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Abstract

Reinforcement learning research obtained significant success and attention with
the utilization of deep neural networks to solve problems in high dimensional state
or action spaces. While deep reinforcement learning policies are currently being
deployed in many different fields from medical applications to self driving vehicles,
there are still ongoing questions the field is trying to answer on the generalization
capabilities of deep reinforcement learning policies. In this paper, we will go over
the fundamental reasons why deep reinforcement learning policies encounter over-
fitting problems that limit their generalization capabilities. Furthermore, we will
formalize and unify the diverse solution approaches to increase generalization, and
overcome overfitting in deep reinforcement learning policies. We believe our study
can provide a compact systematic unified analysis for the current advancements in
deep reinforcement learning, and help to construct robust deep neural policies with
improved generalization abilities.

1 Introduction

The performance of reinforcement learning algorithms has been boosted with the utilization of deep
neural networks as function approximators (Mnih et al., 2015). Currently, it is possible to learn
deep reinforcement learning policies that can operate in large state and/or action space MDPs. This
progress consequently resulted in building reasonable deep reinforcement learning policies that
can play computer games with high dimensional state representations (e.g. Atari, StarCraft), solve
complex robotics control tasks, design algorithms (Mankowitz et al., 2023; Fawzi et al., 2022), and
play some of the most complicated board games (e.g. Chess, Go) (Schrittwieser et al., 2020). However,
deep reinforcement learning algorithms also experience several problems caused by their overall
generalization capabilities. Some studies demonstrated these problems via adversarial perturbations
introduced to the state observations of the policy (Huang et al., 2017; Kos & Song, 2017; Korkmaz,
2022), several focused on exploring the fundamental issues with function approximation, estimation
biases in the state-action value function (Hasselt et al., 2016), or with new architectural design ideas
(Wang et al., 2016).

The fact that we are not able to explore the whole MDP for high dimensional state representation
MDPs, even with deep neural networks as function approximators, is one of the root problems
that limits generalization. On top this, some portion of the problems are directly caused by the
utilization of deep neural networks and thereby the intrinsic problems inherited from their utilization
(Goodfellow et al., 2015; Szegedy et al., 2014).

In this paper we will focus on generalization in deep reinforcement learning and underlying causes
of the limitations deep reinforcement learning research currently faces. In particular, we will try to
answer the following questions:

• What is the role of exploration in overfitting for deep reinforcement learning?
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• What are the causes of overestimation bias observed in state-action value functions?

• What has been done to overcome the overfitting problems that deep reinforcement learning
algorithms have encountered so far?

• What future directions are there for reinforcement learning research to obtain higher level
generalization abilities for deep neural policies?

To answer these questions we go through research from several subfields on overfitting and general-
ization in reinforcement learning. We introduce a categorization of the different methods used to both
achieve and test generalization, and use it to systematically summarize and consolidate the current
body of research. We further describe the issue of value function overestimation, and the role of
exploration in overfitting in reinforcement learning. Furthermore, we explain new emerging research
areas that can potentially target these questions in the long run including meta-reinforcement learning
and lifelong learning. We hope that our paper can provide a compact overview and unification of the
current advancements and limitations in the field.

2 Preliminaries on Deep Reinforcement Learning

The aim in deep reinforcement learning is to learn a policy via interacting with an environment in
a Markov Decision Process (MDP) that maximize expected cumulative discounted rewards. An
MDP is represented by a tuple M = (S,A, P, r, ρ0, γ), where S represents the state space, A
represents the action space, r : S × A → R is a reward function, P : S × A → ∆(S) is a
transition probability kernel, ρ0 represents the initial state distribution, γ represents the discount
factor. The objective in reinforcement learning is to learn a policy π : S → ∆(A) which maps
states to probability distributions on actions in order to maximize the expected cumulative reward
R = E

∑T−1
t=0 γtr(st, at) where at ∼ π(st), st+1 ∼ P(st, at). In Q-learning the goal is to learn the

optimal state-action value function (Watkins, 1989)

Q∗(s, a) = R(s, a) +
∑
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′). (1)

This is achieved via iterative Bellman update which updates Q(st, at) by

Q(st, at) + α[Rt+1 + γmax
a

Q(st+1, a)−Q(st, at)].

