance. However, in order to train these abstract Q functions,
it is necessary to sample from the complex multi-modal distribution and the VAE conditional Gaussian
prior is no longer adequate for this purpose, as shown in section E.

Figure 3: Projection of latents across horizon. Latent projections of trajectory snippets with
different horizon lengths H . From the initial state there are 3 tasks (Kettle, Microwave, Burner)
which are randomly selected at the start of each episode. These 3 primary modes emerge as we
increase H , with the distribution turning multi-modal.

E LDMs address multi-modality in latent space

In this section, we provide empirical evidence that latent diffusion models are superior in modelling
multi-modal distributions as compared to VAEs. For our experiment, we again consider the kitchen-
mixed-v0 task. The goal of the generative model here is to learn the prior distribution p(z | s) and
sample from it such that we can get candidate latents corresponding to state s belonging to the support
of the dataset. However, as demonstrated earlier, the multi-modality in the latent spaces increases
with the horizon. We visualize the latents from the initial states of all trajectories in the dataset in
Figure 4a using PCA with H = 20. The three clusters in the figure correspond to the latents of three
different tasks namely microwave, kettle and burner. Similarly, we also visualize the latents predicted
by the diffusion model Figure 4b) and the VAE conditional prior Figure 4c) for the same initial states
by projecting them onto the principal components of the ground truth latents. We can see that the
diffusion prior is able to sample effectively all modes from the ground truth latent distribution, while
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the VAE prior spreads its mass over the three modes, and thus samples out of distribution in between
the three modes. Using latents sampled from the VAE prior to learn the Q-function can thus lead to
sampling from out of the support, resulting in extrapolation error.

(a) Ground truth (b) Diffusion prior (c) VAE prior

Figure 4: Visualization of latents projected using PCA for kitchen-mixed with H = 20. The diffusion
prior models the ground truth much more accurately while the VAE prior generates out-of-distribution
samples.

F CARLA Autonomous Driving task

To extend our method for tasks with high-dimensional image input spaces, we propose to compress
the image space using an autoencoder such that our method operates on a compressed state space.
This essentially means we create a low-dimensional compressed representation using an encoder E
before using the LDCQ framework. Note that this encoder operates on a single image and not on a
temporal sequence of images (Figure 5). The downstream framework of LDCQ however operates on
the temporal compressed image sequences.

Figure 5: Autoencoder training for image-based task

We evaluate the performance of our method on the CARLA autonomous driving D4RL task. The task
consists of an agent which has control to the throttle (gas pedal), the steering, and the break pedal
for the car. It receives 48 × 48 RGB images from the driver’s perspective as observations. We use a
U-net autoencoder architecture to create a 32-dimensional compressed state for this task. The horizon
for LDCQ is set to H = 30. The results are tabulated in Table 6.

Table 6: Performance comparison on image-based CARLA task
Dataset BC BCQ CQL IQL LDCQ (Ours)
carla-lane-v0 17.2 -0.1 20.9 18.6 24.7

G Random walk 1D

In this experiment, we construct a simple toy problem to show how sampling effectively from the
multimodal behavioral distribution helps the diffusion prior outperform a Gaussian VAE prior during
Q-learning. We construct a simple toy MDP with a one-dimensional state space S ∈ [−10.0, 10.0].
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The agent starts at the origin (0,0) and receives a reward of 10 if it reaches either the far left (-10.0) or
far right (10.0) state, and -1 reward every other step. The environment times out after 500 steps. The
action is the distance moved in that timestep with a max distance of length 1, A ∈ [−1.0, 1.0]. The
dataset consists of episodes where the agent randomly selects actions from the uniform distribution
a ∼ U([−1.0,−0.8] ∪ [0.8, 1]). This means the agent has a step size between 0.8 to 1.0 units either
left or right every timestep. We train a VAE to try to fit this action distribution, and use BCQ to learn
a policy. We also train train a diffusion based policy with LDCQ, using H = 1 and compare the
results.

Figure 6: 1D Random walk

We find that the VAE frequently samples actions never present in the dataset. This is because the
Gaussian mean to the above action distribution is 0.0, but no actual actions are present between
(−0.8, 0.8) where a large proportion of probability mass is assigned by the Gaussian model. Mean-
while, the diffusion prior is able to fit the 2 modes quite well. After 10000 steps of Q-learning, the
diffusion constrained policy learns to navigate to either end perfectly and achieves an average reward
of -2.2 while the VAE constrained policy is still almost random, frequently taking actions with small
step size and an average reward of -66.

H Increasing diffusion steps improves performance

We study the impact of the number of diffusion steps on the performance for LDCQ. We found
that increase in diffusion timesteps T during evaluation generally corresponds to increase in task
performance. We plot these results in Figure 7.

Figure 7: D4RL score for LDCQ with varying diffusion steps T in locomotion tasks.

We also used additional diffusion steps at time t = 0 similar to Diffusion-X (Pearce et al. [2023]).
This means that after the DDPM sampling of diffusion from time T to 1, we run X additional
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diffusion steps to further denoise the sample, assuming time-step t = 1. Pearce et al. [2023] proposed
that this pushes the samples further towards higher-likelihood regions. We used 10 additional steps
across experiments and found this to slightly improve performance.

I Performance improvement with temporal abstraction

We provide empirical evidence for improvement in task performance as we increase temporal
abstraction or horizon H for different tasks. In general, we see improvement with increasing temporal
abstraction until a certain point, when it drops possibly because of the limited capacity of the policy
decoder.

For the locomotion tasks, we did not observe any noticeable difference with increase in temporal
abstraction, so we ended up using a moderate sequence length H = 10. This could be due to the high
frequency periodicity of these tasks that does not require much look-ahead.

Figure 8: D4RL score for LDCQ with varying sequence horizons H .
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