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Abstract

Navigating vast and visually intricate gaming environments poses unique chal-
lenges, especially when agents are deprived of absolute positions and orientations
during testing. This paper addresses the challenge of training agents in such envi-
ronments using a limited set of offline navigation data and a more substantial set
of offline position data. We introduce the Image-Goal Network (IG-Net), an inno-
vative solution tailored for these challenges. IG-Net is designed as an image-goal-
conditioned navigation agent, which is trained end-to-end, directly outputting ac-
tions based on inputs without intermediary mapping steps. Furthermore, IG-Net
harnesses position prediction, path prediction and distance prediction to bolster
representation learning to encode spatial map information implicitly, an aspect
overlooked in prior works. Results demonstrate IG-Net’s potential in navigating
large-scale gaming environments, providing both advancements in the field and
tools for the broader research community.

1 Introduction

Visual navigation, the act of autonomously traversing and understanding environments based on
visual cues, has been at the forefront of robotics and artificial intelligence research (Shah et al.,
2021, 2023b; Kwon et al., 2021). The ability to navigate is a fundamental skill for agents, making
it applicable in a wide range of scenarios, from virtual gaming environments to real-world robotic
applications. The challenge, however, lies in the complexity and variability of these environments,
especially when the scale is vast and the available data is limited.

In this work, we consider the ShooterGame environment with realistic visual dynamics1, which
spans 10421.87 m2 across multiple floors, representing a scale approximately 50-100 times larger
than preceding navigational environments. Furthermore, we focus on the setting that the agent
only has access to limited offline navigation data but can use some random unlabeled data (without
action or continuity) to enhance the model training. In contrast, the testing phase further restricts the
agent’s access to solely the current and goal RGB observations. The observational data is limited to
a 90 FoV that aligns with the human player’s view, posing considerable challenges compared to the
conventional 360 FoV camera observations (Al-Halah et al., 2022).

To mitigate these challenges, we propose the Image-Goal Network (IG-Net), an end-to-end solu-
tion specifically designed for large-scale visual navigation tasks. This network amalgamates visual
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and positional information to guide the agent towards its goal effectively. Besides, since explic-
itly building a map for navigating such a large-scale environment is challenging, we incorporate
spatial information, representing the positional information of each image implicitly for a better
representation. Experiments of IG-Net on the large-scale ShooterGame map demonstrate significant
advancements in navigation ability compared to baselines, opening avenues for further research and
development in autonomous navigation in large-scale, complex environments.

2 Related Works

Image-goal visual navigation within large-scale maps, particularly when devoid of absolute posi-
tions during testing and online interactions during training, poses a profound challenge addressed
by numerous research endeavors. Advancements in topology-based methodologies have been note-
worthy. The Topological Semantic Graph Memory (Kim et al., 2022), utilizing depth cameras, con-
structs graphs based on images or objects and avoids reliance on positional information, employing
a cross-graph mixer for updates. Similarly, Visual Graph Memory (Kwon et al., 2021) leverages
landmark-based topological representations for zero-shot navigation in novel environments, and
the Neural Topological SLAM (Chaplot et al., 2020) updates graphs through nodes representing
360-degree panoramic views based on agent observations. Mod-IIN (Krantz et al., 2023) uses an
exploration method that maintains a top-down 2D map with depth and positional inputs for efficient
visual navigation. ViNG (Shah et al., 2021) predicts steps and accessibility to a target while generat-
ing waypoints, constructing trees, and planning paths via a weighted Dijkstra algorithm. ViNT (Shah
et al., 2023c) builds topological graphs for long-horizon navigation, while RNR-Map (Kwon et al.,
2023) builds renderable neural radiance map for long-horizon navigation. Compared to these works,
our work develops multiple auxiliary tasks for learning an implicit map, without the requirement of
modeling the environment with explicit topological graphs or maps.

Some existing works, including Visual Graph Memory (Kim et al., 2022) and ViNT (Shah et al.,
2023c), have incorporated pretraining methods for visual navigation as a component. Compared to
these works, we focus on long-horizon navigation setting in the pretraining, and study more types
of pretraining objectives that utilizes positional information for visual navigation.

