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Abstract

As autonomous driving technology matures, end-to-end methodologies have
emerged as a leading strategy, promising seamless integration from perception to
control via deep learning. However, existing systems grapple with challenges such
as unexpected open set environments and the complexity of black-box models.
At the same time, the evolution of deep learning introduces larger, multimodal
foundational models, offering multi-modal visual and textual understanding. In
this paper, we harness these multimodal foundation models to enhance the robust-
ness and adaptability of autonomous driving systems. We introduce a method to
extract nuanced spatial features from transformers and the incorporation of latent
space simulation for improved training and policy debugging. We use pixel/patch-
aligned feature descriptors to expand foundational model capabilities to create
an end-to-end multimodal driving model, demonstrating unparalleled results in
diverse tests. Our solution combines language with visual perception and achieves
significantly greater robustness on out-of-distribution situations. Check our website
(https://drive-anywhere.github.io) for more videos and demos.

1 Introduction
In this work, we aim to harness the power of multimodal foundation models to enhance the general-
ization and reliability of end-to-end autonomous driving systems. Importantly, rather than relying on
explicitly-defined data formats like scene descriptions or segmentation maps, we exploit the latent
features at model inference to preserve all information pertinent to the model’s reasoning process.
Foundation models as feature extractors. While these models exhibit certain favorable characteris-
tics for attaining open-set, multimodal representations, they do not translate seamlessly to autonomous
driving. The significant constraint arises from the fact that these models are primarily designed for
image input consumption, resulting in the generation of a singular vector representation for the entire
image within an embedding space. However, decision-making in autonomous driving demands more
than just semantic scene descriptions; it also requires nuanced spatial and geometric information.
To address this, we present a generic method to extract per-patch features from transformer-based
architectures that is broadly applicable to a wide range of foundation models.
Simulation using language. Multimodal representations map data from various modalities into a
unified embedding space, offering two key advantages for policies trained to operate in this space: (i)
cross-modality feature inspection, and (ii) feature manipulation in modalities distinct from sensor
measurements. These capabilities facilitate latent space simulation, allowing target features tied to
specific concepts to be swapped out with features from other desired concepts. For instance, one
could replace a car feature from images with a deer feature, without requiring sensor data synthesis
for a deer. This method is valuable for data augmentation and policy debugging. Notably, leveraging
the language modality as a conceptual representation enables integration with large language models
(LLMs), unlocking enhanced common-sense reasoning capabilities to enrich simulation complexity.
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Our contributions. We bridge the gap between the robust multimodal open-set capabilities demon-
strated by foundation models and the advanced reasoning capabilities expected of futuristic au-
tonomous systems - enabling OOD, end-to-end, multimodal, and more explainable autonomy:
• A novel mechanism to extract pixel/patch-aligned features, extending the capabilities of multimodal

foundation models that typically yield image-level vectors.
• A latent space simulation technique augmented with language modality for both data augmentation

in training and counterfactual reasoning in policy debugging.
• Extensive analysis in photo-realistic simulated environments to demonstrate enhanced generalization

across diverse scenarios (scenes not seen during training and obstacles not trained on).
• Deployment and validation on a full-scale autonomous vehicle in real-world environments.

2 Method
Patch-wise Feature Extraction. Given a foundation model Desc : RH×W×3 → RD of L layers, an
input image/frame F ∈ RH×W×3, and a desired resolution H ′ ≤ H,W ′ ≤W , the goal is to extract a
feature descriptors tensor F ′ ∈ RH ′×W ′×D, such that F ′ encapsulates all the semantic information
of F and maintains its location in the scene. For simplicity, we set H ′,W ′ to be equal to the
number of (non-overlapping) patches used to divide the input image F when applying Desc on it
(in what follows we will show how H ′,W ′ can be any number smaller than H,W ) and N = H ′W ′.
For an integer i > 1, we use [i] to denote the set {1, · · · , i}, and for every layer ℓ ∈ [L], we use
Qℓ
Desc(F),K

ℓ
Desc(F) ∈ RN×Dk ,V ℓ

Desc(F) ∈ RN×D to denote the resulted query, key, and value matrices
in the ℓth attention layer, when applying Desc on F . We provide a mechanism to extract features for
a specific patch (or area in the image) F

′( j), where j ∈ [N]. Notably, this mechanism can be applied
at any layer of most transformer-based models such as CLIP [36], DINO [32, 8], and BLIP [27, 26].

