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Abstract

We introduce Premier-TACO, a novel multitask feature representation learning1

methodology aiming to enhance the efficiency of few-shot policy learning in2

sequential decision-making tasks. Premier-TACO pretrains a general feature rep-3

resentation using a small subset of relevant multitask offline datasets, capturing4

essential environmental dynamics. This representation can then be fine-tuned to5

specific tasks with few expert demonstrations. Building upon the recent temporal6

action contrastive learning (TACO) objective, which obtains the state of art per-7

formance in visual control tasks, Premier-TACO additionally employs a simple8

yet effective negative example sampling strategy. This key modification ensures9

computational efficiency and scalability for large-scale multitask offline pretrain-10

ing. Experimental results from both Deepmind Control Suite and MetaWorld11

domains underscore the effectiveness of Premier-TACO for pretraining visual12

representation, facilitating efficient few-shot imitation learning of unseen tasks.13

1 Introduction14

Just as foundation models in language, like BERT [5] and GPT [22, 3], have revolutionized natural15

language processing by leveraging vast amounts of textual data to understand linguistic nuances,16

pretrained foundation models hold similar promise for sequential decision-making (SDM). In SDM,17

where decisions are influenced by a complex interplay of past actions, current states, and future18

possibilities, a pretrained foundation model can provide a rich, generalized understanding of decision19

sequences. This foundational knowledge, built upon diverse decision-making scenarios, can then be20

fine-tuned to specific tasks, much like how language models are adapted to specific linguistic tasks.21

The following challenges are unique to sequential decision-making, setting it apart from existing22

vision and language pretraining paradigms. (C1) Data Distribution Shift: Training data usually23

consists of specific behavior-policy-generated trajectories. This leads to vastly different data dis-24

tributions at various stages—pretraining, finetuning, and deployment—resulting in compromised25

performance [14]. (C2) Task Heterogeneity: Unlike language and vision tasks, which often share26

semantic features, decision-making tasks vary widely in configurations, transition dynamics, and27

state and action spaces. This makes it difficult to develop a universally applicable representation.28

(C3) Data Quality and Supervision: Effective representation learning often relies on high-quality29

data and expert guidance. However, these resources are either absent or too costly to obtain in30

many real-world decision-making tasks [2, 27]. Our aspirational criteria for foundation model31

for sequential decision-making encompass several key features: (W1) Versatility that allows the32
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model to generalize across a wide array of tasks, even those not previously encountered, such as33

new embodiments viewed or observations from novel camera angles; (W2) Efficiency in adapting to34

downstream tasks, requiring minimal data through few-shot learning techniques; (W3) Robustness35

to pretraining data of fluctuating quality, ensuring a resilient foundation; and (W4) Compatibility36

with existing large pretrained models such as [20].37

In this paper, rather than focusing on leveraging large computational vision datasets [20, 16, 15]38

that overlook control-relevant considerations and suffer from a domain gap between pre-training39

datasets and downstream visuo-motor tasks, we propose a novel control-centric objective function40

for pretraining. Our approach, called Premier-TACO (pretraining multitask representation via41

temporal action-driven contrastive loss), employs a temporal action-driven contrastive loss function42

for pretraining. Unlike TACO, which treats every data point in the batch as a potential negative43

example, Premier-TACO samples one negative example from a nearby window of the next state,44

yielding a negative example that is visually similar to the positive one. Consequently, the latent45

representation must encapsulate control-relevant information to differentiate between the positive46

and negative examples, rather than depending on irrelevant features such as visual appearance.47

This simple yet effective negative example sampling strategy incurs zero computational overhead,48

allowing for effortless scalability in multitask offline pretraining. Through extensive empirical49

evaluation, we demonstrate the versatility and efficiency of Premier-TACO’ representations in50

terms of generalization to downstream tasks involving unseen embodiments and views, robustness51

to low-quailty data and compatibility for finetuneing a pretrained visual encoder such as R3M [20],52

resulting in an average performance improvement of approximately 50% across the evaluated tasks.53

