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Abstract
In this work, we present a human-centric scene transformer to predict human
future trajectories from input features including human positions, and 3D skeletal
keypoints from onboard in-the-wild robot sensory information. The resulting
model captures the inherent uncertainty for future human trajectory prediction
and achieves state-of-the-art performance on common prediction benchmarks
and a human tracking dataset captured from a mobile robot. Furthermore, we
identify agents with limited historical data as a major contributor to error where
our approach leverages multi-modal data to provide a error reduction of up-to 11%.
For links to an extended paper, data and code: human-scene-transformer.github.io

1 Introduction
We present the Human Scene Transformer (HST) which leverages different feature streams: Historic
positions of each human, vision-based features such as skeletal keypoints or head orientation when
available. We specifically focus on demonstrating the usefulness of noisy in-the-wild human skeletal
information from a 3D human pose estimator. While prior Transformer prediction architectures Ngiam
et al. [2022] implicitly model interactions between humans at individual timesteps using single-axis
attention, we allow for attention between humans at differing time — historic actions can directly
influence another humans position at later time — by offering a simple alignment mechanism. As
such our contribution is threefold: (I) To the best of our knowledge, we are the first to demonstrate
that detailed human 3D vision-based features improve predictions in a human-centric service robot
context notwithstanding imperfect in-the-wild data. (II) We present a prediction architecture (HST),
which flexibly processes and includes detailed vision-based human features such as skeletal keypoints
and head orientation. (III) We evaluate the system’s capabilities on a dataset recorded from a service
robot’s sensors and re-purposed for the prediction task.

2 Related Work
Prior works in trajectory prediction commonly target the autonomous driving use-case Sun et al.
[2021], Salzmann et al. [2020], Ngiam et al. [2022], Nayakanti et al. [2022], Yuan et al. [2021],
Czech et al. [2022], Kooij et al. [2019] and rely on GANs Gupta et al. [2018], Sadeghian et al. [2019]
or CVAEs Mangalam et al. [2020], Ivanovic et al. [2020], Salzmann et al. [2020], Ivanovic and
Pavone [2019], Ivanovic et al. [2018], this work follows the recent trend towards Transformers Ngiam
et al. [2022], Yuan et al. [2021], Nayakanti et al. [2022] as they naturally lend themselves to the
set-to-set prediction problems such as multi-agent trajectory prediction and are invariant to a varying
number of agents. Another related area is human pose forecasting in 3D Corona et al. [2020], Yuan
and Kitani [2020], Zhang et al. [2021], Mao et al. [2020], Salzmann et al. [2022]. However, these
approaches commonly consider a single human motion relying on ground truth pose information from
a motion capture system, while we target multi-human in-the-wild scenarios.Prior works combine
pose estimation with trajectory prediction, but operate on motion capture datasets which do not exhibit
diverse positional movement of the human Kuderer et al. [2012], Corona et al. [2020], Mahdavian
et al. [2022], Schreiter et al. [2022] or are limited to prediction in 2D image space Yagi et al. [2018],
Chen et al. [2020], Czech et al. [2022]. For robotic navigation, we instead solely rely on onboard
sensor information of a robotic platform and predict in the metric frame rather than in image space.
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Figure 1: HST architecture. From the
robot’s sensors we extract the scene con-
text, the agent tracks, and skeletal key-
points/head orientation when feasible. All
features are encoded individually before
the agent features are combined via cross-
attention (XA) using a learned query tensor.
The resulting hidden vector passes to our
Agent Self-Alignment layer which enables
the use of subsequent full self-attention
(FSA) layers. Embedded scene context is
attended to via cross-attention (XA). After
multimodality is induced and further FSA
layers the model outputs the parameters
of a Normal distribution for each agent at
each prediction timestep. We can repre-
sent the full output structure as a Gaussian
Mixture Model over all possible futures.