Thus, the optimal policy is determined by choosing the action a∗(s) = arg maxaQ(s, a) in state s.
In high dimensional state space or action space MDPs the optimal policy is decided via a function-
approximated state-action value function represented by a deep neural network. In a parallel line of
algorithm families the policy itself is directly parametrized by πθ, and the gradient estimator used in
learning is

g = Et
[
∇θ log πθ(st, at)(Q(st, at)−max

a
Q(st, a))

]
where Q(st, at) refers to the state-action value function at timestep t.

3 How to Achieve Generalization?

To be able to categorize different paths to achieve generalization first we will provide a definition
meant to capture the behavior of a generic reinforcement learning algorithm.

Definition 3.1. A reinforcement learning training algorithm A learns a policy π by interacting with
an MDPM. We divide up the execution of A into discrete time steps as follows. At each time t, the
algorithm chooses a state st, takes an action at, observes a transition to state s′t with corresponding
reward rt = r(st, at, s

′
t). We define the history of algorithm A in MDP M to be the sequence

Ht = (s0, a0, s
′
0, r0), . . . (st, at, s

′
t, rt) of all the transitions observed by the algorithm so far. We

require that state and action (st, at) chosen at time t are a function only of Ht−1, i.e the transitions
observed so far by A. At time t = T , the algorithm stops and outputs a policy π.
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Intuitively, a reinforcement learning algorithm performs a sequence of queries (st, at) to the MDP, and
observes the resulting state transitions and rewards. In order to be as generic as possible, the definition
makes no assumptions about how the algorithm chooses the sequence of queries. Notably, if taking
action at in state st leads to a transition to state s′t, there is no requirement that st+1 = s′t. Indeed,
the only assumption is that (st+1, at+1) depends only on Ht, the history of transitions observed so
far. This allows the definition to capture deep reinforcement learning algorithms, which may choose
to query states and actions in a complex way based on previously observed state transitions. Based on
this definition of generic reinforcement learning algorithm, we will now further define the different
techniques proposed to achieve generalization.
Definition 3.2. Let A be a training algorithm that takes as input an MDP and outputs a policy. Given
an MDPM = (S,A, P, r, ρ0, γ), a rewards transforming generalization method GR is given by a
sequence of functions Ft : (S×A×S×R)t → R. The method attempts to achieve generalization by
running A on MDPM, but modifying the rewards at each time t to be r̃t(st, at, s′t) = Ft−1(Ht−1),
where Ht−1 is the history of algorithm A when running with the perturbed rewards.

In summary, a rewards transforming generalization methods simply runs the original algorithm, but
modifies the observed rewards. Similarly, we define two additional generalization methods which run
the original algorithm while modifying states and transition probabilities respectively.
Definition 3.3. Let A be a training algorithm that takes as input an MDP and outputs a policy.
Given an MDPM = (S,A, P, r, ρ0, γ), a state transforming generalization method GS is given by a
sequence of functions Ft : (S×A×S×R)t×S → S. The method attempts to achieve generalization
by running A on MDP M, but modifying the state chosen at time t to be s̃t = Ft−1(Ht−1, st),
where Ht−1 is the history of algorithm A when running with the perturbed states.
Definition 3.4. Let A be a training algorithm that takes as input an MDP and outputs a policy. Given
an MDPM = (S,A, P, r, ρ0, γ), a transition probability transforming generalization method GP is
given by a sequence of functions Ft : (S ×A× S ×R)t × (S ×A× S)→ R. The method attempts
to achieve generalization by running A on MDPM, but modifying the transition probabilities at
time t to be P̃ (st, at, s

′
t) = Ft−1(Ht−1, st, at, s

′
t), where Ht−1 is the history of algorithm A when

running with the perturbed transition probabilities.

The last type of generalization method we define is based on directly modifying the way in which the
training algorithm chooses the state and action pair for the next time step. While this definition is
broad enough to capture very complex changes to the training algorithm, in practice the choice of
modification generally has a simple description.
Definition 3.5. Let A be a training algorithm that takes as input an MDP and outputs a policy.
Given an MDPM = (S,A, P, r, ρ0, γ), a policy transforming generalization method Gπ is given
by a sequence of functions Ft : (S × A × S × R)t → S × A. The method attempts to achieve
generalization by runningA on MDPM, but modifying the policy by whichA chooses the next state
and action to be (s̃t, ãt) = Ft−1(Ht−1), where Ht−1 is the history of algorithm A when running
with the perturbed policy.