When extracting F
′( j), we introduce an attention mask m( j) = (m( j)

1 , · · · ,m( j)
N ) ∈ RN . Each element

m( j)
i ∈ [0,1] of this vector determines how much the ith patch should contribute to the desired patch

feature F
′( j). For example, if we want to completely ignore patch number i, simply set mi = 0 and

mk = 1,∀k ∈ [N]\i. We utilize m to extract features as follows:

(1) Set r ∈ (−∞,0) as the parameter to control the strength of the masking; the larger |r|, the higher
effects of the masking.

(2) Define the matrix Gℓ
Desc(F) as the matrix multiplication of the key and query matrices at the ℓth

attention layer:
Gℓ
Desc(F) := Qℓ

Desc(F)(K
ℓ
Desc(F))

T
.

(3) Given the matrix M( j) = [m( j), · · · ,m( j)]T ∈ RN×N , we obtain a masked version of Gℓ
Desc(F) as:

Ĝℓ,( j)
Desc(F)

= Gℓ
Desc(F)+(1−M( j)) · r,

where 1∈RN×N is an all-ones matrix. This operation sets the attention scores (in the matrix Ĝℓ,( j)
Desc(F)

)
for "non-contributing" patches (where there corresponding mi close to 0) to be close to r (low value),
effectively masking them out. The 1−M( j) term ensures that the patches with a corresponding
attention mask equal to 1 have an added softmax’ed score of 0 (no modification), and a very low
value (effectively r) if the corresponding attention mask is near 0.

(4) With the modified attention scores, we obtain the final attention weights as:

F
′( j) := Descℓ→

(
SoftMax(Ĝℓ,( j)

Desc(F)
)(V ℓ

Desc(F))
T
)
,

where Descℓ→ is the rest of the model after the lth layer. Notably, this technique can be extended to
region-wise feature extraction by generalizing the definition of patches to arbitrarily-shaped regions.

Language-augmented Latent Space Simulation. Each patch feature F
′( j) incorporates language

modality, enabling seamless integration with LLMs. We exploit this property by conducting latent
space simulations, where we replace F

′( j) with alternative textual features to simulate different
scenarios. We opt for feature replacement over arithmetic operations as the latent space may not
necessarily adhere to a Euclidean metric structure. The procedure is as follows:
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Rural | Summer | Dry | Day | Car Rural | Winter | Dry | Day | Car

Urban | Summer | Dry | Night | Animal Rural | Fall | Dry | Day | Animal

Rural | Summer | Dry | Night | AnimalUrban | Summer | Dry | Day | Car

Rural | Spring | Dry | Day | Car Urban | Summer | Rain | Day | Car

Setting Scenarios Methods
Scene Season Weather Time Actor No-FM MF I-ViT Ours

ID Rural Summer Dry Day Car 1.00 0.72 1.00 1.00

OOD

Rural

Spring Dry Day Car† 0.84 0.42 0.86 0.96
Summer Dry Night Car† 0.30 0.35 0.80 0.89

Fall Dry Day Car† 0.90 0.74 0.95 0.91
Winter Snow Day Car† 0.14 0.42 0.88 0.96
Spring Dry Day Animal 0.85 0.39 0.89 0.95

Summer Dry Night Animal 0.29 0.39 0.59 0.85
Fall Dry Day Animal 0.87 0.71 0.95 0.88

Winter Snow Day Animal 0.15 0.45 0.87 0.95

Urban

Summer Dry Day Car† 0.55 0.50 0.77 0.62
Summer Rain Day Car† 0.69 0.43 0.81 0.81
Summer Dry Night Car† 0.45 0.42 0.81 0.78
Summer Dry Day Animal 0.58 0.50 0.80 0.64
Summer Rain Day Animal 0.66 0.43 0.83 0.78
Summer Dry Night Animal 0.45 0.36 0.86 0.81

Table 1: OOD generalization. The left figures are illustrations for the scenarios. †indicates car types
different from training. ID is in distribution. OOD is out-of-distribution.