Some pretraining methods were proposed to facilitate robot learning across a variety of environ-
ments. The visual representation R3M (Nair et al., 2022) demonstrates the potential of data-efficient
learning for downstream robotic manipulation tasks using pre-trained visual representations on di-
verse human video data. PACT (Bonatti et al., 2022) introduces a generative transformer-based
architecture that builds robot-specific representations from robot data in a self-supervised fashion,
evidencing enhanced performance in tasks such as safe navigation. Also, Majumdar et al. (2023)
conducts an extensive empirical study focusing on the design of an artificial visual cortex, aimed
at enabling an artificial agent to convert camera input into actions. Our method shares the idea of
representation learning for embodied agents, but we explore how a specific type of supervision:
positional information, benefits the learning of visual navigation agents.

3 Problem Setting

In this study, we tackle the intricate problem of visual navigation within the significantly expansive
ShooterGame environment. This environment features a 10422 m2 map with multiple levels, making
it approximately 50-100 times larger than previous navigation environments in Table 3. Additionally,
we use a 90 FoV camera view without depth as opposed to a panoramic view shown in Figure 2.
Other ShooterGame details can be found in Appendix A.

Offline Dataset. We collect navigation data to train our models. At each step, the agent
is given the current RGB observation ot and the target otar. A human-expert action at ∈
{forward, turn left, turn right} is executed which leads to next observation. The trajectory ends
when agent navigates to target. Global positions and rotations pt = (xt, yt, zt, θt) are also collected
but only used for auxiliary tasks and visualizations. Each trajectory in our dataset is represented as:

τ = {otar,o0,p0,a0, . . . ,oT ,pT ,aT }, (1)

where T denotes trajectory length. A total of N = 200 trajectories are used for training with an
average length of 55 steps. Other details can be found in Appendix F.1
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We collect additional position data that includes the positions-images of the map. We uniformly
sample a set of M = 2000 points in the map, where each point is represented as the observation-
position-rotation pair {oj ,pj |1 ≤ j ≤ M}. Note that position data are unavailable during testing.

4 Proposed Method: IG-Net

4.1 Foundation Principles

Given the extensive scale of the map, constructing a model explicitly based on the map, such as
topological methods (Kim et al., 2022), is not feasible. Accordingly, IG-Net is proposed with the
following distinct properties to navigate proficiently within such constrained settings. Additional
discussions on IG-Net can be found in Appendix B.1 to B.3.

End-to-End Training: Distinct from methodologies that construct a comprehensive map or graph
of the environment as a separate step, IG-Net adopts end-to-end training. This allows IG-Net to
directly interpret inputs and output actions, bypassing intermediary mapping processes.

Enhanced Representation Learning: IG-Net utilizes the position data and navigation information
prediction to refine representation learning, a domain relatively untouched in preceding studies. It
employs a variety of auxiliary tasks detailed below to enhance the agent’s spatial understanding.

4.2 Training Tasks

To optimize IG-Net, we devise a conglomerate of training objectives, each catering to different
aspects of navigation. These tasks ensure the coherent learning of representations and navigational
strategies, which are crucial for effective navigation in complex environments. We here discuss the
high-level motivation of each task and present other details such as loss functions in Appendix C.

Relative Position: Given one current image o1 and goal image o2, we use IG-Net to predict the
difference in position and orientation between the pair. This allows IG-Net to learn to inherit spatial
representation given camera views on the map.

Absolute Position: We use IG-Net to predict the absolute position and rotations given a camera
view. For the first two losses, we train on both offline navigation data and position data.

Navigation Distance: Given one current image and one goal image, IG-Net learns to predict the
total distance that takes the agent to navigate from the first state to the second state. Specifically, we
want IG-Net to capture state connectivity through training on this loss.

Navigation Path: Given one current image and one goal image, we train IG-Net to construct a
spatial navigation path between them. We locally predict the trajectory for the next 5 steps and
globally predict the relative positions at 5 equally-spaced steps from current step t to T .

Low-level Action: Given one current image and one goal image, we use an additional action loss
for training IG-Net to generate the current navigation action.