All the definitions so far categorize methods to modify training algorithms in order to achieve
generalization. However, many such methods for modifying training algorithms have a corresponding
method which can be used to test the generalization capabilities of a trained policy. Our final definition
captures this correspondence.
Definition 3.6. Let π̂ be a trained policy for an MDP M. Let Ft be a sequence of functions
corresponding to a generalization method from one of the previous definitions. The generalization
testing method of Ft is given by executing the policy π̂ inM, but in each time step applying the
modification Ft where the history Ht is given by the transitions executed by π̂ so far. When both
a generalization method and a generalization testing method are used concurrently, we will use
subscripts to denote the generalization method and superscripts to denote the testing method. For
instance, GπS corresponds to training with a state transforming method, and testing with a policy
transforming method.

4 Roots of Overestimation in Deep Reinforcement Learning

Many reinforcement learning algorithms compute estimates for the state-action values in an MDP.
Because these estimates are usually based on a stochastic interaction with the MDP, computing
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Table 1: Environment and algorithm details for different exploration strategies for generalization.
Citation Proposed Method Environment Reinforcement Learning Algorithm

Bellemare et al. (2016) Count-based ALE A3C and DQN
Osband et al. (2016b) RLSVI Tetris Tabular Q-learning
Osband et al. (2016a) Bootstrapped DQN ALE DQN
Houthooft et al. (2017) VIME DeepMind Control Suite TRPO
Fortunato et al. (2018) NoisyNet ALE A3C and DQN
Lee et al. (2021) SUNRISE DCS1and Atari Soft Actor-Critic and Rainbow DQN

accurate estimates that correctly generalize to further interactions is one of the most fundamental
tasks in reinforcement learning. A major challenge in this area has been the tendency of many classes
of reinforcement learning algorithms to consistently overestimate state-action values. Initially the
overestimation bias for Q-learning is discussed and theoretically justified by Thrun & Schwartz
(1993) as a biproduct of using function approximators for state-action value estimates. Following this
initial discussion it has been shown that several parts of the deep reinforcement learning process can
cause overestimation bias. Learning overestimated state-action values can be caused by statistical
bias of utilizing a single max operator (van Hasselt, 2010), coupling between value function and the
optimal policy (Raileanu & Fergus, 2021; Cobbe et al., 2021), or caused by the accumulated function
approximation error (Boyan & Moore, 1994).

Several methods have been proposed to target overestimation bias for value iteration algorithms.
In particular, to solve this overestimation bias introduced by the max operator (van Hasselt, 2010)
proposed to utilize a double estimator for the state-action value estimates. Later, the authors also
created a version of this algorithm that can solve high dimensional state space problems (Hasselt et al.,
2016). Some of the work on this line of research targeting overestimation bias for value iteration
algorithms is based on simply averaging the state-action values with previously learned state-action
value estimates during training time (Anschel et al., 2017).

While overestimation bias was demonstrated to be a problem and discussed over a long period of
time (Thrun & Schwartz, 1993; van Hasselt, 2010), recent studies also further demonstrated that actor
critic algorithms also suffers from this issue (Fujimoto et al., 2018).

5 The Role of Exploration in Overfitting

The fundamental trade-off of exploration vs exploitation is the dilemma that the agent can try to take
actions to move towards more unexplored states by sacrificing the current immediate rewards. While
there is a significant body of studies on provably efficient exploration strategies the results from these
studies do not necessarily directly transfer to the high dimensional state or action MDPs. The most
prominent indication of this is that, even though it is possible to use deep neural networks as function
approximators for large state spaces, the agent will simply not be able to explore the full state space.
The fact that the agent is able to only explore a portion of the state space simply creates a bias in the
learnt value function (Baird, 1995).

In this section, we will go through several exploration strategies in deep reinforcement learning
and how they affect policy overfitting. A quite simple version of this is based on adding noise in
action selection during training e.g. ε-greedy exploration. Note that this is an example of a policy
transforming generalization method Gπ in Definition 3.5 in Section 3. Yet it has been proven that to
explore the state space these algorithms may take exponentially long (Kakade, 2003). Several others
focused on randomizing different components of the reinforcement learning training algorithms. In
particular, (Osband et al., 2016b) proposes the randomized least squared value iteration algorithm
to explore more efficiently in order to increase generalization in reinforcement learning for linearly
parametrized value functions. This is achieved by simply adding Gaussian noise as a function of
state visitation frequencies to the training dataset. Later, the authors also propose the bootstrapped
DQN algorithm (i.e. adding temporally correlated noise) to increase generalization with non-linear
function approximation (Osband et al., 2016a).

