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Abstract

We propose DINOBot, a novel imitation learning framework for robot manipulation,
which leverages the image-level and pixel-level capabilities of features extracted
from Vision Transformers trained with DINO. When interacting with a novel
object, DINOBot first uses these features to retrieve the most visually similar
object experienced during human demonstrations, and then uses this object to align
its end-effector with the novel object to enable effective interaction. Through a
series of real-world experiments on everyday tasks, we show that exploiting both
the image-level and pixel-level properties of vision foundation models enables
unprecedented learning efficiency and generalisation. Videos and code are available
at https://sites.google.com/view/dinobot.

1 Introduction

Figure 1: From a single demo, DI-
NOBot can learn to adapt to new
objects, be robust to distractors, ex-
ecute multi-stage tasks, and interact
with complex environments.

The recent major successes in Deep Learning all had two main
common ingredients: enormous, web-scale datasets, and sub-
stantial computational power to train increasingly large neural
networks. However no such dataset of comparable size is avail-
able for robotics, where sensory perception must be coupled
with actions.

To take advantage of these large, pre-trained networks, the
robotics community has often used them as backbone represen-
tations, to then train a neural network to predict actions on top
of the extracted representations. However, imitation learning
(IL) using these foundation models often still requires a consid-
erable number of demonstrations for generalisation to emerge
[22, 30, 27, 28].

We argue that, rather than integrating foundation models into ex-
isting imitation learning methods as a backbone representation,
we can design new imitation learning frameworks around these
new capabilities of foundation models. To this end, we intro-
duce DINOBot, a new imitation learning framework for robot
manipulation tasks, which leverages the key capabilities of Vi-
sion Transformers (ViTs) trained through DINO [5] (which we
call DINO-ViTs), a self-supervised method for training vision
networks.

As described by DINO’s authors, DINO-ViTs extract “universal features suitable for image-level
visual tasks as well as pixel-level visual tasks" [24]. Inspired by these two capabilities, we designed
DINOBot around two distinct modes of reasoning. Firstly, image-level semantic reasoning to
generalise learned behaviours to novel objects. Secondly, pixel-level geometric reasoning to generalise
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Figure 2: Overall illustration of our framework. Upon observing a new object, the robot visually
compares it other objects observed during demonstrations to find the most similar object (semantic,
image-level reasoning), and retrieve both its image and the trajectory executed on that object. Then,
the robot aligns its end-effector with this image (spatial, pixel-level reasoning), before then executing
that trajectory. These two phases of reasoning are both based on extracting and matching DINO-ViT
features.

learned behaviours to novel object poses. We integrate these two modes by modelling a manipulation
task as a semantic image retrieval task, followed by a geometric alignment task (Fig. 2).

Through a series of real-world experiments, studying a range of tasks such as grasping, pouring,
and inserting objects, we show not only that DINOBot achieves one-shot imitation learning on tasks
where existing methods require many demonstrations, but it also achieves very efficient generalisation
to novel objects. Our conclusion, and the key takeaway message, is clear: designing an imitation
learning framework around image-level (retrieval) and pixel-level (alignment) visual tasks
allows us to leverage the remarkable capabilities of DINO-ViTs, leading to unprecedented
learning efficiency compared to alternative paradigms.

2 Method
Figure 2 illustrates our framework. During deployment, DINOBot executes manipulation tasks via a
semantic retrieval and an spatial alignment phase, followed by a demonstration replay phase. During
training, the operator provides demonstrations, and the collected data fills a memory buffer. Our
method only needs an RGB-D wrist camera, rigidly mounted to the robot’s end-effector. No prior
knowledge of objects or tasks is needed, and no external camera is needed.

Spatial Generalisation through Alignment and Replay. To teach the robot how to interact with
an object, the human operator manoeuvres the end-effector to provide a demonstration, e.g. with
kinesthetic teaching. The end-effector starts from the bottleneck pose, BO, which is a pose arbitrarily
chosen by the operator to start the demonstration from, and from where the object must be visible
from the wrist camera. The demonstration is recorded as a sequence of 3D linear and 3D angular
velocities of the end-effector, expressed in the end-effector frame E. This sequence is the trajectory s,
such that s = [VE

1 , . . . ,VE
T ], where V = [vx, vy, vz, wx, wy, wz]. When starting the demonstration

from pose BO, the robot also records the wrist-camera observation of the object from that pose,
which we call the bottleneck observation. For each demonstration, a task name is also specified
by the operator, e.g. “Grasp", “Insert", or “Pour". In summary, each time a new demonstration is
recorded by the operator, the framework adds the following data to the memory buffer: the bottleneck
observation recorded before starting the demonstration, the trajectory of velocities s = [VE

1 , . . . ,VE
T ],

and the task name.