2 Preliminary54

TACO: Temporal Action Driven Contrastive Learning Objective Temporal Action-driven Con-55

trastive Learning (TACO) [40] is a reinforcement learning algorithm proposed for addressing the56

representation learning problem in visual continuous control. It aims to maximize the mutual infor-57

mation between representations of current states paired with action sequences and representations of58

the corresponding future states:59

JTACO = I(Zt+K ; [Zt, Ut, ..., Ut+K−1]) (1)

Here, Zt = ϕ(Xt) and Ut = ψ(At) represents latent state and action variables. Theoretically, it could60

be shown that maximization of this mutual information objective leads to state and action represen-61

tations that are capable of representing the optimal value functions. Empirically, TACO estimates the62

lower bound of the mutual information objective by the InfoNCE loss, and it achieves the state of the63

art performance for both online and offline visual continuous control, demonstrating the effectiveness64

of temporal contrastive learning for representation learning in sequential decision making problems.65
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Figure 1: An illustration of Premier-TACO contrastive loss design. The two ‘State Encoder’s are identical, as
are the two ‘Proj. Layer H’s. One negative example is sampled from the neighbors of framework st+K .

We introduce Premier-TACO, a generalized pre-training approach specifically formulated to tackle67

the multi-task pre-training problem, enhancing sample efficiency and generalization ability for68
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downstream tasks. Building upon the success of temporal contrastive loss, exemplified by TACO [40],69

in acquiring latent state representations that encapsulate individual task dynamics, our aim is to foster70

representation learning that effectively captures the intrinsic dynamics spanning a diverse set of tasks71

found in offline datasets. Our overarching objective is to ensure that these learned representations72

exhibit the versatility to generalize across unseen tasks that share the underlying dynamic structures.73

Nevertheless, when adapted for multitask offline pre-training, the online learning objective of74

TACO [40] poses a notable challenge. Specifically, TACO’s mechanism, which utilizes the75

InfoNCE [32] loss, categorizes all subsequent states st+k in the batch as negative examples. While76

this methodology has proven effective in single-task reinforcement learning scenarios, it encounters77

difficulties when extended to a multitask context. During multitask offline pretraining, image78

observations within a batch can come from different tasks with vastly different visual appearances,79

rendering the contrastive InfoNCE loss significantly less effective.80
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pling negative examples

Offline Pretraining Objective. We propose a straight-81

forward yet highly effective mechanism for selecting82

challenging negative examples. Instead of treating83

all the remaining examples in the batch as negatives,84

Premier-TACO selects the negative example from a win-85

dow centered at state st+k within the same episode.86

This approach is both computationally efficient and more87

statistically powerful due to negative examples which are88

challenging to distinguish from similar positive examples89

forcing the model to capture temporal dynamics differen-90

tiating between positive and negative examples. Specifi-91

cally, given a batch of state and action sequence transitions {(s(i)t , [a
(i)
t , ..., a

(i)
t+K−1], s

(i)
t+K)}Ni=1 , let92

z
(i)
t = ϕ(s

(i)
t ), u(i)t = ψ(a

(i)
t ) be latent state and latent action embeddings respectively. Furthermore,93

let s̃(i)t+K be a negative example uniformly sampled from the window of size W centered at st+K :94

(st+K−W , ..., st+K−1, st+K+1, ..., st+K+W ) with z̃(i)t = ϕ(s̃
(i)
t ) a negative latent state. Given these,95

define g(i)t = Gθ(z
(i)
t , u

(i)
t , ..., u

(i)
t+K−1), h

(i)
t = Hθ(z

(i)
t+K), and h̃(i)t = Hθ(z̃

(i)
t+K) as embeddings96

of future predicted and actual latent states. We optimize:97

J Premier-TACO(ϕ, ψ,Gθ, Hθ) = − 1

N

N∑
i=1

log
g
(i)
t

⊤
h
(i)
t+K

g
(i)
t

⊤
h
(i)
t+K + g̃

(i)
t

⊤
h
(i)
t+K

. (2)