Houthooft et al. (2017) proposed an exploration technique centered around maximizing the informa-
tion gain on the agent’s belief of the environment dynamics. In practice, the authors use Bayesian
neural networks for effectively exploring high dimensional action space MDPs. Following this line of
work on increasing efficiency during exploration Fortunato et al. (2018) proposes to add parametric
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Table 2: Environment and algorithm details for data augmentation techniques for state observation
generalization. All of the studies in this section focuses on state transformation methods GS defined
in Section 3.

Citation Proposed Method Environment Reinforcement Learning Algorithm

Yarats et al. (2021) DrQ DeepMind Control Suite, ALE DQN
Laskin et al. (2020b) CuRL DeepMind Control Suite, ALE Soft Actor Critic and DQN
Laskin et al. (2020a) RAD DeepMind Control Suite, ProcGen Soft Actor Critic and PPO
Wang et al. (2020) Mixreg ProcGen DQN and PPO

noise to the deep reinforcement learning policy weights in high dimensional state MDPs. While
several methods focused on ensemble state-action value function learning (Osband et al., 2016a),
Lee et al. (2021) proposed reweighting target Q-values from an ensemble of policies (i.e. weighted
Bellman backups) combined with highest upper-confidence bound action selection. Another line of
research in exploration strategies focused on count-based methods that use the direct count of state
visitations. In this line of work, Bellemare et al. (2016) tried to lay out the relationship between count
based methods and intrinsic motivation, and used count-based methods for high dimensional state
MDPs (i.e. Arcade Learning Environment). Yet it is worthwhile to note that most of the current deep
reinforcement learning algorithms use very simple exploration techniques such as ε-greedy which
is based on taking the action maximizing the state-action value function with probability 1− ε and
taking a random action with probability ε (Mnih et al., 2015; Hasselt et al., 2016; Wang et al., 2016;
Hamrick et al., 2020; Kapturowski et al., 2023).

It is possible to argue that the fact that the deep reinforcement learning policy obtained higher score
with the same number of samples by a particular type of training method A compared to method B is
by itself evidence that the technique A leads to more generalized policies. Even though the agent is
trained and tested in the same environment, the explored states during training time are not exactly the
same states visited during test time. The fact that the policy trained with techniqueA obtains a higher
score at the end of episode is sole evidence that the agent trained with A was able to visit further
states in the MDP and thus succeed in them. Yet, throughout the paper we will discuss different
notions of generalization investigated in different subfields of reinforcement learning research. While
exploration vs exploitation stands out as one of the main problems in reinforcement learning policy
performance most of the work conducted in this section still is not able to obtain policies that perform
as well as those in the studies described in Section 6.

6 Regularization

In this section we will focus on different regularization techniques employed to increase generalization
in deep reinforcement learning policies. We will go through these works by categorizing under data
augmentation, adversarial training, and direct function regularization. Under each category we will
connect these different line of approaches to increase generalization in deep reinforcement learning
to the settings we defined in Section 3.

6.1 Data Augmentation

Several studies focus on diversifying the observations of the deep reinforcement learning policy to
increase generalization capabilities. A line of research in this regard focused on simply employing
versions of data augmentation techniques (Laskin et al., 2020a,b; Yarats et al., 2021) for high
dimensional state representation environments. In particular, these studies involve simple techniques
such as cropping, rotating or shifting the state observations during training time. While this line
of work got considerable attention, a quite recent study (Agarwal et al., 2021b) demonstrated that
when the number of random seeds is increased to one hundred the relative performance achieved and
reported in the original papers of (Laskin et al., 2020b; Yarats et al., 2021) on data augmentation
training in deep reinforcement learning decreases to a level that is significant to mention.

While some of the work on this line of research simply focuses on using a set of data augmentation
methods (Laskin et al., 2020a,b; Yarats et al., 2021), other work focuses on proposing new environ-
ments to train in (Cobbe et al., 2020). The studies on designing new environments to train deep
reinforcement learning policies basically aim to provide high variation in the observed environment
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Table 3: Environment and algorithm details for different direct function regularization strategies for
trying to overcome overfitting problems in reinforcement learning. Note that most of the methods
based on direct function regularization are a form of policy perturbation method Gπ to overcome
overfitting as described in Section 3.