We can imagine the bottleneck pose being rigidly attached to the virtual (since we do not assume
object models) object frame. With W being the world frame, when we move the object, the global
bottleneck pose BW moves rigidly with the object, whilst the local bottleneck pose BO stays constant.
If the end-effector is re-aligned to BO when the object is moved, replaying the end-effector velocities
of the recorded trajectory would suffice in solving the task [18]. Thus, the robot only needs to reach
BO again for novel poses of this object, which is now expressed as a different BW .
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Figure 4: Success rates on each object for all methods.

Figure 3: In each column,
given a live image (top) DI-
NOBot retrieves from the
buffer the most similar im-
age in the buffer (bottom),
and finds correspondences be-
tween the two.

When a new object is observed during testing, how can the robot
align itself with the object to reach BW again? Given the obser-
vation recorded at the beginning of some demonstration stored in
the buffer, and the current live observation recorded from the wrist-
camera, DINOBot performs visual servoing to align the two images.
Specifically, we extract deep patch features [8] from the DINO-ViT
and use the method described in [2] to find correspondences through
a Best Buddies Nearest Neighbour matching phase 3). This pro-
cedure generates two lists of keypoints, defined as 3D coordinates
C1 = {x1,i, y1,i, z1,i}, C2 = {x2,i, y2,i, z2,i} (we extract the depth
of each RGB pixel correspondence through the RGB-D wrist cam-
era). We then compute the least-squares rigid transformation that
aligns the two lists of corresponding keypoints [34, 23] and move
the robot accordingly. We repeat this process until the alignment
is precise enough, i.e. the norm of the distance of the two lists of
correspondences is smaller than a threshold. Once the alignment is

completed, replaying the recorded trajectory allows the robot to successfully interact again with the
object. We provide additional info and code on the website.

Semantic Generalisation through Retrieval. In the previous section, we described how we for-
mulate the interaction with an object as visual alignment with a goal image, followed by replay of
a trajectory. But given a new object to interact with, how does the robot select the best goal image
and trajectory from its memory buffer? First, we assume that the robot receives, either by the human
operator or by an external planner, the task to execute with the object, e.g. “Grasp" or “Open". The
robot then records a live observation of the object from its wrist-camera. It then retrieves from its
memory buffer the bottleneck observation most similar to the live observation, from the subset of
the memory buffer for that task (e.g. if the task is to “Grasp", then all demonstrations which were
also “Grasp" tasks would be considered). DINOBot performs retrieval by extracting features for each
observation in the buffer and the live observation through the DINO-ViT. In our case, we extract
the CLS token, a 1× 768 vector [8]. It then performs a nearest neighbour search by computing the
cosine similarity between the extracted features, as described in [24], to find the closest match in the
buffer. The best match is retrieved together with its recorded trajectory: these are then used as goal
observation for the alignment phase and actions to be replayed during the replay phase. As such,
DINOBot is able to generalise observed demonstrations to novel objects, by independently using
both the image-level and pixel-level capabilities of vision foundation models.

3 Experiments

In this section, we empirically measure the ability of our method to learn behaviours efficiently and
transfer them effectively to new objects, and we structure our experiments around several important
questions which we present in the following pages. These experiments were conducted on two
different real-world environments, on a total of 15 tasks with 53 objects (a task, in this work, can be
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intuitively described as a verb, like grasp or open, and be applied to many different objects). First,
a tabletop environment with 49 everyday objects (20 train, 29 test) and 8 types of tasks: grasping,
pouring, opening, inserting, sweeping, stacking, assembling, flipping and 3 multi-stage tasks
following the demonstration procedure in [6]: open+pick+place, hanging cups and opening and
loading a dishwasher. Second, a toy kitchen environment where we teach 4 tasks: opening the
microwave, inserting a plate into a dishwasher, placing a plate in the sink, and turning an oven
knob.

A more detailed description of the tasks, the baselines, the setup, and a substantially larger set of
experiments and ablations are included in the Supplementary Material. We invite you to watch the
videos on our website at https://sites.google.com/view/dinobot.