(1) Obtain a set of concepts in natural language that may be relevant to autonomous driving from
LLMs and compute their corresponding textual feature,

Tk = Desc(ck), where ck ∈ Csrc/tgt = LLM(⟨questions⟩)

where Csrc is the set that may appear in the image feature and Ctgt is the set of the desired substitutes.

(2) Find the best match of the patch feature via search with similarity measure g(·, ·),

TF ′( j) = argmax
k∈[|Csrc|]

g(F
′( j),Tk)

This step can be improved by more advanced techniques like text inversion [15] or prompt tuning
[23].

(3) Manipulate the dense feature descriptor F ′ by replacing F
′( j) with sensible textual features

h(TF ′( j) ,{Tk}k∈[|Ctgt|]) under conditions like similarity above certain threshold or stochasticity. The
function h can be human prior or LLMs that conceptually answer the question of what may be a
plausible substitute from Ctgt under the current context.

3 Experimental Results
Out-of-Distribution Generalization. In Tab. 1, we evaluate the out-of-distribution (OOD) gen-
eralization capabilities of end-to-end policies employing various feature extractors. Our baseline
comparisons include: (i) No Foundation Model (No-FM) [3, 43], which utilizes a CNN-based model
(transformer-based architectures yielded comparable results) trained from scratch without leveraging
foundation models; (ii) Mask-based Features (MF) [47, 30], which initially applies segmentation [21],
then extract global feature vectors [36] for each masked/cropped image, and assign the vector to each
pixel within the corresponding region (an approach adapted from similarity measure technique); (iii)
Inherent ViT Features (I-ViT) [4], which suggests using ViT models[46] interlayers outputs (per-patch
corresponding) of the key, value, and query matrices as "inherent" per-pixel/patch features. All
feature extractors are followed by a policy network utilizing a consistent transformer-based architec-
ture. Firstly, we note that MF underperforms in both in-distribution and out-of-distribution settings.
We propose two possible explanations for this: (1) the process of masking out non-target regions
may inadvertently eliminate valuable contextual information, and (2) while masking is generally
effective for objects, it creates ambiguous image crops for more abstract categories, often referred
to as "stuffs" [11]. For instance, masking out all elements except the road in a rural setting results
in an indistinct, yellowish region. Additionally, I-ViT and Ours surpass No-FM in OOD settings,
scenarios, highlighting the benefits of utilizing foundation models as feature extractors to enhance
generalization. Note that I-ViT does not incorporate language modality.
Data Augmentation using Language. In Table 2, we showcase the performance improvements
achieved through data augmentation using language-augmented latent space simulation. Our proce-
dure is as follows: (i) We first identify a set of target concepts likely to appear in the training data
that are candidates for replacement, selecting Tree and Dark for this experiment; (ii) We then consult
LLMs to suggest possible replacement concepts; in this experiments, they are broadly defined as any
non-drivable objects or entities likely to appear in a driving scenario; (iii) Finally, we randomly swap
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RSDDC RSDNC RFDDC RWSDC RSDDA
+3.43% -2.49% +8.32% +3.12% -0.48%
RSDNA RFDDA RWSDA USDDC USRDC
-5.09% +9.83% +1.02% +12.49% +14.44%

USDNC USDDA USRDA USDNA All
+10.80% -0.65% +13.08% +12.75% +5.47%

Table 2: Improved generalization from data augmentation. We augment training with unseen yet
potentially relevant concepts from LLMs via language-augmented latent space simulation to improve
performance. (The labels follow Tab. 1, e.g., RSDDC is Rural, Spring, Dry, Day, Car).