Citation Proposed Method Environment Reinforcement Learning Algorithm

Igl et al. (2019) SNI and IBAC GridWorld and CoinRun Proximal Policy Optimization
Vieillard et al. (2020b) Munchausen RL Atari DQN and IQN
Lee et al. (2020) Network Randomization 2D CoinRun and 3D DeepMind Lab Proximal Policy Optimization
Amit et al. (2020) Discount Regularization GridWorld and Mujoco2 Twin Delayed DDPG (TD3)
Agarwal et al. (2021a) PSM DDMC and Rectangle Game3 DrQ
Liu et al. (2021) BN and dropout and L2/L1 Mujoco PPO, TRPO, SAC, A2C

such as changing background colors and changing object shapes in ways that are meaningful in the
game, in order to increase test time generalization.

Within this category some work focuses on producing more observations by simply blending in
(e.g. creating a mixture state from multiple different observations) several observations to increase
generalization (Wang et al., 2020). While most of the studies trying to increase generalization by
data augmentation techniques are primarily conducted in the DeepMind Control Suite or the Arcade
Learning Environment (ALE) (Bellemare et al., 2013), some small fraction of these studies (Wang
et al., 2020) are conducted in relatively recently designed training environments like ProcGen (Cobbe
et al., 2020). Cobbe et al. (2019) focuses on decoupling the training and testing set for reinforcement
learning via simply proposing a new game environment CoinRun.

6.2 Direct Function Regularization

While some of the work we have discussed so far focuses on regularizing the data (i.e. state
observations) as in Section 6.1, some focuses on directly regularizing the function learned with the
intention of simulating techniques from deep neural network regularization like batch normalization
and dropout (Igl et al., 2019). While some studies have attempted to simulate these known techniques
in reinforcement learning, some focus on directly applying them to overcome overfitting. In this
line of research, Liu et al. (2021) proposes to use known techniques from deep neural network
regularization to apply in continous control deep reinforcement learning training. In particular, these
techniques are batch normalization (BN) (Ioffe & Szegedy, 2015), weight clipping, dropout, entropy
and L2/L1 weight regularization.

Lee et al. (2020) proposes to utilize a random network to randomize the input observations to increase
generalization skills of deep reinforcement learning policies, and tests the proposal in 2D CoinRun
game proposed by Cobbe et al. (2019) and 3D DeepMind Lab. In particular, the authors basically
introduce a random convolutional layer to perturb the state observations. Hence, this study is also a
clear example of a state transformation generalization method GS described in Definition 3.3. While
this is another example of random state perturbation methods we will further explain in Section 6.3
the worst-case perturbation methods to target generalization in reinforcement learning policies.

Some work employs contrastive representation learning to learn deep reinforcement learning policies
from state observations that are close to each other (Agarwal et al., 2021a). The authors of this study
leverage the temporal aspect of reinforcement learning and propose a policy similarity metric. The
main goal of the paper is to lay out the sequential structure and utilize representation learning to learn
generalizable abstractions from state representations. One drawback of this study is that most of the
experimental study is conducted in a non-baseline environment (Rectangle game). Even though the
authors show surprising results for this particular game, it is not clear how the proposed method would
work for high dimensional state representation MDPs such as the Arcade Learning Environment.
Malik et al. (2021) studies query complexity of reinforcement learning policies that can generalize to
multiple environments. The authors of this study focus on an example of the transition probability
transformation setting GP in Definition 3.4, and the reward function transformation setting GR in
Definition 3.2.

2Low dimensional setting of Mujoco is used for this study.
3Rectangle game is a simple video game with only two actions, ”Right” and ”Jump”. The game has black

background and two rectangles where the goal of the game is to avoid white obstacles and reach to the right side
of the screen. Agarwal et al. (2021a) is the only paper we encountered experimenting with this particular game.
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Table 4: Environment and algorithm details for adversarial policy regularization and attack tech-
niques in deep reinforcement learning. Note that most of the methods based on adversarial policy
regularization are a form of state observation perturbation method GSS as described in Definition 3.6.