5 Experiment

5.1 Experiment Setting

We evaluate IG-Net in three levels of difficulties based on the initial Euclidean distance between
agent and goal. We run 50 episodes under each setting with a maximum of 200 steps per episode.
Success is marked by the agent locating within a fixed range of the goal, regardless of its orientation.

IG-Net is compared against VGM (Kwon et al., 2021), ViNT(Shah et al., 2023c), NoMaDSridhar
et al. (2023), and GNM Shah et al. (2023a). All algorithms are trained with the same dataset as
described in Sec 3. Due to limited simulation speed of ShooterGame( 2 fps), we disabled RL training
on all algorithms. Notice NoMaD, ViNT, and GNM’s performance might suffer from mismatched
action space.
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5.2 Evaluation Metrics

Three metrics are used in this paper: success rate (SR), success weighted by path length (SPL), and
distance decrement rate (DDR).

SPL measures the efficiency of navigation and is defined as SPL = 1
N

∑N
i=1 Si

di

max(di,pi)
where Si

equals 1 if navigation is successful and 0 otherwise. N is the total number of evaluation episodes,
di is shortest distance to target approximated by Euclidean Di, and pi is the actual trajectory length.

DDR measures the closest distance achieved between the agent and the target towards to and can be
written as DDR = D−dmin

D where D is the initial Euclidean distance to the goal and dmin is the
minimum Euclidean distance throughout the trajectory.

5.3 Results

Results are presented in Table 2. Under the easiest setting, IG-Net’s success rate outperforms other
baselines by a margin of 69% (from 0.32 to 0.54) and is 71% more efficient in SPL (from 0.14 to
0.24). More remarkably, IG-Net achieves a reasonable SR of 0.24 to 0.26 under more challenging
settings whereas all other baselines almost completely fail with SR consistently below 0.1. Case
study and additional analysis can be found in E

Moreover, results show that training IG-Net with auxiliary tasks significantly improves performance
in both success rate and navigation efficiency. Therefore, we conclude the learning objectives pro-
posed in Section 4.2 help IG-Net to establish an implicit and transferable understanding of the map.

Difficulty 15m < D < 40m 40m < D < 80m D > 80m
Metric SR SPL DDR SR SPL DDR SR SPL DDR

VGM 0.32 0.14 0.49 0.04 0.02 0.26 0.00 0.00 0.27
NoMaD-EMA 0.08 0.05 0.27 0.06 0.04 0.26 0.00 0.00 0.23

NoMaD 0.10 0.06 0.31 0.02 0.01 0.20 0.00 0.00 0.16
ViNT 0.08 0.07 0.17 0.02 0.02 0.16 0.00 0.00 0.15
GNM 0.04 0.04 0.13 0.04 0.03 0.15 0.02 0.02 0.14
IG-Net 0.54 0.24 0.75 0.26 0.17 0.65 0.24 0.15 0.75

IG-Net (no auxiliary) 0.18 0.09 0.36 0.14 0.08 0.42 0.00 0.00 0.44

Table 1: IG-Net experiment results. SR: success rate. SPL: success-weighted by path length. DDR:
distance decrement rate. D: initial distance to goal.

5.4 Generalization to Novel Maps

We validate IG-Net’s ability to navigate in novel maps on Gibson. The model is trained on 396 dif-
ferent Gibson environments then evaluated on 72 environments from the training set and 14 unseen
ones. Both training and testing on Gibson follow easy setting with initial distance 1.5m ≤ D ≤ 3m.
Where success is remarked by agent calling a stop action within 1m range to goal.

Setting Train Eval (unseen)
Metric SR SPL DDR SR SPL DDR

IG-Net 0.54 0.47 0.45 0.58 0.51 0.42
IG-Net (no auxiliary) 0.00 0.00 0.32 0.00 0.00 0.32

Table 2: IG-Net experiment results on Gibson.