Following Lane (Toy) House Cones Roadblock

Crashes Lane
Stable

Obstacle Avoidance
Pedestrian Roadblock Cone Chair House

No-FM 7.3 /km 8/10 9/10 10/10 9/10 10/10
Ours 0 /km 0/10 0/10 0/10 0/10 1/10

Table 3: Real Car Test. We verify the generalization capability on a full-scale autonomous vehicle.

image pixel features—those exhibiting high similarity to the target concepts—with the textual features
corresponding to these suggested replacement concepts. We note performance improvements in
most OOD scenarios, with the exceptions of RSDNA and RSDNC, where we observe a non-marginal
decline in performance. Both represent rural, nighttime conditions, characterized by extremely low
light, as depicted in row 3, column 2 of Tab. 1. These low-light environments make data augmentation
particularly error-prone when targeting the concept of Dark for replacement.
Real Car Deployment In Tab. 3, we present the outcomes of tests conducted on a full-scale au-
tonomous vehicle within a rural test track. These tests were carried out during the summer season and
spanned various times of the day. Importantly, the evaluation took place on different road segments
and occurred two years subsequent to the summer data used in the training set, allowing us to assess
performance amid noticeable changes in the environment. We assess the system’s proficiency in
lane-following and its ability to avoid a variety of objects not encountered during training. These
objects include pedestrians, roadblocks, traffic cones, chairs, and even a toy house. Some of these
test scenarios are illustrated in the top row of Tab. 3. Our approach, which utilizes foundation
models, yields near-flawless driving performance, further validating its effectiveness in generalizing
to real-world robotic systems. However, it’s worth noting that the inference speed is somewhat
limited, averaging around 3 fps, compared to non-foundation-model-based policies, which achieve
between 10 to 30 fps depending on the architecture. That said, we have not yet focused on optimizing
runtime performance, which could be improved through techniques such as quantization.

4 Conclusion
This exploration into enhancing autonomous driving through multimodal foundation models has
offered several lessons learned. The incorporation of these models improves the system’s adaptability
in unpredictable open-set environments, emphasizing their role in advancing real-world applicability
of autonomous vehicles. Our model’s blend of visual and textual understanding provides insights into
the often murky decision-making processes inherent to autonomous systems, suggesting a promising
trajectory for future models that prioritize both performance and transparency. The development of
pixel/patch-aligned feature descriptors and latent space simulation, enriched with language modality,
suggests potential for optimizing the training and debugging processes for end-to-end learning based
control. Moreover, the successful deployment and performance of our methods on a real-world,
full-scale autonomous vehicle provides encouraging first steps toward autonomous driving solutions
that integrate multi-modal foundational models with perception.
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A Toward Generalization In End-to-end Autonomous Driving
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Figure 1: We harness the power of multimodal foundation
models in end-to-end driving to enhance generalization and
leverage language for data augmentation and debugging.

The rapid technological advancement
in autonomous driving has emerged
as a pivotal innovation that shifts con-
trol from human hands to AI and sen-
sors, promising safer roads, enhanced
mobility, and unparalleled efficiency.
In the pursuit of autonomous driv-
ing, end-to-end methodology offers
a paradigm shift toward a holistic con-
struction of the system that encom-
passes everything from perception to
control. Such an approach has (i)
more flexibility with minimal assump-
tions related to the design or func-
tioning of sub-components, and (ii)
better integrality toward an ultimate,
unified goal in system performance
evaluation and targeted optimization.
Notably, the ongoing advancement in
establishing end-to-end autonomous
systems is propelled by the amalga-
mation of deep learning techniques by
training models on extensively annotated datasets. However, prevalent systems exhibit the following
prominent limitations.

(i) Open set environments: self-driving vehicles operate in extremely diverse scenarios that are
impractical to fully capture within training datasets. When these systems encounter situations that
deviate from what they’ve learned (i.e., out-of-distribution (OOD) data), performance deteriorates,
giving rise to uncertainty and potential safety risks.

(ii) Black-/gray-box models: the ubiquitous use of complex, advanced machine learning models
complicates the task of pinpointing the root causes of failures in autonomous systems. Unraveling
the intricate interactions and identifying which learned concepts, objects, or even individual pixels
contribute to incorrect behavior can be a daunting task.

