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Abstract

We tackle the challenging task of zero-shot vision-and-language navigation (ZS-1

VLN), where an agent learns to follow complex path instructions without annotated2

data. We introduce A2Nav , an action-aware ZS-VLN method leveraging founda-3

tion models like GPT and CLIP. Our approach includes an instruction parser and an4

action-aware navigation policy. The parser breaks down complex instructions into5

action-aware sub-tasks, which are executed using the learned action-specific navi-6

gation policy. Extensive experiments show A2Nav achieves promising ZS-VLN7

performance and even surpasses some supervised learning methods on R2R-Habitat8

and RxR-Habitat datasets.9
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Figure 1: Existing zero-shot VLN over-
looks the action demands.

In vision-and-language navigation (VLN) tasks, an agent11

is required to navigate in a novel environment according to12

language navigation instructions. Current dominant meth-13

ods (6; 14; 21; 11) attempt to learn VLN ability in a su-14

pervised learning manner. However, creating high-quality15

labeled data requires a significant amount of human effort,16

which can be time-consuming and expensive. Addition-17

ally, the labeled data may not cover all possible scenarios,18

making it challenging for the model to generalize to new,19

unseen environments. To address these challenges, exploit-20

ing the knowledge from large foundation models (3; 18; 8)21

for learning navigation ability without requiring down-22

stream task annotated data is a potential solution. We call23

it zero-shot navigation ability.24

Recently, researchers have made some attempts (10; 16;25

1; 25) at solving object navigation tasks in a zero-shot26

manner. They use a foundation vision-and-language model27

(VLM) (18) to localize the object (10) or use it to encode28

the object goal features (16), enabling the agent to navigate29

to any object goal described by natural language. Although30

some progress has been made, existing methods fail to take into account the varied action demands31

(e.g., “proceed beyond”, “depart from”) in navigation instructions. This may lead the agent to the32
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wrong destination. For the example in Figure 1, the agent is expected to “exist the bedroom”, but the33

existing methods only take the landmark “bedroom” into consideration. The agent mistakenly goes34

into the bedroom, which is in the opposite direction of the path described by the instruction.35

To solve this problem, the agent must correctly figure out the expected action demand associated with36

each landmark and accurately execute them. In this paper, we propose an action-aware navigation37

method, named A2Nav , for the zero-shot VLN task. Our method consists of two components: an38

instruction parser empowered by LLMs for figuring out landmarks and associated action demands;39

and an action-aware navigation policy empowered by CLIP for executing these action demands40

sequentially for navigation. Extensive experiments demonstrate that our A2Nav achieves promising41

performance on zero-shot VLN task, getting 22.6% and 16.8% success rates on R2R-Habitat and42

RxR-Habitat, respectively.43

Our main contributions are as follows: 1) Instead of treating vision-and-language navigation as44

a sequence of object navigation tasks, we take into account the instruction action demands and45

decompose the instruction into a sequence of action-specific object navigation sub-tasks, where46

the agent is expected to not only localize the landmarks but also navigate to different goal position47

according to the associated action demand. 2) To address the problem that existing zero-shot48

navigators cannot satisfy different action demands, we identify and summarize five fundamental49

action demands and learn a unique navigator for executing each one without requiring manual50

path-instruction annotation, leading to more accurate and explainable navigation results.51

2 Related Works52

Zero-Shot Object Navigation. Since the navigation instruction is often described by several53

landmarks, it can be decomposed into sequential object navigation tasks. The object navigation54

task has been explored by previous literature (10; 16; 17; 5; 19; 1; 4; 24). Among these methods,55

we notice that some trails that design the object navigation agent in a zero-shot manner show great56

potential. Gadre et al. (10) design a heuristic algorithm to navigate to an object using the open-world57

object recognition ability of the foundation vision-and-language model (i.e., CLIP (18)). Some works58

like ZER (1) and ZSON (16) learn an image navigation agent first, and then map the image goal59

representation into object text goal embedding space, and thus transfer to the object navigation task.60