6 Conclusion

In this study, we tackled visual navigation in expansive gaming environments with the introduction
of the Image-Goal Network (IG-Net). IG-Net is a testament to the synergy of cutting-edge deep
learning and specialized navigation strategies, emphasizing image-goal-conditioned behavior and
the implicit encoding of spatial map information, a facet underexplored in preceding works. The net-
work’s proven adaptability and robustness in the expansive ShooterGame environment underscore
its potential in navigating large-scale, visually rich domains using solely offline, image-centric data.
The significant advancements of IG-Net are not confined to enhancing visual navigation but extend
to enriching representation learning, providing invaluable insights for ongoing and future investiga-
tions in both virtual and real-world autonomous navigation applications. The foundational principles
of IG-Net are poised to influence the development of more sophisticated navigation agents.
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Appendix

A Environment Details

ShooterGame is a quintessential representation of a PC multiplayer first-person shooter by Un-
real Engine 4, providing a robust framework that includes diverse weapon implementations, game
modes, and a simplistic front-end menu system, with observations further constrained to 90-degree
camera views 2. This restriction augments the challenge compared to preceding 360-degree camera
observations as in Figure 2. From the figure we can also observe that the distant craft, clouds, sun-
light, and even walls change dynamically over time, resulting in different observations of the same
position and angle at different moments in time, which renders the navigation within this environ-
ment a complex endeavor. The lack of depth information also poses unique implementations and
challenges for navigation tasks.

B Model Details

B.1 IG-Net Architectural Design

IG-Net integrates a transformer-based structure, specifically tailored for navigation tasks, with a
forward process described as follows:

2A public video demo: https://www.youtube.com/watch?v=xdS6asajHAQ
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(a) A bird view of ShooterGame (b) A sketch of the ShooterGame

Figure 1: A bird view and a sketch of usable space of ShooterGame.

Environment Gibson SUNCG Matterport3D ShooterGame

Coverage of One Map (m2) 368.88 127.13 517.78 10421.87
Dynamic Objects # # # !

Pure RGB without depth # # # !

No Panoramic 360 camera view # # # !

Table 3: Comparison of navigation environments including Gibson (Xia et al., 2018), SUNCG (Song
et al., 2017), Matterport3D (Chang et al., 2017), and MINOS (Savva et al., 2017). The coverage of
one task of ShooterGame is calculated using a polygon area calculation method applied to the entire
map. It is 50-100 times bigger than previous ones. The scale is converted from the game engine’s
base units.

1. Image Encoding: A pretrained Masked Auto-Encoder (MAE) is employed for encoding
the current and goal images independently, ensuring a rich representation of visual infor-
mation.

2. Embedding Concatenation: The encoding embeddings procured from the first step are
concatenated to form a unified representation, encompassing both current state and goal
state information.

3. Positional and Action Decoding: Utilizing position, path, distance, and action decoders,
the network predicts corresponding positional information and navigational actions, lever-
aging the concatenated embeddings.

B.2 IG-Net Training and Inference

During training, IG-Net is exposed to a plethora of offline navigation data, enriched with positional
and visual information. The network learns to intertwine visual and spatial cues to formulate ro-
bust navigational policies. In inference, the network, confined to current observational and goal
images, generates actions to navigate the agent proficiently toward the predefined goal, overcoming
the constraints imposed by limited observational data and expansive environments.

B.3 IG-Net Parameters

The hyperpameters of training IG-Net is provided as follows:
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𝑎𝑎𝑡𝑡 = 2 (turning right) 𝑎𝑎𝑡𝑡+1 = 2  (turning right) 𝑎𝑎𝑡𝑡+2 = 2  (turning right)

Figure 2: Four image observations from one fixed position with different view angles. Each ob-
servation only contains a 90-degree camera view, which can be more challenging than previous
360-degree-view environments.

Param Name IG-Net

Learning Rate 5e−5

Batch Size 16
N (Number of Navigation Trajectories) 200

M (Number of Position Data) 2000
Visual Dim 224× 224× 3

Visual Backbone MAE
Max Epoch 100
Action Dim 3

Path prediction length 5
Loss weights for each auxiliary loss 1.0

Loss weights action loss 1.0

B.4 VGM Parameters

We mostly follow the default VGM training procedure by keeping the architecture of the model the
same as in the original publication. To train under ShooterGame, we cut panoramic observations to
90 FoV and mask the depth input. To overcome the issue of having sparse nodes during training, we
tune the th parameter to different values to loosen node generation criteria. Finally, we train for a
maximum of 250 epochs and choose the model checkpoint when validation loss achieves the lowest.