3 Human Scene Transformer

3.1 Model Inputs: Incorporating Vision-based Features

We process the robot’s observations at each timestep O(t), . . . , O(t −H) into agent features and
scene context (Figure 1 - blue box). Scene context can be an occupancy grid or a LiDAR point
cloud at the current timestep, containing information common to nearby agents (e.g. static obstacles).
Agent features include the centroid position and vision-based features: skeletal keypoints, and head
orientation for each agent. For each detected N nearby humans (equivalent agents) in the scene, we
project the 3D bounding box into the 360 degree image using ex- and intrinsic camera calibrations.
This results in an associated image patch for all agents. To produce 3D keypoints, we apply the
work of Grishchenko et al. Grishchenko et al. [2022] to estimate 3D keypoints from images using a
pre-trained model.

3.2 Model Architecture

Transformer Layer. The primary building block of the model’s architecture is the Transformer
layer (Figure 1 - top right), which itself is comprised of a Multi-Head Attention layer Vaswani
et al. [2017] and multiple dense and normalization layers. For a comprehensive explanation on the
self-attention (SA) and cross-attention (XA) mechanisms and their inputs we refer the reader to
Vaswani et al. Vaswani et al. [2017].

Input Embedding. The input agent features (blue) are tensors of shape [N,T, d], where d = 2
for the x-y centroid position, d = 99 for the x-y-z position of 33 skeletal keypoints, and d = 1
for the head orientation. We mask all future as well as unobserved agent timesteps by setting their
feature value to 0, making only available historical and current information, common technique
in missing-data problems Vaswani et al. [2017], Ngiam et al. [2022], Yuan et al. [2021]. Masking
exploits the inductive bias inherent in the prediction problem, which allows for the filling of missing
information using available context in vicinity of the gaps. As such, our approach allows for missing
keypoints in frames due to bad lighting or other influences as the Transformer effectively “fills” in
for the missing information. The agent features are encoded independently and are combined by a
learned attention query. This masked attention mechanism offers scalability to systems with large
number of features with limited availability.

Full Self-Attention Via Agent Self-Alignment. Previous methods Ngiam et al. [2022] rely on
factorized attention, where information is alternately propagated along the time and along the agent
dimension. In social interactions, however, a change in action such as adjustment in walking direction
does not have an immediate influence on other humans in proximity but rather influences their future.
Following this illustration, an agent’s latent representation at a given timestep in our Transformer
architecture should be able to attend not just to other agents at the current timestep (factorized
attention) but to all agents at all timesteps. This operation, which we name full self-attention (FSA),
can propagate the same information flow across both agents and time with a single operation leading
to improved performance and a smaller model.
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Table 1: Comparison against Scene Transformer on JRDB prediction dataset. HST outperforms the original
Scene Transformer on all metrics.

Model Configuration minADE MLADE NLL

Scene Transformer Ngiam et al. [2022] 0.53 0.86 0.25

Full Self-Attention Interaction Attention
HST 7 7 0.57 0.93 0.89
HST 7 3 0.50 0.84 −0.02
HST 3 3 0.48 0.80 −0.13

Multimodality Induction. Our architecture can predict multiple consistent futures (modes) for a
scene. To do so, the Multimodality Induction module repeats the hidden vectors by the number of
future modes (M ), resulting in a tensor of shape [N,T,M, h]. To discriminate between modes it is
combined with a learned mode-identifier tensor of shape [1, 1,M, h]. Each future’s logit probability
wm; m ∈ 1, . . . ,M is inferred by having the mode-identifier attend to the repeated input.

Prediction Head. The hidden vectors updated with the learned mode-identifier go through L
Transformer layers, again with full self-attention, before predicting per mode parameters µ, σ using a
dense layer as prediction head.

3.3 Producing Multimodal Trajectory Distributions

Combining µ and σ with the mode likelihoods wm from the multimodality induction, the distribution
of the i-th agent’s position at each timestep t is modeled as a Gaussian Mixture Model (GMM):

P iθ(xt|O(t), ..., O(t−H)) =

M∑
m=1

wmN (x;σm,i,t, µm,i,t), (1)

where m is the m-th future mode.

We adopt a joint future loss function, that is, the cumulative negative log-likelihood of the Gaussian
mode (m∗) with the smallest mean negative log-likelihood using the ground-truth agent position. The
resulting prediction represents M possible realizations of all agents at once in a consistent manner,
where the mode mixture weights w are shared by all agents in the scene.

