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Abstract

Most recent work in visual goal-oriented navigation resorts to large-scale machine
learning in simulated environments. The main challenge lies in learning compact
map-like representations that generalize to unseen environments and high-capacity
perception modules capable of reasoning on high-dimensional input. The latter is
particularly difficult when the goal is given as an exemplar image (Image Goal),
as the perception module needs to learn a comparison strategy requiring to solve
an underlying visual correspondence problem. This has been shown to be difficult
from reward alone or with standard auxiliary tasks. We address this problem
using two pretext tasks, which serve as a prior for what we argue is one of the
main bottleneck in perception: wide-baseline relative pose estimation and visibility
prediction in complex scenes. Our first pretext task, cross-view completion, is a
proxy for the underlying visual correspondence problem, while the second task
addresses goal detection and localization directly. We propose a new dual encoder
making use of a binocular ViT model. Experiments show significant improvements
on Image Goal navigation performance.

1 Introduction
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Figure 1: Navigation requires detect-
ing navigable space, exits, and the goal.
The correspondence solutions required
by pose estimation emerge from pre-
training.

Visual goal-oriented navigation (ImageNav) is usually ad-
dressed through large-scale training in simulation. While
decision taking has not yet been solved either, recent re-
search provides evidence that perception faces major chal-
lenges: learning representations required for planning,
extracting 3D information without reliable depth measure-
ments, and generalizing to unseen environments.

As shown on Figure 1, the perception module of the agent
needs to learn several skills, including the detection of
obstacles, navigable areas, exits, and goals. The detec-
tion of visual goals given by exemplar requires to solve
a partial matching task, which in essence is a classical
wide-baseline visual correspondence problem, at the heart
of many methods in visual localization and relative pose
estimation [11, 22, 23]. However, in navigation, robot
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Figure 2: Two pretext tasks: ➀ CROss-view COmpletion [26], and ➁ Relative Pose Estimation with
Visibility. They are learned by a binocular ViT b which is then combined with a monocular encoder m
taking only observations, forming the dual encoder DEBiT. The combined embeddings are provided
to a recurrent policy π, maintaining memory ht and predicting actions at. Monocular encoder m and
policy are trained with RL ➂, the high-capacity model b is frozen, except for –optional– adapters.

perception is often addressed through scene reconstruction, eg. with SLAM [3, 15, 25] or end-to-end
reinforcement [12, 30] or imitation [8] learning of a visual encoder. The former delegates goal
detection to an external component. The latter attempts to solve the problem implicitly without direct
supervision, through weak learning signals.

We propose a new method to address ImageNav through end-to-end training which takes advantage
of CROss-view COmpletion [26] (CroCo), a powerful unsupervised pre-training for low-level scene
understanding, followed by wide-baseline Relative Pose Estimation with Visibility (RPEV). We show
that the underlying correspondence problem solved by CroCo, and the representations learned for
RPEV are particularly relevant to the ImageNav task. We obtain SotA performance on two standard
benchmarks of ImageNav and Instance-ImageNav tasks.

2 Learning perception for Visual goal-oriented navigation

In the ImageNav task, an agent is asked to navigate in an unknown scene to a goal only
described as a randomly-oriented view x∗ ∈ Ωrgb = [0, 255]3×112×112, taken from an un-
known target location (Figure 1). The agent observes the scene through a RGB camera
providing at each time-step t a single image xt ∈ Ωrgb, and selects actions at ∈ A =
{STOP, FORWARD 25cm, TURN LEFT 10◦, TURN RIGHT 10◦}. Navigation is successful if the agent
calls STOP within 1m (geodesic) of the goal location.

Instance-ImageNav differs in the fact that goal views x∗ ∈ Ωgoal now target specific objects, and are
taken from a different camera (eg. field of view, resolution, tilt, height). It also allows the agent to tilt
its camera up and down using two new actions.

Our objective is to learn a perception module to predict a latent representation from an observation
and goal. We conjecture that this requires the following three perception skills: (S1) Low-level
geometric perception (eg. nav. area, exits, . . . ); (S2) Perception of semantic categories (eg. floor,
walls, . . . ); (S3) Specific object detection and localization (goal).