On the positive side, deep learning is undergoing a transformative phase of significant advance-
ment, characterized by the emergence of even larger and multimodal models [36, 26]. Trained on
immense datasets that encompass billions of images, text segments, and audio clips, these models
leverage knowledge gleaned from internet-scale resources to edge closer to achieving common-sense
understanding. They have demonstrated exceptional efficacy in adapting to dynamic, open-set envi-
ronments [18, 34]. In addition, the incorporation of language modality serves a dual purpose: not
only does it offer an interface that is straightforwardly comprehensible by human users, but it also
furnishes a concise yet rich representation of information that may sufficiently describe the underlying
decision-making of autonomous systems.

B More Technical Details

The end-to-end autonomous driving problem involves designing a control system φ that produces
steering and acceleration commands based on a continuous stream of perception data F ∈ RH×W×3

(RGB imagery here), acquired through vehicle-mounted sensors u = φ(F). We propose enhancing φ

by substituting the raw frames F with a dense feature representation F ′ ∈ RH ′×W ′×D extracted via a
multimodal foundation model Desc, where (H ′,W ′) is the resolution of the dense features in the
spatial dimensions and D is the number of channels, i.e., u = φ(F ′) = φ(Desc(F)).

Setting the masks. We define the ith entry of m( j) to correspond to “how much patch i contributes to
the semantic information of patch j”. Analogous to convolutional kernels, "close" neighbors (patches)
may contribute more than far ones. Let (xi,yi) be the row-stacked ordering of the image grid after
patching. Let dist(i, j) denotes the distance between patch i and j as dist(i, j) :=

∥∥(xi,yi)− (x j,y j)
∥∥

z ,
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Figure 2: Overview. Left: Feature extraction from multimodal foundation models maps data in
different modalities (e.g., image, text) to feature vectors in a unified latent space. Middle: We
introduce a generic method for patch-wise feature extraction that preserves spatial information
critical for end-to-end driving; this involves constructing attention masks anchored at each patch
location to focus on specific regions (depicted by the coloring) for the attention module. Right: The
multimodal representations with language modality enable seamless integration with LLMs; this
allows to simulate latent features by substituting the original features F ′ with contextually relevant
language features (e.g., trees → house, shop, building).

where z ≥ 1 defines the norm. We set m( j)
i := f (dist(i, j)); where f can be

{
0, if dist(0,1)> α

1, otherwise
,

1/2dist(i, j), or 1/dist(i, j), etc.

Spatial resolution/number of patches N. Increasing the spatial resolution enhances the foundation
models’ spatial features, as higher resolution allows for more granular, non-overlapping patches. For
our applications, this granularity is beneficial. We adapt ViTs to extract overlapping patches during
inference as in [4, 30], interpolating their positional encoding accordingly. This yields multimodal
features with a finer spatial resolution notably without requiring additional training. In our empirical
experiments, we have observed that this modification consistently performs well.

C Related Work

End-to-end driving. Neural networks trained to handle the entire process from perception to
control in autonomous vehicles have displayed significant potential for maintaining various driving
abilities [35, 6, 2, 43, 45]. Nevertheless, these networks encounter challenges in acquiring robust
models on a large scale, as they demand extensive training data that is both time-consuming and costly
to gather [3]. These challenges not only incur substantial expenses but also pose potential safety
risks [19]. Consequently, training and assessment of robotic controllers in simulated environments
have emerged as a viable alternative [3, 41, 14, 39]. However, even these simulated environments
can not cover enough scenarios, making trained networks (systems) highly sensitive to scenarios that
differ from their training data.