Param Name Default Tuned

Learning Rate 1e−4 -
Batch Size 4 -

Th 0.75 0.85
Visual Dim 64× 64× 3 -

Visual Backbone ResNet-18 -
Max Epoch 250 -
Action Dim 3 -

C Loss Function Details

Relative Position Prediction. The relative position prediction design allows IG-Net to learn to
inherit spatial representation given camera views on the map. Given any two states represented by
(o1,p1) and (o2,p2), we compute the relative position and orientation of these two states as:

relative(p2,p1) =
(
(x2 − x1, y2 − y1, z2 − z1)R(−θ1)

T , θ2 − θ1
)
, (2)

where R(θ) is the rotation matrix for angle θ. Qualitatively, relative(p2,p1) reflects the position
and rotation of o2 in the egocentric coordinates of o1. Given a pair of images, IG-Net is able
to predict the relative position of the images, and the following loss function is used for relative
position prediction in IG-Net:

Lrelative(o1,p1,o2,p2) = Lpos angle(f relative
θ (o1,o2), relative(p2,p1)), (3)
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where

Lpos angle((x1, y1, z1, θ1), (x2, y2, z2, θ2))

= ∥(x2 − x1, y2 − y1, z2 − z1, cos(θ2)− cos(θ1), sin(θ2)− sin(θ1))∥22
evaluate how the predicted relative positions and rotations are close to the ground truth relative
positions and rotations.

One advantage of relative position is that any data with position information can be leveraged. We
use a mixture of position offline data and navigation offline data for training the relative position
prediction, detailed later in this section.

Absolute Position Prediction. We additionally use IG-Net to predict the absolute position and
rotations given a camera view, serving as an additional auxiliary loss for IG-Net. Given one state
represented by (o1,p1), the following loss function is used for training IG-Net is given by:

Labsolute pos(o1,p1) = Lpos angle(fabsolute pos
θ (o1),p1). (4)

We also use a mixture of offline navigation data and position data for training IG-Net.

Navigation distance prediction. For the navigation distance prediction task, IG-Net is given
a pair of states represented by image observations, and learns to predict the total distance that
takes the agent to navigate from the first state to the second state. When the loss is optimized,
the network captures the connectivity between different states in the map. Given a trajectory
τ = (otar,ptar,o0,p0,a0, . . . ,oT ,pT ,aT ) in the offline navigation dataset, we let oT+1 = otar

and pT+1 = ptar define the navigation distance between oi,oj , i ≤ j as follows:

nav distance(oi,oj , τ) =

j−1∑
k=i

∥(xk − xk+1, yk − yk+1, zk − zk+1)∥22. (5)

Given a pair of states in the offline navigation dataset, IG-Net predicts the navigation distance be-
tween them. The loss function for training IG-Net is given by:

Lnav distance(oi,oj , τ) =
[
fnav distance
θ (oi,oj)− nav distance(oi,oj , τ)

]2
(6)

Navigation path prediction. Given a pair of states represented by image observations, IG-Net
learns to construct the spatial navigation path between them, serving as a path-planning auxiliary
loss for IG-Net. For the local path prediction in IG-Net, the predicted path is the Npath = 5 next
consecutive steps in the navigation trajectory; for the global path prediction in IG-net, the predicted
path is the Npath = 5 intermediate relative positions, where the intermediate points are equally
spaced in time from current time t to the total path length T .