Can DINOBot learn everyday-like tasks efficiently, and transfer those skills to novel objects?
How does it compare to baselines from recent literature? To answer this, we train each method
(baselines described in the Supplementary Material) with demonstrations of how to interact with
the objects in the training set on the tabletop environment (Fig. 4, top). We then test each method
using the objects depicted in the figure: both the training objects (top), and the unseen test objects
(bottom). At test time, we position each object randomly on the table, and inform the robot what the
task to perform is (e.g. “Grasp", “Open", etc). We sample a position inside a 40cm × 40cm area,
and an angle between -45° and 45° relative to the original demonstration angle. We run 10 trials
per object, sampling a new object pose each time. In this tabletop scenario, the alignment phase
is 4-DOF, with the robot always aligned with the vertical axis and only rotating around this axis,
while the replay phase trajectory execution is 6-DOF. In the Supplementary Material, we also explore
6-DOF alignment in the kitchen environment.

The performance of each method on each object is shown in Fig. 4. We group the results into training
set objects (for which the robot received demonstrations, to study one-shot IL), and test set objects
(to study generalisation to novel objects).

The results show that not only can DINOBot obtain remarkable one-shot performance on the training
objects, but that it can generalise to unseen objects: performance stays considerably close to the
training set performance.The performance of the baselines is noticeably lower, illustrating the benefits
of our combination of retrieval and alignment to leverage the capabilities of DINO-ViTs. Using
the extracted features as input to train a BC network, perhaps the most typical paradigm for using
pre-trained networks in IL [22, 27, 30], clearly performs worse, even with 10 times the number of
demonstrations. DOME performs well on training set objects, but performance degrades when trying
to generalise to unseen objects, as the method was not designed to do so.

4 Conclusion
We have introduced DINOBot, an imitation learning framework designed around image-level (re-
trieval) and pixel-level (alignment) visual tasks, to take full advantage of the abilities of DINO-ViT
foundation models. Our extensive experimental investigation (mostly in the Supplementary Material)
demonstrated how this framework surpasses other DINO-based baselines, that do not harness the full
capabilities of these vision models.
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Setup: We run our experiments on a Sawyer robot mounting a Robotiq 2F-85 gripper. We use a
single wrist-mounted Intel RealSense D435 camera. The camera receives RGB-D images which we
rescale to 224× 224× 4. The robot starts learning tabula rasa: no previous knowledge of tasks or
objects, such as CAD models, is used.

Baselines: We compare DINOBot to the following baselines. 1) DOME [36], a similar one-shot IL
method based on a learned (through simulation), goal-conditioned visual servoing phase followed
by a trajectory replay. However, DOME does not generalise to novel objects, and so we extended
the original method with our retrieval phase to provide the goal image to align with. This baseline
exists to compare DINO’s pixel-level alignment abilities with DOME’s simulation-trained visual
servoing network. 2) BC-DINO, a Behaviour Cloning (BC) implementation that trains a network to
output actions on top of features extracted through a DINO-ViT. This baseline exists to compare our
framework to the more typical approach in recent works, where BC policies are trained upon features
extracted from pre-trained models [22, 30, 27] on all the collected demonstrations. 3) VINN: Visual
Imitation through Nearest Neighbours (VINN) [25], frames Learning from Demonstration entirely as
a retrieval problem, where actions are computed by retrieving the k most similar demo observations
and averaging their corresponding actions. We use DINO features to embed the observations and
retrieve them.

All methods receive as input the task to execute and the wrist-camera observation. For DINOBot and
DOME, we provide a single demonstration for each training object. As BC-DINO and VINN are not
designed as one-shot IL methods, we provide 10 demonstrations per training object. More details on
the implementation of these methods and on the experiments can be found on our website.

Tasks Selection: To prove the effectiveness and generality of DINOBot, we took the tasks from other
recent imitation learning papers, and we therefore test on all the tasks from: 1) Relational-NDF [33],
(where instead of bottle in container we have multiple, more precise insertion tasks) + 2) FISH [15],
(non multifingered ones - as door opening, we have open a microwave door - for key insertion, we
have several precise insertion tasks with a lower than 5mm error tolerance), + 3) VINN [25], (where
instead of pushing directly, we sweep, i.e. push with a tool), + 4) Relay Policy Learning [13].

Can DINOBot learn to interact with a complex kitchen environment? In this section, we now
study more complex 6-DOF tasks and environments. We provide a single demonstration to our robot
for the following tasks: 1) open a microwave, 2) insert a plate into the dishwasher, 3) put a plate into
the sink, and 4) turn an oven knob. After each demonstration, we test the ability of our method to
replicate the task with the robot starting from a different starting position, with 10 trials for each task.
As the only input the robot receives are wrist-camera observations and no proprioceptive data, moving
the robot to a different initial state is akin to moving the kitchen to test for spatial generalisation.