In end-to-end approaches, these skills have been traditionally learned directly from reward or with
expert demonstrations, potentially supported by auxiliary tasks [7, 6, 20, 16]. We propose a dual
visual encoder combined with two phases of pre-training. Dubbed “DEBiT” for Dual Encoder
Binocular Transformer, it consists in a binocular ViT model b(xt,x

∗), which targets skill (S3), goal
detection and localization, and a monocular model m(xt), implemented as a half-width ResNet18
(hwRN18) which targets skills (S1) and (S2) not related to the goal x∗ — see Figure 1. The two
encoders produce embeddings ebt and emt , respectively, which are integrated into a recurrent policy:

⟨at,ht⟩ = π(ebt , e
m
t , emb(at−1),ht−1) (1)

Training the large-capacity binocular encoder b entirely from scratch through reward in navigation is
difficult. This weak learning signal cannot handle the underlying geometric correspondence problem.
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Training perception separately through losses highly correlated to the perception skills we identified
above, in particular (S3), proved to be a key design choice — see Figure 2.

2.1 CROss-view COmpletion

Introduced in [26], CroCo is a method inspired by masked image modeling [10], extended to a
binocular configuration. It learns to capture low-level geometry cues to extract information from one
input image x∗ guided by a loss on reconstruction P̂ of masked patches P̄ ⊂ P in a second image
xt =

⋃P taken from a slightly different point of view:

P̂ = d(g(b(P\P̄,x∗))) (2)

lcroco =
∑

p̂,p∈P̂,P̄

mse(p̂,p) (3)

where b is the binocular encoder we want to pre-train, g is a patch-wise linear projection, and d is a
deconvolution head reconstructing patches from embeddings.

2.2 Relative Pose Estimation with Visibility

Once the binocular encoder b has been pre-trained by CroCo, we finetune it on a second pretext
task: Relative Pose Estimation with Visibility (RPEV). Given a pair of images ⟨xt,x

∗⟩, the network
needs to predict the position t ∈ R3, rotation R ∈ SO(3) of the goal relative to the observation. In
addition, we make the network predict an additional scalar called visibility v ∈ [0, 1] representing the
fraction of goal pixels visible from current observation. We use this visibility metric as a threshold on
the translation and rotation loss to ensure feasibility of the prediction, but also learn a very relevant
signal for goal detection during navigation:

⟨̂t, R̂, v̂⟩ = f(g(b(xt,x
∗))) (4)

lrpev = |v̂ − v|+ 1v>τ (|̂t− t|+ |R̂−R|) (5)

where f is a prediction head, implemented as three MLPs, 1 is the indicator function, and τ = 0.2 is
a parametrizable threshold to toggle relative pose supervision.

We collect our own synthetic dataset of image pairs annotated with ground truth relative pose and
visibility in simulated scenes from the MP3D [2], Gibson [27] and HM3D [21] datasets. We control
for the distribution of geodesic distances between observations and goal by uniformly sampling
observations along the path from start to goal locations among 4 categories: “in reach” d ≤ 1m, “very
close” d ≤ 1.5m, “close” d ≤ 2m, “approaching” d ≤ 4m, and “far” d > 4m.

2.3 Navigation

We train the parameters of the recurrent policy π and the monocular encoder m jointly from scratch
with PPO [24] with a reward definition in the lines of the one proposed by [4] for PointGoal:

rt = 10 · 1success − 1 ·∆d− 0.01 (6)

where a large sparse reward is granted on success, agent is densely guided to reduce geodesic distance
to goal d, and a small slack cost encourages shorter path.

The backbone of the binocular encoder b is kept frozen from the RPEV pre-training. Optionally, we
augment it with small adapter layers [5] which are trained with RL, alongside m and π.