98

4 Experiment99

In our empirical evaluations, we consider two benchmarks, Deepmind Control Suite [31] for locomo-100

tion control as well as MetaWorld [37] for robotic manipulation tasks. The visualization of pretrain101

and test tasks on different domains is shown in Figure 4.102

Setup and Baselines. The detailed introduction of pretrained tasks for Premier-TACO and baselines103

in our comparison can be found in Appendix C.1.104

Pretrained feature representation by Premier-TACO facilitates effective few-shot adaptation105

to unseen tasks. We measure the performance of pretrained visual representations for few-shot im-106

itation learning of unseen downstream tasks in both DMC and MetaWorld. Note that we only107

use 1
5 of the number of expert trajectories used in [16] and 1

10 of those used in [29]. In Ta-108

ble 1, we present the results for Deepmind Control Suite. The results for MetaWorld are provided109

in Table 2 of Appendix C. As shown here, pretrained representation of Premier-TACO signifi-110

cantly improves the few-shot imitation learning performance compared with Learn-from-scratch,111

with a 101% improvement on Deepmind Control Suite and 74% improvement on MetaWorld,112

respectively. Moreover, it also outperforms all the baselines across all tasks by a large margin.113
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DMControl Models

Tasks LfS SMART Best PVRs TD3+BC Inverse CURL ATC SPR Premier-TACO

Seen
Embodiments

Finger Spin 34.8±3.4 44.2± 8.2 38.4± 9.3 68.8± 7.1 33.4±8.4 35.1±9.6 51.1±9.4 55.9±6.2 75.2± 0.6

Hopper Hop 8.0± 1.3 14.2± 3.9 23.2± 4.9 49.1± 4.3 48.3±5.2 28.7±5.2 34.9±3.9 52.3±7.8 75.3± 4.6

Walker Walk 30.4±2.9 54.1± 5.2 32.6± 8.7 65.8± 2.0 64.4±5.6 37.3±7.9 44.6±5.0 72.9±1.5 88.0± 0.8

Humanoid Walk 15.1±1.3 18.4± 3.9 30.1± 7.5 34.9± 8.5 41.9±8.4 19.4±2.8 35.1±3.1 30.1±6.2 51.4± 4.9

Dog Trot 52.7±3.5 59.7± 5.2 73.5± 6.4 82.3± 4.4 85.3±2.1 71.9±2.2 84.3±0.5 79.9±3.8 93.9± 5.4

Unseen
Embodiments

Cup Catch 56.8±5.6 66.8± 6.2 93.7± 1.8 97.1± 1.7 96.7±2.6 96.7±2.6 96.2±1.4 96.9±3.1 98.9± 0.1

Reacher Hard 34.6±4.1 52.1± 3.8 64.9± 5.8 59.6± 9.9 61.7±4.6 50.4±4.6 56.9±9.8 62.5±7.8 81.3± 1.8

Cheetah Run 25.1±2.9 41.1± 7.2 39.5± 9.7 50.9± 2.6 51.5±5.5 36.8±5.4 30.1±1.0 40.2±9.6 65.7± 1.1

Quadruped Walk 61.1±5.7 45.4± 4.3 63.2± 4.0 76.6± 7.4 82.4±6.7 72.8±8.9 81.9±5.6 65.6±4.0 83.2± 5.7

Quadruped Run 45.0±2.9 27.9± 5.3 64.0± 2.4 48.2± 5.2 52.1±1.8 55.1±5.4 2.6± 3.6 68.2±3.2 76.8± 7.5

Mean Performance 38.2 42.9 52.3 63.3 61.7 50.4 52.7 62.4 79.0

Table 1: [(W1) Versatility (W2) Efficiency] Few-shot Behavior Cloning (BC) for unseen task of DMC.
Performance (Agent Reward / Expert Reward) of baselines and Premier-TACO on 10 unseen tasks on Deepmind
Control Suite. Bold numbers indicate the best results. Agent Policies are evaluated every 1000 gradient steps for
a total of 100000 gradient steps and we report the average performance over the 3 best epochs over the course
of learning. Premier-TACO outperforms all the baselines, showcasing its superior efficacy in generalizing to
unseen tasks with seen or unseen embodiments.