Figure 5: Results on kitchen tasks.

In this experiment, we skip the retrieval phase to study
the alignment and replay phases’ one-shot IL ability in
isolation, such that the robot is asked to perform the same
task it has just been shown from the demonstration. The
robot now has to perform a challenging 6-DOF alignment
by extracting correspondences between the bottleneck ob-
servation, recorded at the start of the demonstration, and
its live wrist-camera observation (videos of execution and
keypoints extractions on our website). We compare DI-
NOBot with one demonstration to BC-DINO and VINN
with 10 demonstrations. DOME is designed for 4-DOF
tabletop settings and cannot be deployed for this task.

Results shown in Fig. 5 clearly show that our framework
can successfully solve these everyday-like tasks, when
receiving only a single demonstration. As with the previ-
ous experiments, the significantly better performance than

BC-DINO and VINN again shows that explicitly using DINO’s extracted visual features is superior
to a more standard use of DINO as just backbone features.
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Method Without Distractors With Distractors
DINOBot (1 demo) 0.8 0.76

DOME (1 demo) 0.67 0.5
BC-DINO (10 demos) 0.2 0.07

VINN (10 demos) 0.33 0.07
Table 1: Success rates with and without distractors.

Does DINOBot work even in the presence of distractor objects? In this experiment, we provide
a single demonstration for each of the following tasks: 1) grasping a can, 2) inserting bread into
a toaster, and 3) pouring from a cup into a mug. Here we study the alignment and replay phases
robustness to distractors in isolation, hence we provide the goal image manually, skipping the retrieval
phase. At test time, we use an unseen test set object (e.g. a different can or a different toaster), but we
also vary the scene from the demonstration setup by adding a set of distractors from different classes
(Fig. 6).

Figure 6: Despite the distractors, sensi-
ble correspondences can still be found.

We compare DINOBot’s performance against the base-
lines: DOME receives a single demonstration as well,
while BC-DINO and VINN receive 10 demonstrations.
We run 10 test trials for each task, with and without dis-
tractors. Results in Table 1 demonstrate that DINOBot
not only surpasses all the baselines, but faces the smallest
decrease in performance due to distractors. This demon-
strates that DINO-ViT is very robust and able to extract
correct correspondences between the goal observation ob-
ject and the live observation, even in the presence of ad-
ditional distractor objects(Fig. 6).

What technique performs best in retrieving the most similar observation from the memory
buffer? Being an essential part of our method (Sec. 2), we investigate the performance of different
retrieval techniques to further motivate our design choice.

Figure 7: Comparison of retrieval accu-
racy of the baselines.

We compare retrieval based on features extracted from
publicly-available ImageNet-trained ResNet-50 [16],
CLIP [26], R3M [22] and DINO-ViT [5], each of which
has been pre-trained on vast datasets of images (refer to
the website for additional details). We measure retrieval
accuracy by providing to each method an observation of
an unseen object from the test set, composed of the 20
objects of Fig. 4 (bottom). We then measure how many
times the method retrieves from the buffer an observation
of the object belonging to the same class. We show re-
sults in Figure 7. The features extracted via a DINO-ViT
achieve the best accuracy, confirming recent findings from
the literature [5, 2] that such features effectively encode
semantic, geometric, global and local information of the observation.

How accurate is the keypoints-based alignment phase of DINOBot? Here, we evaluate alignment
precision in isolation, comparing it to two other alignment techniques from recent literature: Robo-
TAP [37], which uses keypoints extracted through TAPIR [7] for visual servoing and alignment, and
FlowControl [3, 17], which uses optical flow to perform alignment; for the optical flow network,
we use RAFT [35]. We use three pairs of objects: shoes, cans, and toasters. We generate a series of
top-down observations of the objects where we manually translate and rotate the objects, in addition
to artificially changing the background. Each method is then tested on its accuracy to compute
the correct translation and rotation given an initial observation and a transformed observation. We
test each method both when the pair of images depict the same object, and when the two images
contain two different objects of the same class, e.g. two different shoes, to evaluate for semantic and
geometric robustness.
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Figure 9: One-shot, intra-class IL generalisation experiments.

Figure 8: Alignment accuracy bench-
mark.

Results in Fig. 8 demonstrate that, while RoboTAP is
extremely accurate when the same object appears in the
pair of observations, performance degrades considerably
when matching two different objects, albeit belonging to
the same class. RAFT shows a similar trend, although
with overall worse performance. DINOBot instead is able
to generalise to unseen objects, maintaining strong perfor-
mance.