Zero-Shot Vision-and-Language Navigation. Based on the previous success on VLN and zero-shot61

object navigation, we aim to tackle the VLN task in the zero-shot manner, releasing the agent from62

expensive manual-labeled path-instruction training data. This problem has not been fully exploited63

yet. Pioneering works (22; 9; 7) have already verified the effectiveness of foundation models (LLM (3)64

and VLM (18)) in this scenario. These methods leverage GPT-3 (3) to extract navigation landmarks65

from the instruction and then initialize a heuristic object navigator using CLIP (18) to find out66

the landmark from visual observation and to navigate to the front of the landmark. Concurrent67

work (26) leverages a GPT model for inferring navigation actions on a discrete navigation graph. The68

performance in continuous environments has not been well explored. Our proposed A2Nav solved69

these issues using a learnable action-aware object navigator.70

3 Action-Aware Zero-Shot VLN71

We consider a practical but challenging problem zero-shot VLN, where the agent is expected to72

complete the VLN task without requiring path-instruction annotation. we leverage a large language73

model as an instruction parser for parsing all landmarks and their associated action demands. The74

instruction is then decomposed into a sequence of action-specific object navigation sub-tasks, in75

which the agent is required to localize the landmark and navigate based on the specific action demands76

associated with that landmark. For executing each sub-tasks sequentially, an action-aware navigation77

policy comprising five action-specific navigators is learned in a zero-shot manner. The general scheme78

is shown in Figure 3.79
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Figure 3: General scheme of A2Nav for zero-shot VLN task.
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Figure 2: Illustration of sub-task types.

Action-Specific Object Navigation Sub-Task. The in-81

struction parser aims to transfer a complicated instruction82

into several sequential executable action-specific object83

navigation sub-tasks. Each sub-task contains a landmark84

and an associated action demand, such as “departing from85

the bedroom”. The sub-task can be represented by a tem-86

plate “(ACTION, LANDMARK)”. We explicitly summarize87

5 basic sub-tasks shown in Figure 2, including “(GOTO,88

OBJECT)”, “(GOPAST, OBJECT)”, and “(GOINTO, RE-89

GION)”, “(GOTHROUGH, REGION)”, “(EXIT, REGION)”.90

Decomposing Instruction into Sub-Tasks. We use the few-shot learning ability of GPT-3 LLM (3)91

for decomposing an instruction into a sequence of sub-tasks described above. The prompt contains92

several correct instruction parsing examples. As the predicted sub-tasks from GPT-3 are in the93

free-form language, we need to map each prediction to the predefined sub-tasks. In most cases, the94

“ACTION” predictions made by GPT-3 accurately match one of the “ACTION” in predefined sub-tasks,95

and thus we can directly map it to this sub-task type. In cases where a prediction does not match any,96

we follow (13) to perform mapping through semantic translation. Specifically, we use BERT (8) to97

encode the predicted “ACTION” and the “ACTION” in all predefined sub-tasks. Then we compute the98

cosine similarity between them and consider the predefined sub-task with the highest score as the99

predicted sub-task.100

3.2 Action-Aware Navigation Policy101
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Figure 4: Paradigm of navigators.

With the sub-task sequence parsed by LLMs, we learn an102

action-aware navigation policy to execute them sequen-103

tially. The policy consists of five action-specific navigators,104

each of which is responsible for a specific sub-task type.105

We follow ZSON (16) to transform the question of learn-106

ing such a navigator into learning an image-goal navigator107

on a freely collected action-specific image-path dataset.108

Each sample in this dataset contains an image sampled109

from the environment and a navigation path that is com-110

patible with the action demands. Specifically, for training111

GOPAST navigator that expects the agent to go to the object and keep going forward past the object,112

we capture the goal image in the middle of the path. For the GOINTO action demand that expects113

the agent to go cross a doorway into the target region, we sample the path that crosses over two114

regions and sample the goal image at the end of this path. For the GOTHROUGH action demand115

that expects the agent to go from one side to the other side of a region, we randomly sample the path116

that starts near one entrance and ends near the other one of a region. The goal image is captured in117

the middle of the path. For the EXIT action demand, the path is sampled in the same way as the118