Citation Proposed Method Environment Reinforcement Learning Algorithm

Huang et al. (2017) FGSM ALE DQN, TRPO, A3C
Kos & Song (2017) FGSM ALE DQN and IQN
Lin et al. (2017) Strategically-Timed Attack ALE A3C and DQN
Gleave et al. (2020) Adversarial Policies Mujoco Proximal Policy Optimization
Huan et al. (2020) SA-DQN ALE and LMujoco

4 DDQN and PPO
Korkmaz (2021d) KMAP and HMAP ALE DDQN
Korkmaz (2022) Adversarial Framework ALE DDQN and A3C
Korkmaz (2023) Natural Attacks ALE DDQN and A3C
Korkmaz & Brown-Cohen (2023) Adversarial Detection ALE DDQN

Another line of study in direct function generalization investigates the relationship between reduced
discount factor and adding an `2-regularization term to the loss function (weight decay) (Amit
et al., 2020). The authors in this work demonstrate the explicit connection between reducing the
discount factor and adding an `2-regularizer to the value function for temporal difference learning. In
particular, this study demonstrates that adding an `2-regularization term to the loss function is equal
to training with a lower discount term, which the authors refer to as discount regularization. The
results of this study however are based on experiments from tabular reinforcement learning, and the
low dimensional setting of the Mujoco environment.

On the reward transformation for generalization setting GR defined in Definition 3.2, Vieillard et al.
(2020b) adds the scaled log policy to the current rewards. To overcome overfitting some work tries to
learn explicit or implicit similarity between the states to obtain a reasonable policy Lan et al. (2021).
In particular, the authors in this work try to unify the state space representations by providing a
taxonomy of metrics in reinforcement learning. Several studies proposed different ways to include
Kullback-Leibler (KL) divergence between the current policy and the pre-updated policy to add as a
regularization term in the reinforcement learning objective (Schulman et al., 2015). Recently, some
studies argued that utilizing Kullback-Leibler regularization implicitly averages the state-action value
estimates (Vieillard et al., 2020a).

6.3 The Adversarial Perspective for Deep Neural Policy Generalization

One of the ways to regularize the state observations is based on considering worst-case perturbations
added to state observations (i.e. adversarial perturbations). This line of work starts with introducing
perturbations produced by the fast gradient sign method proposed by Goodfellow et al. (2015)
into deep reinforcement learning observations at test time Huang et al. (2017) Kos & Song (2017),
and compares the generalization capabilities of the trained deep reinforcement learning policies
in the presence worst-case perturbations and Gaussian noise. These gradient based adversarial
methods are based on taking the gradient of the cost function used to train the policy with respect
to the state observation. Several other techniques have been proposed on the optimization line of
the adversarial alteration of state observations. In this line of work, Korkmaz (2020) suggested a
Nesterov momentum-based method to produce adversarial perturbations for deep reinforcement
learning policies. Korkmaz (2022) showed that deep reinforcement learning policies learn shared
adversarial features across MDPs. In this work the authors investigate the root causes of this problem,
and demonstrate that policy high-sensitivity directions and the perceptual similarity of the state
observations are uncorrelated. Furthermore, the study demonstrates that the current state-of-the-art
adversarial training techniques also learn similar high-sensitivity directions as the vanilla trained
deep reinforcement learning policies.5 While some studies focused on state observation alterations
to assess policy resilience with respect to these changes, some studies focused on interpretability
and explainability of these changes in these state observation alterations and how these alterations

4Low dimensional state Mujoco refers to the setting of Mujoco where the state dimensions are not represented
by pixels and dimensions of the state observations range from 11 to 117.

5From the security point of view, this adversarial framework is under the category of black-box adversarial
attacks in which this is the first study that demonstrated that the deep reinforcement learning policies are
vulnerable to black-box adversarial attacks (Korkmaz, 2022). Furthermore, note that black-box adversarial
perturbations are more generalizable global perturbations that can effect many different policies.
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have different effects on standard deep reinforcement learning training algorithms and certified (i.e.
adversarial) training algorithms Korkmaz (2021d)6. Note that this line of work falls under the state
observation generalization testing category GSS provided in Definition 3.6.