View 1 View 2

Figure 3: [(W1) Versatility]
MetaWorld: Few-shot adaptation
to unseen tasks from an unseen
camera view.

Premier-TACO pre-trained representation enables knowledge114

sharing across different embodiments. Ideally, a resilient and115

generalizable state feature representation ought not only to encapsu-116

late universally applicable features for a given embodiment across a117

variety of tasks, but also to exhibit the capability to generalize across118

distinct embodiments. Here, we evaluate the few-shot behavior119

cloning performance of Premier-TACO pre-trained encoder from120

DMC-6 on four tasks featuring unseen embodiments: Cup Catch,121

Cheetah Run, and Quadruped Walk. In comparison to Learn-122

from-scratch, as shown in Table 1, Premier-TACO pre-trained123

representation realizes an 82% performance gain, demonstrating124

the robust generalizability of our pre-trained feature representations.125

Premier-TACO Pretrained Representation is also generalizable126

to unseen tasks with camera views. Beyond generalizing to unseen127

embodiments, an ideal robust visual representation should possess128

the capacity to adapt to unfamiliar tasks under novel camera views. In Figure 3, we evaluate the129

five-shot learning performance of our model on four previously unseen tasks in MetaWorld with a130

new view. In particular, during pretraining, the data from MetaWorld are generated using the same131

view as employed in [10, 26]. Then for downstream policy learning, the agent is given five expert132

trajectories under a different corner camera view, as depicted in the figure. Notably, Premier-TACO133

also achieves a substantial performance enhancement, thereby underscoring the robust generalizability134

of our pretrained visual representation.135

Robustness to low-quality pretraining data. To further study the resilience of Premier-TACO, we136

employ low-quality data to train Premier-TACO representations in Appendix C.3.137

Compatibility: Pretrained visual encoder finetuning with Premier-TACO. To further validate the138

compatibility of our Premier-TACO approach, we compared the results of R3M with no fine-tuning,139

in-domain fine-tuning [9], and fine-tuning using our method on selected Deepmind Control Suite and140

MetaWorld pretraining tasks. Results in Appendix C.4 unequivocally demonstrate that direct fine-141

tuning on in-domain tasks leads to a performance decline across multiple tasks. However, leveraging142

the Premier-TACO learning objective for fine-tuning substantially enhances the performance of143

R3M. This not only underscores the role of our method in bridging the domain gap and capturing144

essential control features but also highlights its robust generalization capabilities. Furthermore, these145

findings strongly suggest that our Premier-TACO approach is highly adaptable to a wide range of146

multi-task pretraining scenarios, irrespective of the model’s size or the size of the pretrained data.147

Ablation Studies. Ablation experiments for batch sizes and window sizes are in Appendix D.148
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A Problem Setting149

A.1 Multitask Offline Pretraining150

We consider a collection of tasks
{
Ti : (X ,Ai,Pi,Ri, γ)

}N

i=1
with the same dimensionality in ob-151

servation space X . Let ϕ : X → Z be a representation function of the agent’s observation, which is152

either randomly initialized or pre-trained already on a large-scale vision dataset such as ImageNet [4]153

or Ego4D [7]. Assuming that the agent is given a multitask offline dataset {(xi, ai, x′i, ri)} of a154

subset of K tasks {Tnj
}Kj=1. The objective is to pretrain a generalizable state representation ϕ or155

a motor policy π so that when facing an unseen downstream task, it could quickly adapt with few156

expert demonstrations, using the pretrained representation.157

Below we summarize the pretraining and finetuning setups.158

Pretraining: The agent get access to a multitask offline dataset, which could be highly suboptimal.159

The goal is to learn a generalizable shared state representation from pixel inputs.160

Adaptation: Adapt to unseen downstream task from few expert demonstration with imitation learning.161