Foundation models in robots. Recent strides in robotics have embraced foundational models,
showcasing their ability to interact adeptly in dynamic open-set scenarios, e.g., for control and
planning [42, 5, 1, 7, 28], for 3D mapping [17, 12], detection and following systems [30, 29, 16, 25],
and 3D scene segmentation and understanding [34, 18]. Moreover, these models have demonstrated
their versatility across multiple data modalities [38, 10, 33, 37, 30, 18] marking a new era of robots
that can reason and interact wisely with the environment. Specifically in driving, explainable and
language-based representations have been of interest for the ability to introspect and counterfactually
reason about event [20, 31, 22, 40, 48]

Pixel/patch aligned descriptors. Several approaches for extracting per-pixel feature descriptors via
foundation models were suggested [4, 18], however, they are either (i) not multimodal [4], (ii) trained
with a specific focus on aligning foundation features with 2D pixels, and thus, these models tend
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Thresh. null 0.03 0.05 0.08 0.10 0.20 ∞

Perform. 0.657 0.658 0.661 0.751 0.826 0.984 1.000

Table 4: Cross modality generalization. We test generalization of training in image modality and
deploying in language modality by replacing sufficiently similar image features (determined by the
threshold) with textual features.

to lose a substantial number of concepts as part of the fine-tuning process [13], or (iii) relies on the
use of a universal segmentation model such as SAM [21], FastSAM [47], or Mask2Former [9] for
extracting masks [18], and then applies the foundation models on crops of these masks to extract
mask-aligned features, such methods are by definition inefficient for realtime applications and might
yield not meaningful features when applying the foundation models on small crops. Finally, they
might miss important regions in the image due to the used segmentor limitations.

D Experimental Setup

Hardware setup. We collected data and deployed learned policies on a full-scale vehicle (2019 Lexus
RX 450H) retrofitted for autonomous driving. The car is equipped with an NVIDIA 4070 Ti GPU and
an AMD Ryzen 7 3800X 8-Core Processor. For perception, we employ a 30Hz BFS-PGE-23S3C-CS
camera offering a 130◦ horizontal FoV at a resolution of 960 x 600 pixels. Also, the car also features
inertial measurement units (IMUs), wheel encoders, and an OxTS d-GPS system for precise odometry
estimation.

Tasks and evaluation metrics. We focus on a generic driving task involving both lane-following
and obstacle avoidance. Failure conditions are defined as: (i) veering off the lane boundary, (ii)
colliding with objects (or approaching them too closely in the real world for safety reasons), and
(iii) deviating from the lane’s direction by more than 30◦. In simulations, we utilize a "soft" success
rate as a performance metric, which gauges the duration the car can operate without encountering
any failure conditions, normalized by a predefined time horizon for each trial. We conducted 100
trials, each with an approximate 20-second time horizon. For real-world testing, we tally the number
of interventions made by the safety driver, using criteria that align with the aforementioned failure
conditions. Unless stated otherwise, all experiments adhere to a closed-loop control setting.

Data and learning. We obtained data from a data-driven simulator VISTA [3] to augment a real-
world dataset with diverse synthetic data in a closed-loop control setting. This simulation relies on
approximately two hours of real-world driving data, gathered under varying conditions including
different times of day, weather conditions, scenes, and seasonal variations. We employ a training
approach known as Guided Policy Learning [24, 3], which takes advantage of privileged information
within the simulator to guide the learning of the image-based policies. Ground-truth control signals
for training are produced using a Proportional-Integral-Derivative (PID) controller for lane-following
tasks and Control Barrier Functions (CBFs) [44] for obstacle avoidance. All models are trained with
the Adam optimizer at a learning rate of 10−3, employing a plateau scheduler with a factor of 1
and a patience of 10, for total 106 iterations. Our method uses BLIP2 [26] as it is SOTA in various
benchmarks like zero-shot VQA, image-text retrieval, etc.

E More Results

Cross-modality Generalization. In Tab. 4, we evaluate the ability of our policy to generalize from
image to language modalities. Notably, our policy is trained exclusively on image data. To generate
cross-modality features, we employ the following procedure: (i) calculate features for a predefined
set of natural language concepts (e.g., road, car); (ii) identify the best-matching textual feature
for each image feature pixel, along with the degree of similarity; (iii) replace the image feature at
pixels where the similarity exceeds a certain threshold with the corresponding textual feature. A null
threshold implies driving solely based on textual features, while an infinity threshold denotes reliance
exclusively on image features. Our observations indicate that the policy performs reasonably well in
cross-modality settings, both qualitatively and quantitatively. These results offer promising empirical
evidence for the viability of language-augmented latent space simulations.
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Debugging Concepts Perform. Failure at
Lane Stable Avoidance Recovery