Formally, we define the local and global timesteps as

Slocal(t, τ) = (min(t+ 1, T ),min(t+ 2, T ), . . . ,min(t+Npath, T )), (7)

Sglobal(t, τ) =

(
t+ ⌊ T − t

Npath + 1
⌋, t+ ⌊ 2(T − t)

Npath + 1
⌋, · · · , t+ ⌊Npath(T − t)

Npath + 1
⌋
)
. (8)

We define the local and global path at timestep t in the trajectory τ as

local path(ot, τ) =
(
relative(pSlocal(t,τ)1 ,pt), · · · , relative(pSlocal(t,τ)Npath

,pt)
)
, (9)

global path(ot, τ) =
(
relative(pSglobal(t,τ)1 ,pt), · · · , relative(pSglobal(t,τ)Npath

,pt)
)
. (10)

Finally, the training loss on local and global paths for IG-Net is defined as:

Llocal path(ot, τ) =

Npath∑
k=1

[
Lpos angle(f local path

θ (ot,otar)k, local path(ot, τ)k)
]
, (11)

Lglobal path(ot, τ) =

Npath∑
k=1

[
Lpos angle(fglobal path

θ (ot,otar)k, global path(ot, τ)k)
]
. (12)
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Figure 3: IG-Net architecture illustration, in which auxiliary outputs denote predictions on map
positions & orientations; ego positions & orientations; local & global paths.

Low-level Action Loss. Besides all the above auxiliary loss, we use an additional action loss
for training IG-Net to generate navigation actions. Given one current image and one goal image,
we train IG-Net to predict the current action. The action prediction head of IG-Net is trained with
behavior cloning loss:

Laction(ot, τ) = cross entropy(faction(ot,otar), at) (13)

Training Loss. We add all the auxiliary loss and action prediction loss as a single loss function
to train IG-Net. We use w = 1.0 for each loss term in our experiment.

Sampling in position and navigation dataset for training IG-Net. All the position prediction
losses are trained with both position and navigation datasets. In contrast, navigation distance, path
prediction loss and action loss rely solely on the navigation dataset. In our experiment, we sample
the position dataset with ppos = 0.4 probability and the navigation dataset with 1 − ppos = 0.6
probability. When sampled on the position dataset, the navigation distance and path prediction loss
are masked in training. Our approach enables leveraging both the position and navigation datasets
for training different auxiliary tasks without losing data efficiency.

D Architectural Design

IG-Net integrates a transformer-based structure, specifically tailored for navigation tasks, with a
forward process described as follows:

1. Image Encoding: A pretrained Masked Auto-Encoder (MAE) is employed for encoding
the current and goal images independently, ensuring a rich representation of visual infor-
mation.

2. Embedding Concatenation: The encoding embeddings procured from the first step are
concatenated to form a unified representation, encompassing both current state and goal
state information.

3. Positional and Action Decoding: Utilizing position, path, distance, and action decoders,
the network predicts corresponding positional information and navigational actions, lever-
aging the concatenated embeddings.

An illustration of the architecture of IG-Net is shown in Figure 3.

E Case Study

E.1 Visualization of Navigation Path of IG-Net

To demonstrate IG-Net’s proficiency in visual navigation, especially with purely visual inputs in
complex environments such as ShooterGame, we present case studies depicting the navigation paths
executed by IG-Net during the evaluation phase, as illustrated in Figure 4. From its initial position,
IG-Net successfully executes its planning paths and executes low-level actions seamlessly, navi-
gating through stairs and corridors while avoiding collisions with obstacles. These observations are
consistent across various evaluation episodes, showcasing IG-Net’s capability to navigate accurately
towards the goal image and execute precise low-level navigational maneuvers to follow the correct
path.
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Figure 4: Illustration of IG-Net’s navigation path in ShooterGame during evaluation. The bottom-
left figure represents the agent’s starting position, and the top-right figure displays the goal image,
serving as input to IG-Net. Purple dots trace the path navigated by IG-Net, and red dots represent
key frames in the navigation, with corresponding images visualized.

E.2 Robustness of IG-Net

To assess IG-Net’s robustness, we conduct a case study introducing Gaussian noises, denoted as n,
to the positions. We normalize of the position to zero-mean and unit-variance, and add a noise on all
position training signals with standard derivation of n. Table 4 reveals that IG-Net maintains sub-
stantial performance even amidst high noise levels. Intriguingly, noise appears to enhance IG-Net’s
performance in challenging tasks (D > 8000), a phenomenon akin to utilizing noise to augment
agents’ exploration capability in RL scenarios (Eberhard et al., 2023; Plappert et al., 2018; Fortu-
nato et al., 2018). This unexpected benefit opens up promising avenues for future enhancements to
IG-Net’s performance.