GOINTO action demand, while the goal image is captured at the beginning of the path. We fine-tune119

the trained ZSON model on these datasets using the same learning pipeline as ZSON, which is shown120

in Figure 4. For the GOTO action demands, we directly utilize a trained ZSON model as a navigator.121
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Method Extra Info. R2R-Habitat RxR-Habitat CSR
SR SPL SR SPL

Supervised
Seq2Seq (14) Depth 25.0% 22.0% - - -
LAW (21) Depth 35.0% 31.0% 10.0% 9.0% 28.6%
WS-MGMap (6) Depth 38.9% 34.3% 15.0% 12.1% 38.6%

Zero-Shot
Random - 0.0% 0.0% 6.0% 6.0% 0.0%
CLIP-Nav (9) Panoramic 5.6% 2.9% 9.8% 3.2% 57.4%
Seq CLIP-Nav (9) Panoramic 7.1% 3.7% 9.1% 3.3% 77.8%
Cow (10) Depth 7.8% 5.8% 7.9% 6.1% 98.3%
ZSON (16) - 19.3% 9.3% 14.2% 4.8% 73.6%

A2Nav (Ours) - 22.6% 11.1% 16.8% 6.3% 74.3%

Table 1: Comparisons with zero-shot and supervised methods on VLN datasets.

4 Experiments122

We compare our A2Nav with existing zero-shot and supervised-learning navigation methods on123

R2R-Habitat and RxR-Habitat datasets. We introduce the experimental setup, agent configurations,124

and baselines in Appendix.125

Comparisons with Zero-Shot Methods. In Table 1, our A2Nav outperforms other zero-shot methods.126

On R2R-Habitat, it surpasses CLIP-Nav, Seq CLIP-Nav, CoW, and ZSON by 17.0%, 15.5%, 14.8%,127

and 3.3% in success rate, respectively. On RxR-Habitat, it outperforms them by 7.0%, 7.7%, 8.9%,128

and 2.6%, respectively.129
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Figure 5: Comparison with the super-
vised learning methods that are trained
on partial training data.

Comparisons with Supervised Learning Methods. We130

compare our zero-shot A2Nav with three supervised VLN131

methods: vanilla Seq2Seq (15), LAW (21), and WS-132

MGMap (6). In Table 1, our zero-shot A2Nav achieves133

comparable performance compared with the vanilla134

Seq2Seq on R2R-Habitat and outperforms all super-135

vised learning methods on RxR-Habitat, indicating that136

A2Nav is more effective at generalizing to different137

datasets and can adapt more easily to varying environ-138

ments. We also compare A2Nav with supervised methods139

trained on limited data. In Figure 5, A2Nav outperforms140

the SOTA method (i.e., WS-MGMap) if less than 50%141

training episodes are available for it.142

Effectiveness of Action-Aware Navigation Policy. To verify the effectiveness of each navigator,143

we create multiple navigation policy variants that progressively include 5 navigators in an order of144

GOTO, GOPAST, GOINTO, GOTHROUGH, and EXIT. By default, the sub-task is executed by the145