4 Experiments

Datasets. A dataset which is recorded in diverse human-centric environments using sensors on a
mobile robotic platform is the JackRabbot Dataset and Benchmark (JRDB) Martin-Martin et al.
[2021]. To make the data suitable for a prediction task, we first extract the robot motion from the
raw sensor data to account for the robot’s movement over time. Tracks are generated for both train
and test split using the JRMOT Shenoi et al. [2020] detector and tracker. The ground truth labeled
bounding-boxes on the train set were disregarded as they were exposed to filtering during the labeling
process to the point where the smoothness eases the prediction task. We were able to increase the
number human tracks for training by associating the JRMOT detections to ground truth track labels
via Hungarian matching, while on the test split we solely use JRMOT predictions. Due to factors
such as distance, lighting and occlusion the pre-trained 3D pose estimator model (Section 3) is
not guaranteed to produce keypoints for all agents at all timesteps. We observed human keypoints
information in ∼ 50% of all timesteps for all agents.

Trajectory Prediction in Human-centric Environments. In Table 1 we show quantitative results
of HST’s predictions in the human-centric environment. We show that in crowded human-centric
environments the influence of interaction between humans has large benefits on the prediction
accuracy of each individual. To show this, we compare against a version of our model which is
trained to predict a single human at a time ignoring interactions with other agents. Subsequently,
adding our full self-attention via self-alignment mechanism additionally increases the model’s ability
to capture interactions across time, leading to improvements across all metrics.

Vision-based Features. We consider the adversarial setting, where the robot encounters a human
unexpectedly, i.e., the robot observes a new human with little historical observations. We note that
prediction architectures solely relying on historic position information struggle in scenarios where
no or only a limited amount of history of the human position is available to the model. Specifically,
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(a) First detection when entering the scene. (b) Prediction with keypoints. (c) Prediction without keypoints.

Figure 2: A new human agent entering the scene through the door on the right as viewed in (a). For both (b) and
(c) the HST model does not have any historic information here and only has access to the current frame. The
plot of future trajectory distributions in (b) and (c) show the effect of using and not using skeletal keypoints
(respectively) as input in that single frame. Without pose keypoints the HST model predicts the agent to be
most-likely stationary while, with keypoints as input, it can reason that the human is moving and correctly
anticipates the direction. Blue dot is the detected human at the initial frame, orange dots are most likely mode
predictions with corresponding distribution shown in blue shading, green dots are the ground truth human future.

at the first instance of human detection, experimentally the error is up to 200% higher compared to
full historic information over 2 s. Given the specifics of our targeted human-centric environment,
where we are mostly interested in humans close to the robot, we are likely able to extract vision-based
features for the human in addition to the position. Specifically, we target the research question: “Can
information from human visual features lead to improved prediction accuracy?”

Before answering this question quantitatively we show a clarifying visual example in Figure 2 where
a human just entered the scene through a door and is first detected. When solely relying on historic
position information the most likely prediction by the model is stationary. However, when we employ
the pre-trained skeleton keypoints estimator to provide pose keypoints as additional input to our
model it correctly recognizes the human’s walking motion and how the human is oriented, accurately
predicting the most likely future trajectory.

Quantitatively, during evaluation, when keypoints are available on the first detection we observe
a substantial prediction improvement of up to 11% . When additional timesteps with position
information are available the improvement using keypoints vs not using keypoints averages between
5% and 10%. The relative improvement generally increases with the number of timesteps with
keypoints in the history and decreases with the number of historic position information.

5 Conclusion

While concepts originally designed for trajectory prediction in autonomous driving are generally
transferable to the domain of human-centric service robot environments, they suffer in challenging
settings where the history of a human is limited. Specifically in these situations we demonstrate how
the HST can leverage vision-based features to improve prediction accuracy. Beyond scenarios such
as when robot and human encounter each other in blind corners, general improvement trends using
in-the-wild skeletal pose detections were also observed with more observations. Our architecture
finds state-of-the-art prediction results on a common pedestrian prediction dataset and improves
upon existing autonomous driving prediction models in the domain of human-centric service robot
environments.
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