Image Feature 1.000 0.000 0.000 0.000
Car, Road, Tree, Sky 0.267 0.149 0.453 0.117
+ Car & Road + Dark 0.536 0.028 0.381 0.056
+ Car Exterior Parts 0.657 0.040 0.237 0.074

Table 5: A debugging tool. We use LLMs to propose potentially relevant concepts for language-
augmented latent space simulation to inspect the decision making of a policy.

Debugging and Inspecting Policies With Language. In Tab. 5, we present a case study focused
on policy debugging through language-augmented latent space simulation. Our procedure is as
follows: (i) we consult Large Language Models (LLMs) to generate a base set of natural language
concepts relevant to, for example, a rural driving scenario; (ii) we collect driving policy rollouts
along with intermediate features, filtering out less pertinent concepts based on similarity statistics,
and potentially human judgment; (iii) we then evaluate the policy by replacing image pixel features
with textual features drawn from various subsets of these relevant concepts; (iv) lastly, we pinpoint
specific concepts whose presence across subsets leads to significant performance changes. It’s worth
noting that the third step involves combinatorial complexity and may benefit from some degree of
human intervention for enhanced efficiency. We highlight two major discoveries. Firstly, the concepts
Car & Road and Dark play critical roles in both recovery and stable lane maneuver. Considering
Car and Road in conjunction is essential, as the policy uses the end of the road as a navigational
reference to maintain lane position. Typically, this reference point in the image is relatively small
and encompasses both concepts simultaneously. Moreover, this combined feature serves as a natural
differentiator, setting itself apart from standalone features like Road or Tree that may appear elsewhere
in an image. As for the concept of Dark, it exposes a loophole where the policy takes advantage
of simulation artifacts. Specifically, when the car deviates significantly from the lane center, the
simulation produces dead or black pixels due to the absence of content to render.

Linear Probe In Decision Making. In Fig. 3, we display linear classification results for various
maneuver types using low-dimensional projected features. This evaluation diverges from a closed-
loop control setting, as "features-to-control" requires more complex models than linear functions. Our
research question aims to explore the existence of simple decision boundaries that differentiate higher-
level maneuvers (e.g., avoidance vs. 0.5 steering angle) and examine how feature spatial distribution
within an image influences classification. We follow this procedure: (i) apply K-means clustering
(with 4 clusters) to feature vectors from policy rollouts and project them into a lower-dimensional
space based on distances to cluster centers; (ii) perform linear support vector classification on these
projected features of all N patches; (iii) anchor the cluster centers by matching with the most relevant
textual features proposed by LLMs. In Fig. 3, the cluster centers pertain to Cars, Road & Tree, Forests
and Jungles, and Campgrounds. Due to space limitations, we focus on the first two. Training on
10 trajectories and testing on 90 distinct ones yield high accuracy (in the leftmost labels), affirming
simple decision boundaries. Visualizations of typical maneuvers and classifier coefficients show
more structured coefficients in the image’s lower part, closely linked to driving maneuvers. For Car,
negative coefficients (in blue) appear in the road’s center during lane-stable maneuvers, indicating
that no cars should obstruct the path. Positive coefficients (in red) are observed throughout the road
during avoidance, suggesting that cars can appear anywhere. During recovery, these coefficients are
mainly positive at the road’s edges, as the ego car initiates recovery only after passing other vehicles.
For Road & Tree, positive coefficients clutter at the image’s edges during avoidance, reflecting the
ego car’s heading deviation from the road to evade obstacles. In lane-stable and recovery, these
coefficients are variably distributed in the middle, aligning with the ego car’s road-oriented direction.
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Figure 3: Linear classification on driving maneuver. We report accuracy (the leftmost labels)
and coefficients of linear classifier associated with a concept (2nd, 4th columns) along with typical
examples of each maneuver (1st, 3rd columns).
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