While several studies focused on improving optimization techniques to compute optimal perturbations,
a line of research focused on making deep neural policies resilient to these perturbations. Pinto
et al. (2017) proposed to model the dynamics between the adversary and the deep neural policy as a
zero-sum game where the goal of the adversary is to minimize expected cumulative rewards of the
deep reinforcement learning policy. This study is a clear example of transition probability perturbation
to achieve generalization GP in Definition 3.4 of Section 3. Gleave et al. (2020) approached this
problem with an adversary model which is restricted to take natural actions in the MDP instead of
modifying the observations with `p-norm bounded perturbations. The authors model this dynamic as
a zero-sum Markov game and solve it via self play Proximal Policy Optimization (PPO). Some recent
studies, proposed to model the interaction between the adversary and the deep reinforcement learning
policy as a state-adversarial MDP, and claimed that their proposed algorithm State Adversarial Double
Deep Q-Network (SA-DDQN) learns theoretically certified robust policies against natural noise and
perturbations. In particular, these certified adversarial training techniques aim to add a regularizer
term to the temporal difference loss in deep Q-learning.

H(ri + γmax
a

Q̂θ̂(si, a; θ)−Qθ(si, ai; θ)) + κR(θ)

whereH is the Huber loss, Q̂ refers to the target network and κ is to adjust the level of regularization
for convergence. The regularizer term can vary for different certified adversarial training techniques
yet the baseline technique uses

R(θ) = max{ max
ŝ∈B(s)

max
a6=argmaxa′ Q(s,a′)

Qθ(ŝ, a)−Qθ(ŝ, arg max
a′

Q(s, a′),−c}.

where B(s) is an `p-norm ball of radius ε. While these certified adversarial training techniques
drew some attention from the community, more recently manifold concerns have been raised on
the robustness of theoretically certified adversarially trained deep reinforcement learning policies
(Korkmaz, 2021c,d). In these studies, the authors argue that adversarially trained (i.e. certified robust)
deep reinforcement learning policies learn inaccurate state-action value functions and non-robust
features from the environment. In particular, in Korkmaz (2021c) the authors use action manipulation
to investigate worst-case perturbation training. This study is also a clear example of a policy
perturbation generalization testing method GπS in Definition 3.6. More importantly, recently it has
been shown that adversarially trained deep reinforcement learning policies have worse generalization
capabilities compared to vanilla trained reinforcement learning policies in high dimensional state
space MDPs (Korkmaz, 2023)7. While this study provides a contradistinction between adversarial
directions and natural directions that are intrinsic to the MDP, it further demonstrates that the certified
adversarial training techniques block generalization capabilities of standard deep reinforcement
learning policies. Furthermore note that this study is also a clear example of a state observation
perturbation generalization testing method GSS the Definition 3.6 in Section 3.

7 Meta-Reinforcement Learning and Meta Gradients

A quite recent line of research directs its research efforts to discovering reinforcement learning
algorithms automatically, without explicitly designing them, via meta-gradients (Oh et al., 2020; Xu
et al., 2020). This line of study targets learning the "learning algorithm" by only interacting with a set
of environments as a meta-learning problem. In particular,

η∗ = arg max
η

Eε∼ρ(ε)Eθ0∼ρ(θ0)[EθN [

∞∑
t=0

γtrt]]

here the optimal update rule is parametrized by η, for a distribution on environments ρ(ε) and initial
policy parameters ρ(θ0) where EθN [

∑∞
t=0 γ

trt] is the expected return for the end of the lifetime of
the agent.

6See an initial and preliminary version of the paper Korkmaz (2021d) here Korkmaz (2021a)
7A short and preliminary version of the paper (Korkmaz, 2023) can also be found here (Korkmaz, 2021b)

8



The overarching objective of meta-reinforcement learning is to be able to build agents that can
learn how to learn over time, thus allowing these policies to adapt to a changing environment or
even any other changing conditions of the MDP. Quite recently, a significant line of research has
been conducted to achieve this objective, particularly Oh et al. (2020) proposes to discover the
value function in reinforcement learning. Following this work Xu et al. (2020) proposed a joint
meta-learning framework to learn what the policy should predict and how these predictions should be
used in updating the policy. Recently, Kirsch et al. (2022) proposes to use symmetry information in
discovering reinforcement learning algorithms and discusses meta-generalization. There is also some
work on enabling reinforcement learning algorithms to discover temporal abstractions (Veeriah et al.,
2021). In particular, temporal abstraction refers to the ability of the policy to abstract a sequence of
actions to achieve certain sub-tasks. As it stands now meta-reinforcement learning can be considered
to be a promising research direction that could enable us to build deep reinforcement learning policies
that can generalize to different environments, to changing environments over time, or even to different
tasks.