GOTO navigator if its corresponding navigator is not included. In R2R-Habitat, the SR of policy146

with 1∼5 navigators are 19.3%, 20.9%, 21.5%, 22.3%, and 22.6%, respectively, demonstrating the147

importance of each navigator.148

5 Conclusion149

In this paper, we take into account the instruction action demands and decompose the VLN task into150

a sequence of action-specific object navigation sub-tasks. To execute these sub-tasks, we further151

propose an action-aware navigation policy that learns different navigation abilities without requiring152

any manual path-instruction annotation. The proposed A2Nav achieves the best zero-shot VLN153

performance on two benchmark datasets (i.e., R2R-Habitat and RxR-Habitat) and outperforms the154

state-of-the-art supervised learning methods on RxR-Habitat. Furthermore, our A2Nav is able to155

more accurately follow navigation instructions that contain specific action demands, demonstrating156

its potential for the scenario that needs human-robot communication and interaction.157
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APPENDIX

In the supplementary, we provide more implementation details and visualization results of our method.238

We organize the supplementary as follows.239

• In Section A, we present the implementation details, datasets, metrics, and baselines.240

• In Section B, we present more details on action-specific image-path dataset collection.241

• In Section C, we present more details on action-specific navigator training and inference.242

• In Section D, we present more details on prompt design for the instruction parser.243

• In Section E, we present more details on zero-shot navigation baselines.244

• In Section F, we present more visualization results.245

A Experimental Setup246

Evaluation Datasets and Metrics. We conduct experiments on the validation unseen split of three247

datasets, namely R2R-Habitat (15), RxR-Habitat (15), and Fine-Grained R2R (FG-R2R) (12). These248

three datasets contain 1,839, 1,079, and 1,839 validation episodes on 11 scenes in Matterport3D,249

respectively. RxR-Habitat contains instructions in three languages, and we only use the English250

split in our experiments. FG-R2R is an extension of R2R (2), where instructions are chunked into251

several sub-instructions and each sub-instruction is labeled with a corresponding sub-path, resulting252

in 6,687 sub-instruction-sub-path pairs. Following the existing works (14; 21; 6), we evaluate253

VLN performance using Success Rate (SR) and Success weighted by inverse Path Length (SPL).254

Besides, to evaluate the generalization ability among datasets, we follow Dorbala et al. (9) to propose255

Consistency on SR (CSR) for computing the relative change in SR among datasets. Specifically,256

CSR = 1− |SRa−SRb|
max{SRa, SRb} × 100%, where SRa and SRb are success rates for different datasets.257

Agent Configurations. Following ZSON (16), the agent has a height of 1.25m, with a radius of258

0.1m. It is equipped with one 128 × 128 RGB sensor with 90◦ horizontal field of view. The agent259

can execute four low-level actions, namely STOP indicating the end of an episode, FORWARD that260

moves itself forward by 0.25 meters and TURNLEFT and TURNRIGHT that turn itself by 30◦. The261

ms is empirically set to 100 and 50 for R2R-Habitat and RxR-Habitat, respectively. The me is set to262

500 for all three datasets following exiting works (6; 21).263

Baselines. We decompose the instruction into an object navigation sub-task sequence using GPT-3264

and execute these sub-tasks sequentially using four zero-shot object navigation methods.265

• CLIP-Nav (9) is designed for navigating among discrete navigable nodes. The agent uses CLIP to266

determine which adjacent node has the highest possibility of containing landmarks and then moves267

to this node. We adapt it to continuous environments using a waypoint navigation algorithm. More268

details can be found in Appendix.269

• Seq CLIP-Nav (9) is an extended version of CLIP-Nav with an additional backtracking mechanism,270

which allows the agent to go back to the previous location if it cannot find the landmarks for several271

steps.272

• CoW (10) uses CLIP gradient for object localization and a path-planning algorithm for action273

determination.274

• ZSON (16) uses the CLIP for encoding both image and landmark text to the same semantic feature275

space and then trains an image navigator for object navigation.276

B More Details on Action-Specific Image-Path Dataset Collection277

For learning a navigator for executing each action demand, we need to collect an action-specific278

image-path dataset for fine-tuning a trained ZSON model. In Section 3.3.2 of the paper, we have279
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Figure 6: Obtaining entrance positions from the intersections between regions and top-down map.