B Related Work162

Pretraining Visual Representations. Existing works apply self-supervised pre-training from rich163

vision data to build foundation models. However, applying this approach to sequential decision-164

making tasks is challenging. Recent works have explored large-scale pre-training with offline data in165

the context of reinforcement learning. Efforts such as R3M [20], VIP [15], MVP [34], PIE-G [38],166

and VC-1 [16] highlight this direction. However, there’s a notable gap between the datasets used for167

pre-training and the actual downstream tasks. In fact, a recent study [9] found that models trained168

from scratch can often perform better than those using pre-trained representations, suggesting the169

limitation of these approachs. It’s important to acknowledge that these pre-trained representations170

are not control-relevant, and they lack explicit learning of a latent world model. In contrast to these171

prior approaches, our pretrained representations learn to capture the control-relevant features with an172

effective temporal contrastive learning objective.173

For control tasks, several pretraining frameworks have emerged to model state-action interactions from174

high-dimensional observations by leveraging causal attention mechanisms. SMART [29] introduces a175

self-supervised and control-centric objective to train transformer-based models for multitask decision-176

making, although it requires additional fine-tuning with large number of demonstrations during177

downstream time. As an improvement, DualMind [33] pretrains representations using 45 tasks for178

general-purpose decision-making without task-specific fine-tuning. Besides, some methods [25, 18,179

35, 30] first learn a general representation by exploring the environment online, and then use this180

representation to train the policy on downstream tasks. In comparison, our approach is notably181

more efficient and doesn’t require training with such an extensive task set. Nevertheless, we provide182

empirical evidence demonstrating that our method can effectively handle multi-task pretraining.183

Contrastive Representation for Visual RL Contrastive learning is a self-supervised technique that184

leverages similarity constraints between data to learn effective representations (embeddings), and it185

has demonstrated remarkable success across various domains. In the context of visual reinforcement186

learning (RL), contrastive learning plays a pivotal role in training robust state representations from187

raw visual inputs, thereby enhancing sample efficiency. CURL [13] extracts high-level features by188

utilizing InfoNCE[32] to maximize agreement between augmented observations, although it does189

not explicitly consider temporal relationships between states. Several approaches, such as CPC [11],190

ST-DIM [1], and ATC [28] , introduce temporal dynamics into the contrastive loss. They do so191

by maximizing mutual information between states with short temporal intervals, facilitating the192

capture of temporal dependencies. DRIML [17] proposes a policy-dependent auxiliary objective193

that enhances agreement between representations of consecutive states, specifically considering the194

first action of the action sequence. Recent advancements by [12, 39] incorporate actions into the195

contrastive loss, emphasizing behavioral similarity. TACO [40] takes a step further by learning both196

state and action representations. It optimizes the mutual information between the representations of197
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current states paired with action sequences and the representations of corresponding future states.198

In our approach, we build upon the efficient extension of TACO, harnessing the full potential of199

state and action representations for downstream tasks. On the theory side, the Homer algorithm [19]200

uses a binary temporal contrastive objective reminiscent of the approach used here, which differs201

by abstracting actions as well states, using an ancillary embedding, removing leveling from the202

construction, and of course extensive empirical validation.203

C Experiments204

Figure 4: Pretrain and Test Tasks split for Deepmind Control Suite and MetaWorld. The left figures are
Deepmind Control Suite tasks and the right figures MetaWorld tasks.