8 Transfer in Reinforcement Learning

Transfer in reinforcement learning is a subfield heavily discussed in certain applications of rein-
forcement learning algorithms e.g. robotics. In current robotics research there is not a safe way of
training a reinforcement learning agent by letting the robot explore in real life. Hence, the way to
overcome this to train policies in a simulated environment, and install the trained policies in the actual
application setting. The fact that the simulation environment and the installation environment are not
identical is one of the main problems for reinforcement learning application research. This is referred
to as the sim-to-real gap.

Another subfield in reinforcement learning research focusing on obtaining generalizable policies
investigates this concept through transfer in reinforcement learning. The consideration in this line
of research is to build policies that are trained for a particular task with limited data and to try to
make these policies perform well on slightly different tasks. An initial discussion on this starts
with (Taylor & Stone, 2007) to obtain policies initially trained in a source task and transferred to a
target task in a more sample efficient way. Later, Tirinzoni et al. (2018) proposes to transfer value
functions that are based on learning a prior distribution over optimal value functions from a source
task. However, this study is conducted in simple environments with low dimensional state spaces.
(Barreto et al., 2017) considers the reward transformation setting GR in Definition 3.2 from Section 3.
In particular, the authors consider a policy transfer between a specific task with a reward function
r(s, a) and a different task with reward function r′(s, a). The goal of the study is to decouple the
state representations from the task. In the setting of state transformation for generalization GS in
Definition 3.3 Gamrian & Goldberg (2019) focuses on state-wise differences between source and
target task. In particular, the authors use unaligned generative adversarial networks to create target
task states from source task states. In the setting of policy transformation for generalization Gπ in
Definition 3.5 Jain et al. (2020) focuses on zero-shot generalization to a newly introduced action set
to increase adaptability.

While transfer learning is a promising research direction for reinforcement learning, the studies in
this subfield still remain oriented only towards reinforcement learning applications, and it is possible
to consider the research centered on this subfield as not at the same level of maturity as the previously
discussed line of research in Section 6 in terms of being able to test the claims or propositions in
complex established baselines.

9 Lifelong Reinforcement Learning

Lifelong learning is a subfield closely related to transfer learning that has recently drawn attention
from the reinforcement learning community. Lifelong learning aims to build policies that can
sequentially solve different tasks by being able to transfer knowledge between tasks. On this line of
research, Lecarpentier et al. (2021) provide an algorithm for value-based transfer in the Lipschitz
continuous task space with theoretical contributions for lifelong learning goals. In the setting of action
transformation for generalization Gπ in Definition 3.5 Chandak et al. (2020) focuses on temporally
varying (e.g. variations between source task and target task) the action set in lifelong learning. In
lifelong reinforcement learning some studies focus on different exploration strategies. In particular,
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Garcia & Thomas (2019) models the exploration strategy problem for lifelong learning as another
MDP, and the study uses a separate reinforcement learning agent to find an optimal exploration
method for the initial lifelong learning agent. The lack of benchmarks limits the progress of lifelong
reinforcement learning research by restricting the direct comparison between proposed algorithms
or methods. However, quite recent work proposed a new training environment benchmark based on
robotics applications for lifelong learning to overcome this issue (Wolczyk et al., 2021)8.

10 Conclusion

In this paper we tried to answer the following questions: (i) What are the explicit problems limiting
reinforcement learning algorithms from obtaining high-performing policies that can generalize?
(ii) How can we categorize the different techniques proposed so far to achieve generalization in
reinforcement learning? (iii) What are the similarities and differences of these different techniques
proposed by different subfields of reinforcement learning research to build reinforcement learning
policies that generalize? To answer these questions first we explain the importance of exploration
strategies in overfitting, and explain the manifold causes of overestimation bias in reinforcement
learning. In the second part of the paper we propose a framework to unify and categorize the various
techniques to achieve generalization in reinforcement learning. Starting from explaining all the
different regularization techniques in either state representations or in learnt value functions from
worst-case to average-case, we provide a current layout of the wide range of reinforcement learning
subfields that are essentially working towards the same objective, i.e. generalizable deep reinforce-
ment learning policies. Finally, we provided a discussion for each category on the drawbacks and
advantages of these algorithms. We believe our study can provide a compact unifying formalization
on recent reinforcement learning generalization research.
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