introduced the basic principle for collecting the episodes (i.e., the path and the corresponding goal280

image) in the dataset. In this section, we present more data collection details.281

• GOPAST Dataset. We randomly sample two points whose geometric distance is longer than 1.5m,282

and consider the shortest navigation path as the ground truth path. The goal image is sampled in the283

middle of the path facing the direction of the agent’s advancement. We introduce some randomness284

to the angle by jittering it by ±45◦.285

• GOINTO Dataset. We randomly choose a region from the scene. The start point is sampled near286

the entrance of this region (the geometric distance is less than 1.5m). The goal point is sampled287

randomly inside this region. The goal image is taken in a random direction at the goal point.288

• GOTHROUGH Dataset. We randomly select a region with two different entrances and sample a289

random point near each entrance respectively to form a path. The geometric distance from the start290

or end point to the entrance is less than 1.5m. Goal image is taken in the middle of the path and291

faces the direction of the agent’s advancement.292

• EXIT Dataset. The ground truth path of the EXIT action is similar to the GOINTO action besides293

switching the position of start point and goal point.294

We utilize room region bounding box annotations for obtaining the entrance position of regions.295

Specifically, we consider the intersection between the room region bounding box and the occupancy296

top-down map as the entrance of a region. An example is shown in Figure 6. Since collecting297

GOINTO, GOTHROUGH, and EXIT datasets requires the entrance position, we collect these three298

datasets from 131 scenes in HM3D (20) dataset that have region bounding box annotations. For299

the GOPAST dataset, we collect from all 800 scenes in the train split of HM3D. We sample 9,000300

image-path pairs from each scene.301

C More Details on Action-Specific Navigator Training and Inference302

We fine-tune a trained ZSON model on the action-specific dataset for learning an action-specific303

navigator. We use the ZSON model that is trained on agent configuration A described by Majumdar et304

al. (16), i.e., the agent has a height of 1.25m, with a radius of 0.1m and is equipped with one 128 ×305

128 RGB sensor with 90◦ horizontal field of view. We fine-tune this model using a reinforcement306

learning algorithm (i.e., DD-PPO (23)) for 100M steps with the same navigation reward as ZSON.307

This reward encourages the agent to go to the end of the path in an episode and look toward the goal308

image:309

rt = rsuccess + rangle−success −∆dtg −∆atg + rslack (1)
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where rsuccess = 5 if STOP is predicted when the agent is within 1m of the goal position,310

rangle−success = 5 if the agent is within 1m of the goal position and within 25◦ of the goal ori-311

entation (and 0 otherwise). Besides, ∆dtg is the change in the agent’s distance-to-goal, and ∆atg is312

the change in the agent’s angle-to-goal. ∆atg is set to 0 if the agent is not within a circle of 1m radius313

from the goal position. We also use a slack reward rslack = −0.01 to encourage the agent to reach314

the goal as soon as possible.315

Q: You are a robot walking in a house. You should parse the navigation instruction into several subtasks and then execute them one by one.

Each subtask consists of an [action] and a {landmark}. Action should be chosen from [turn left], [turn right], [go to], [go past], [go into], [go 
through], and [exit]. Landmark should be {a specific object} or {a region}. Here is the definition of each action:
[go to] means go to the front of {a specific object};
[go past] means go to {a specific object} and then go pass it;
[go into] means go into {a region};
[go through] means walk along {a region} or through {a region};
[exit] means find a door and go out of {a region}.

Now help me parse the following instruction: "Exit the bedroom and turn left. Walk straight passing the gray couch and stop near the rug. " 

A: Let's think step by step:
Subtask 1: [exit] the {bedroom}; 
Subtask 2: [turn left]; 
Subtask 3: [go past] the {gray couch}; 
Subtask 4: [go to] the {rug}.

Figure 7: An example of prompt design 1: a brief description of sub-task.