3 Experimental results

3.1 Experimental setup

We evaluate DEBiT on the standard validation episodes for both ImageNav [19] and Instance-
ImageNav [13] tasks. We train our models for 200M steps on a single A100 GPU. RPE is evaluated
over the pairs with visibility > τ as percent of correct predictions for a given tolerance. Visibility is
evaluated over all pairs in the same way. Finally for navigation, we report both Success Rate (SR)
and Success weighted by Path Length (SPL) [1].
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3.2 Impact of our pre-training strategy

Table 1: Impact of pre-training (100M nav. steps)
Variant Pre-train % corr. poses Vis-acc ImageNav

CroCo RPEV 1m&10° 2m&20° 5% SR SPL

DEBiT-L ✗ ✗ n/a n/a n/a 7.0 4.4
DEBiT-L ✓ ✗ n/a n/a n/a 60.2 33.1
DEBiT-L ✗ ✓ 40.1 66.7 58.3 11.8 9.9
DEBiT-L ✓ ✓ 97.5 98.9 94.0 82.0 54.8
DEBiT-B ✗ ✗ n/a n/a n/a 6.8 4.0
DEBiT-B ✓ ✗ n/a n/a n/a 65.7 37.3
DEBiT-B ✗ ✓ 39.7 66.4 58.8 23.6 17.4
DEBiT-B ✓ ✓ 92.5 96.8 89.3 81.2 53.0

Table 1 gives RPEV and ImageNav results after
100M steps of PPO training comparing different
pre-training strategies for two variants of DEBiT,
DEBiT-L (130M params) and DEBIT-B (66M
params). Directly training the binocular encoder
b from scratch did not lead to exploitable re-
sults, reward as a learning signal is too weak.
CroCo pre-training is essential, directly training
on RPEV led to low performance, but it is not
optimal, and RPEV adds a significant boost to
the gain provided by self-supervision alone.

3.3 Comparison with prior work

Table 2: Comparison with SotA
Task Method #steps SR(%) SPL(%)

Siam. hwRN18 180M 10.1 9.6
Siam. hwRN18 2 500M - 8.01
Mem. Aug. [19]3 500M - 9.01
ZSEL [9] 500M 29.21 21.61

ZSON [18] 500M 36.91 28.01

VC1-ViT-L [17] 500M 81.61 -
OVRL [28] 500M 54.21 27.01

OVRL-v2 [29] 500M 82.01 58.71

Ours (DEBiT-B) 200M 83.0 55.6
Ours (DEBiT-L) 200M 82.0 59.6

Im
ag

eN
av

Ours (adapted DEBiT-L) 200M 94.0 71.7
IIN RL base[13] 3500M 5.51 2.31
Mod-IIN[14] n/a 56.11 23.31

Ours (adapted DEBiT-L) - max 200M 61.1 33.5

In
st

an
ce

Im
ag

eN
av

Ours (adapted DEBiT-L) - avg 200M 59.3 32.4
1Perf. from orig. papers 2Mono-view ablation of baseline in Table III of [19]
3Retrained in mono-view settings, see Table I of [9]

Table 2 compares the proposed model with
prior work. DEBiT largely outperforms the
competing methods, including ones based on
large-capacity ViTs like VC1 [17] and OVRL-
v2 [29]. Both have been pre-trained with monoc-
ular masked image encoding, but perform late
fusion of observation and goal, which does not
ease learning geometric comparisons.

We also compare with the state-of-the-art in the
Instance-ImageNav task. As both pre-training
phases have been conducted in ImageNav set-
tings, adapting DEBiT was a key design choice.
Without adapters performance was actually un-
exploitable. We outperform the current SotA
method Mod-IIN[14] and show that this task
can also be addressed without feature matching.

For ImageNav, adding adapters to DEBiT also brings large improvements. We conjecture, that the
adapters allow to pass richer information to the policy π through ebt from the otherwise entirely frozen
binocular encoder b of DEBiT.

3.4 Emergence of correspondences

Figure 3: Correspondences emerging from last cross-attention activations in decoder
In Figure 3, we visualize top-k attention over patches, averaged over heads, in the last cross-attention
layer of a DEBiT-L model. This gives qualitative results on the relevance of our pre-training strategy
for goal detection and localization during navigation. Correspondence solutions naturally emerge
without explicit supervision. A video available at this link also shows how the visibility prediction
seems to be correlated with the exploration/navigation policy of the agent.

4 Conclusion

Our proposed method enables training a perception module consisting in our dual visual encoder
DEBiT. It decomposes the problem into three training phases: two pretext tasks, CroCo and our
RPEV, that enable us to address the challenging ImageNav and Instance-ImageNav tasks, through
end-to-end reinforcement learning. We establish new state-of-the-art results on both tasks. We show
that this makes solutions of correspondence problem emerge without explicit supervision.
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