Difficulty 1500 < D < 4000 4000 < D < 8000 D > 8000
Metric SR SPL DDR SR SPL DDR SR SPL DDR

IG-Net 0.54 0.24 0.75 0.26 0.17 0.65 0.24 0.15 0.75
IG-Net (n = 0.1) 0.26 0.13 0.47 0.22 0.14 0.61 0.16 0.11 0.64
IG-Net (n = 0.2) 0.42 0.18 0.58 0.16 0.09 0.58 0.30 0.20 0.74
IG-Net (n = 0.4) 0.26 0.12 0.52 0.18 0.09 0.61 0.20 0.12 0.70

Table 4: Performance of IG-Net under different noise levels.

E.3 Why VGM Fails

VGM, along with several other methodologies (Kim et al., 2022), strives to represent environments
using nodes and vertices, relying solely on visual information. Our findings suggest that in expan-
sive gaming environments like ShooterGame, graph construction is prone to failure and necessitates
meticulous hyperparameter tuning (refer to B.4). Moreover, the nodes in VGM often encompass
only a minor section of the large-scale map, hindering the algorithm from utilizing prior map infor-
mation to facilitate new navigation tasks.
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(a) Too sparse (th = 0.75) (b) Too sparse (th = 0.85) (c) Too dense (th = 1.25)

Figure 5: Illustration of failed VGM node construction under varying parameters.

Furthermore, VGM nodes often only cover a minor section of the large-scale map, which prevents
the algorithm from leveraging prior map information to guide new navigation tasks.

E.4 Ablation study

In this section, we explore the auxiliary tasks’ contribution to representation learning and the sub-
sequent enhancement of IG-Net’s navigation capabilities. The results are detailed in Table 5. It
is evident that the absence of various auxiliary tasks leads to performance degradation to varying
degrees. The IG-Net (no aux) variant, lacking all auxiliary losses, exhibits the most considerable
performance decline. These results conclusively show that the designed auxiliary tasks significantly
enrich IG-Net’s representation and, consequently, elevate its navigation performance.

Difficulty 1500 < D < 4000 4000 < D < 8000 D > 8000
Metric SR SPL DDR SR SPL DDR SR SPL DDR

IG-Net 0.54 0.24 0.75 0.26 0.17 0.65 0.24 0.15 0.75
IG-Net (no position) 0.30 0.14 0.43 0.28 0.14 0.59 0.12 0.07 0.55

IG-Net (no path and dist) 0.38 0.17 0.58 0.26 0.14 0.62 0.30 0.20 0.66
IG-Net (no auxiliary) 0.18 0.09 0.36 0.14 0.08 0.42 0.00 0.00 0.44

Table 5: Ablation study on the impact of auxiliary losses.

F Dataset Details

F.1 Training Dataset

All training navigation trajectories are collected by human experts. There are a total of 200 tra-
jectories and each takes less than 2 minutes to collect. Human experts have prior experience with
the game environment and are given additional information such as goal location on the map and
distance to the goal to facilitate efficient collection. We here provide some descriptive details of the
dataset.

Stats Name Val

Num of Trajs 200
Total Nav Steps 10617
Avg Nav Steps 55.87
Max Traj Len 130
Min Traj Len 9

Avg D0 to Goal 5800
Max D0 to Goal 13386
Min D0 to Goal 809
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F.2 Evaluation Dataset

Evaluation are carried out in 3 difficulties: easy, medium, and hard distinguished by the initial Eu-
clidean distance to goal D0. The specific ranges are: 1500 < Deasy

0 < 4000, 4000 < Dmedium
0 <

8000, and 8000 < Dhard
0 . Notice success is marked by the agent’s Euclidean distance to the goal is

within 800. We here provide some descriptive details of the dataset

Stats Name Easy Medium Hard

Avg D0 2673 5888 9404
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