Q: Parse the instruction using the following subtasks: 1. {go to} [landmark], 2. {go past} [landmark], 3. {turn left}, 4. {turn right}, 5. {go 
through} [region], 6. {go into} [region], 7. {exit} [region], 8. {stop}.

Here are several examples.
(1) Instruction: "Walk into the hallway and turn left. Walk to the left of the railing and across the hall past the plant. Stop to the left of the 
stairs.", and the subtasks should be:
1. [go into] {the hallway}.
2. [turn left].
3. [go to] {the left of therailing}.
4. [go past] {the plant}.
5. [go to] {the left of the stairs}.
6. [stop].
……(with another 4 examples)

Now help me parse the following instruction: "Exit the bedroom and turn left. Walk straight passing the gray couch and stop near the rug. " 

A: Let’s think step by step:
1. [exit] {the bedroom}. 
2. [turn left]. 
3. [go past] {the gray couch}. 
4. [go to] {the rug}. 
5. [stop].

Figure 8: An example of prompt design 2: a collection of parsing examples. This prompt design
performs the best.

After fine-tuning, we use the trained navigator for executing a sub-task. Specifically, we feed the316

landmark (i.e., text description of an object or a region) to the CLIP for extracting goal embedding.317

The navigator take the current RGB observation and the goal embedding as input for predicting a318

low-level action for this sub-task.319

D More Details on Prompt Design for the Instruction Parser320

We have tried three prompt designs for parsing instructions using the large language model GPT-3.321

• Prompt Design 1: a brief description of each sub-task definition.322

• Prompt Design 2: a collection of instruction parsing examples323
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Q: You are a robot walking in a house. You should parse the navigation instruction into several subtasks and then execute them one by one.

Each subtask consists of an [action] and a {landmark}. Action should be chosen from [turn left], [turn right], [go to], [go past], [go into], [go 
through], and [exit]. Landmark should be {a specific object} or {a region}. Here is the definition of each action:
[go to] means go to the front of {a specific object};
[go past] means go to {a specific object} and then go pass it;
[go into] means go into {a region};
[go through] means walk along {a region} or through {a region};
[exit] means find a door and go out of {a region}.

Here are several examples.
(1) Instruction: "Walk into the hallway and turn left. Walk to the left of the railing and across the hall past the plant. Stop to the left of the 
stairs.", and the subtasks should be:
1. [go into] {the hallway}.
2. [turn left].
3. [go to] {the left of therailing}.
4. [go past] {the plant}.
5. [go to] {the left of the stairs}.
6. [stop].
……(with another 4 examples)

Now help me parse the following instruction: " Exit the bedroom and turn left. Walk straight passing the gray couch and stop near the rug. " 

A: Let’s think step by step : 
1. [exit] {the bedroom}.
2. [turn left]. 
3. [go past] {the gray couch}. 
4. [go to] {the rug}. 
5. [stop].

Figure 9: An example of prompt design 3: a combination of both sub-task definition description and
examples.

• Prompt Design 3: a combination of both brief description and examples324

Experimental results in Table 4 in the paper show that the second prompt design performs the best.325

We show the examples of these prompt designs in Figures 7, 8 and 9, respectively. We mark the326

GPT-3 output in brown color.327

E More Details on Zero-Shot Navigation Baselines328

We decompose the instruction into an object navigation sub-task sequence using GPT-3 and execute329

these sub-tasks sequentially using four zero-shot object navigation methods.330

• CLIP-Nav (9) is designed for navigating among discrete navigable nodes. The agent uses CLIP331

to determine which adjacent node has the highest possibility of containing landmarks and then332

moves to this node. To adapt it to continuous environments, we capture 4 RGB images uniformly333

in different directions and use CLIP (18) to select one image that has the highest possibility334

of containing landmarks. Then, we randomly set a waypoint in that direction and use a path-335

planing algorithm to plan low-level actions for navigating to the waypoint. If the CLIP softmax336

score is higher than the threshold of 0.8, we switch to the next object navigation sub-task. For337

implementation convenience, we use the “shortest_path_follower” API in the Habitat simulator for338

path planning, which assumes the complete occupancy top-down map is available.339