C.1 Experiment Setup205

Deepmind Control Suite (DMC) [31]: We consider a selection of 16 challenging tasks from206

Deepmind Control Suite. Note that compared with prior works such as [16, 29], we consider much207

harder tasks, including ones from the humanoid and dog domains, which feature intricate kinematics,208

skinning weights and collision geometry. For pretraining, we select six tasks (DMC-6), including209

Acrobot Swingup, Finger Turn Hard, Hopper Stand, Walker Run, Humanoid Walk, and Dog Stand.210

We generate an exploratory dataset for each task by sampling trajectories generated in exploratory211

stages of a DrQ-v2 [36] learning agent. In particular, we sample 1000 trajectories from the online212

replay buffer of DrQ-v2 once it reaches the convergence performance. This ensures the diversity of213

the pretraining data, but in practice, such a high-quality dataset could be hard to obtain. So, later214

in the experiments, we will also relax this assumption and consider pretrained trajectories that are215

sampled from uniformly random actions.216

MetaWorld [37]: We select a set of 10 tasks for pretraining, which encompasses a variety of motion217

patterns of the Sawyer robotic arm and interaction with different objects. To collect an exploratory218

dataset for pretraining, we execute the scripted policy with Gaussian noise of a standard deviation of219

0.3 added to the action. By adding such a noise, the success rate of collected policies on average is220

only around 20% across ten pretrained tasks.221

Baselines. We compare Premier-TACO with the following representation pretraining baselines:222

▷ Learn from Scratch: Behavior Cloning with randomly initialized shallow ConvNet encoder.223

Different from [20, 16], which use a randomly initialized ResNet for evaluation, we find that224

using a shallow network with an input image size of 84× 84 on both Deepmind Control Suite225

and MetaWorld yields superior performance. Additionally, we also include data augmentation226

into behavior cloning following [9].227

▷ Policy Pretraining: We first train a multitask policy by TD3+BC [6] on the pretraining dataset.228

While numerous alternative offline RL algorithms exist, we choose TD3+BC as a representative229
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MetaWorld Models

Unseen Tasks LfS SMART Best PVRs TD3+BC Inverse CURL ATC SPR Premier-TACO

Bin Picking 62.5± 12.5 71.3± 9.6 60.2± 4.3 50.6± 3.7 55.0± 7.9 45.6± 5.6 55.6± 7.8 67.9± 6.4 78.5± 7.2

Disassemble 56.3± 6.5 52.9± 4.5 70.4± 8.9 56.9± 11.5 53.8± 8.1 66.2± 8.3 45.6± 9.8 48.8± 5.4 86.7± 8.9

Hand Insert 34.7± 7.5 34.1± 5.2 35.5± 2.3 46.2± 5.2 50.0± 3.5 49.4± 7.6 51.2± 1.3 52.4± 5.2 75.0± 7.1

Peg Insert Side 28.7± 2.0 20.9± 3.6 48.2± 3.6 30.0± 6.1 33.1± 6.2 28.1± 3.7 31.8± 4.8 39.2± 7.4 62.7± 4.7

Pick Out Of Hole 53.7± 6.7 65.9± 7.8 66.3± 7.2 46.9± 7.4 50.6± 5.1 43.1± 6.2 54.4± 8.5 55.3± 6.8 72.7± 7.25

Pick Place Wall 40.5± 4.5 62.8± 5.9 63.2± 9.8 63.8± 12.4 71.3± 11.3 73.8± 11.9 68.7± 5.5 72.3± 7.5 80.2± 8.2

Shelf Place 26.3± 4.1 57.9± 4.5 32.4± 6.5 45.0± 7.7 36.9± 6.7 35.0± 10.8 35.6± 10.7 38.0± 6.5 70.4± 8.1

Stick Pull 46.3± 7.2 65.8± 8.2 52.4± 5.6 72.3± 11.9 57.5± 9.5 43.1± 15.2 72.5± 8.9 68.5± 9.4 80.0± 8.1

Mean 43.6 53.9 53.6 51.5 51.0 48.3 51.9 55.3 75.8

Table 2: [(W1) Versatility (W2) Efficiency] Five-shot Behavior Cloning (BC) for unseen task of MetaWorld.
Success rate of Premier-TACO and baselines across 8 hard unseen tasks on MetaWorld. Results are aggregated
over 4 random seeds. Bold numbers indicate the best results.

due to its simplicity and great empirical performance. After pretraining, we take the pretrained230