How much can DINOBot generalise to objects with
different sizes and appearance from a single demo?
Here, we collected a new set of objects belonging to 4
classes - bottles, kettles, cups, and pans - where the object

sizes and shapes vary significantly within each class. For each class, we then provide a demo for
a single object, and then test on all the objects - 1 demo object, and 4 unseen objects - measuring
the success rate over 10 test trials for each. As such, here we investigate the ability to generalise to
novel objects that can vary substantially in size and shape, e.g. bottles more than double in size, mugs
with handles of different shapes and position, etc. Results in Figure 9 show that DINOBot achieves
significant generalisation and again outperforms baselines.

How does DINOBot compare to other methods across three challenges: adaptability, dexterity,
and precision? To better highlight the different manipulation abilities expressed by our method, we
cluster the results for the tasks in 4 into three groups, which cover some of the main abilities a robot
should possess to tackle everyday-like tasks: adaptability, dexterity, and precision.

We cluster as follows. 1) All results from grasp experiments are grouped into adaptability, as
grasping is the task that encounters the largest variety in objects [10], and thus requires significant
adaptation to novel shapes based on visual observation. 2) All results from pour, sweep, flip, open
dishwasher are grouped into dexterity, as these require non-trivial, often fast movements to succeed.
3) All results from insert, assemble are grouped into precision, as these have lower than 5mm
positional tolerance.

Figure 10: Performance of each method on
tasks that require adaptability, dexterity or
precision.

Results, illustrated in Fig. 10, demonstrate that DI-
NOBot surpasses all baselines on all these challenges.
We observed that the use of retrieval helped DINOBot
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adapt to unseen objects of various shape, while align-
ment and trajectory replay helped tackling precise
and dexterous tasks, strongly surpassing the end-to-
end baselines.

5 Related Work

Imitation Learning on top of Foundation Models.
Many recent imitation learning methods for robot
manipulation train end-to-end policies, built upon
features extracted from pre-trained models. However,
such methods still require tens or hundreds of demon-
strations per task [30, 22, 27]. In our work, we show
that an explicit decomposition into an image-level re-
trieval phase and a pixel-level alignment phase followed by a trajectory replay, results in a substantial
improvement in data and time efficiency.

Retrieval for few-shot learning. Related to our use of DINO’s image-level capabilities, retrieval
for few-shot learning, especially in robotics, reinforcement learning and control, has also been
investigated elsewhere [19, 4, 1, 31, 29, 20, 25, 9, 17]. Some approaches directly retrieve the
actions to execute [20, 25, 31] or the data to train a policy [9]. [17] also retrieves the most similar
demonstration from a buffer, and then aligns the robot by using optical flow between the current and
goal observations, but is considerably worse at generalising to new objects as we demonstrate in Sec.
3.

Local correspondences for robot manipulation. Related to our use of DINO’s pixel-level capa-
bilities, extraction of dense or sparse correspondences through neural networks has been explored
elsewhere for robot manipulation [11, 21, 38]. However, these methods require object-specific data
collection to train networks. [37] uses a general keypoint-tracking network, that however does
not generalise to unseen objects as we will illustrate in later sections. [12, 14, 2] demonstrate the
capabilities of off-the-shelf DINO-ViT features for pose estimation. On top of these, we build a full
IL framework based on retrieval and alignment.

Trajectory decomposition for robot manipulation. Our work is related to [18, 36], which also
decompose robot manipulation into visual alignment and then replay of a trajectory. [18] trains
an object-specific visual servoing policy with autonomously collected data, while [36] trains a
general goal-conditioned alignment policy in simulation. However, neither of these methods enable
generalisation to novel objects, and furthermore, with DINOBot we demonstrate that, by using
DINO-ViTs, neither object-specific data collection nor additional simulation training is needed.

Semantic and spatial reasoning. CLIPort [32], like DINOBot, also phrases object manipulation
as semantic reasoning combined with spatial reasoning. However, there are some fundamental
differences: 1) their pipeline is more implicit, going from language and visual observations to
affordance prediction through a single forward pass of a two-streams network, while we have explicit
retrieval and alignment phases, that leads to DINOBot’s better efficiency 2) their method is designed
for top-down pick-and-place-like tasks, while we experiment with more complex tasks, also in a
6-DOF environment like a kitchen.

10


	Introduction
	Method
	Experiments
	Conclusion
	Related Work