• Seq CLIP-Nav (9) is an extended version of CLIP-Nav with an additional backtracking mechanism,340

which allows the agent to go back to the previous location if it cannot find the landmarks for several341

steps. In our implementation, we directly set the agent to the position 15 step before for performing342

backtracking.343

• CoW (10) uses CLIP gradient for object localization and a path-planning algorithm for action344

determination. For implementation convenience, we use the “shortest_path_follower” API in the345

Habitat simulator for path planning, which assumes the complete occupancy top-down map is346

available. Even using the oracle occupancy information, our A2Nav still performs better than this347

baseline.348
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• ZSON (16) uses the CLIP for encoding both image and landmark text to the same semantic feature349

space and then trains an image navigator for object navigation. We use the model trained on the350

HM3D dataset using the config A setting.351

Kitchen

Refrigerator

& Sink

Door

Door

(a) A2 Nav (Ours) (b) ZSON

1.[GoThrough] the kitchen.

2.[GoPast] the refrigerator and 

utility sink.

3.[GoThrough] the sliding 

door.

Subtasks:

Walk straight through the kitchen. 

Past the refrigerator and utility sink. 

Walk through the sliding door.

Instruction:

Shortest Path Start Position

Goal PositionNavigation Path

Figure 10: Visualization of the navigation path. Our method successfully goes through the kitchen,
while the baseline fails to do it.

(b) ZSON(a) A2 Nav (Ours)
Exit (Bedroom)

GoPast(Stair)

Doorway

1.[Exit] the bedroom.

2.[GoPast] the stair.

3.[GoInto] the doorway.

Subtasks:

Turn left and exit the 

bedroom. Walk past the 

stairs into the rightmost 

doorway.

Instruction:

Shortest Path

Start Position

Goal Position

Navigation Path

Figure 11: Visualization of the navigation path. Our method successfully exits the bedroom and goes
past the stair, while the baseline is stuck in the bedroom.

(b) ZSON

Kitchen

(a) A2 Nav (Ours)

Refrigerator

Hallway

1.[GoThrough] the kitchen.

2.[GoPast] the hallway.

3.[GoTo] the left by the 

refrigerator.

Subtasks:

Walk through the kitchen and go 

into the hallway on the left by the 

refrigerator.

Instruction:

Shortest Path

Start Position

Goal Position

Navigation Path

Figure 12: Visualization of the navigation path. Our method successfully goes through the kitchen
and finds the refrigerator, while the baseline fails to do it.

F More Visualization Results352

In this section, we provide more visualization examples for comparing the method between ZSON (16)353

and ours. In Figure 10, the instruction requires the agent to go across the kitchen area and exit354
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this area through the door. Our A2Nav successfully follows the instruction because of the learned355

“GOTHROUGH” ability, which leads the agent to completely go through the area. However, ZSON (16)356

just goes to the kitchen area of a refrigerator, which directly causes the task to fail. In Figure 11 the357

instruction requires the agent to go past the stair which is outside the bedroom. Our A2Nav success-358

fully exits the bedroom, navigates past the stair and then stop at the correct doorway. In contrast, the359

ZSON model fails to exit the bedroom and finally stop at the doorway of the bedroom incorrectly. In360

Figure 12, the instruction requires the agent to get out of the kitchen and stop near the refrigerator.361

Our A2Nav successfully walks across the kitchen and goes by the hallway, finally finding the target.362

ZSON (16) tries to go to the area which suggests the higher confidence of the kitchen, which is the363

opposite direction of the shortest path to the target. All examples demonstrate the effectiveness of our364

action-aware agent.365
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