ConvNet encoder and drop the policy MLP layers.231

▷ Pretrained Visual Representations (PVRs): We evaluate the state-of-the-art frozen pretrained232

visual representations including PVR [21], MVP [34], R3M [20] and VC-1 [16], and report the233

best performance of these PVRs models for each task.234

▷ Control Transformer: SMART [29] is a self-supervised representation pretraining framework235

which utilizes a maksed prediction objective for pretraining representation under Decision236

Transformer architecture, and then use the pretrained representation to learn policies for237

downstream tasks.238

▷ Inverse Dynamics Model: We pretrain an inverse dynamics model to predict actions and use239

the pretrained representation for downstream task.240

▷ Contrastive/Self-supervised Learning Objectives: CURL [13], ATC [28], and SPR [23, 24].241

CURL and ATC are two approaches that apply contrastive learning into sequential decision242

making problems. While CURL treats augmented states as positive pairs, it neglects the temporal243

dependency of MDP. In comparison, ATC takes the temporal structure into consideration. The244

positive example of ATC is an augmented view of a temporally nearby state. SPR applies BYOL245

objecive [8] into sequential decision making problems by pretraining state representations that246

are self-predictive of future states.247

Number of Demonstrations and Evaluation Metric. For DMC, we use 20 expert trajectories248

for imitation learning except for the two hardest tasks, Humanoid Walk and Dog Trot, for which249

we use 100 trajectories instead. We record the performance of the agent by calculating the ratio250

of
Agent Reward
Expert Reward

, where Expert Reward is the episode reward of the expert policy used to collect251

demonstration trajectories. For MetaWorld, we use 5 expert trajectories for all eight downstream252

tasks, and we use task success rate as the performance metric.253

C.2 Adaptation to Unseen Tasks254

The results of adaptation to unseen tasks in MetaWorld are shown in Table 2.255

C.3 Robustness to Low-quality Data256

Premier-TACO Pre-trained Representation is resilient to low-quality data. We evaluate the257

resilience of Premier-TACO by employing randomly collected trajectory data from Deepmind258

Control Suite for pretraining and compare it with Premier-TACO representations pretrained using259

an exploratory dataset and the learn-from-scratch approach. As illustrated in Figure 5, across260

all downstream tasks, even when using randomly pretrained data, the Premier-TACO pretrained261

model still maintains a significant advantage over learning-from-scratch. When compared with262

representations pretrained using exploratory data, there are only small disparities in a few individual263

tasks, while they remain comparable in most other tasks. This strongly indicates the robustness264
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of Premier-TACO to low-quality data. Even without the use of expert control data, our method is265

capable of extracting valuable information.

Figure 5: [(W3) Robustness] Premier-TACO pretrained with exploratory dataset vs. Premier-TACO pre-
trained with randomly collected dataset

266

C.4 Finetuning on pretrained visual representations267

We conduct fine-tuning on pretrained visual representations using in-domain control trajectories268

following the Premier-TACO framework. Importantly, our findings deviate from the observations269

made in prior works [9, 16], where fine-tuning of R3M [20] on in-domain demonstration data using270

the task-centric behavior cloning objective, resulted in performance degradation. We speculate that271

two main factors contribute to this phenomenon. First, a domain gap exists between out-of-domain272

pretraining data and in-domain fine-tuning data. Second, fine-tuning with few-shot learning can lead273

to overfitting for large pretrained models. Comparisons among R3M [20], R3M with in-domain274

finetuning [9] and R3M finetuned with Premier-TACO in Deepmind Control Suite and MetaWorld275

are presented in Figure 6 and 7.

Figure 6: [(W4) Compatibility] Finetune R3M [20], a generalized Pretrained Visual Encoder with
Premier-TACO learning objective vs. R3M with in-domain finetuning in Deepmind Control Suite and Meta-
World.

Figure 7: [(W4) Compatibility] Finetune R3M [20], a generalized Pretrained Visual Encoder with
Premier-TACO learning objective vs. R3M with in-domain finetuning in Deepmind Control Suite and Meta-
World.

276
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D Ablation Studies277

D.1 Batch Size278

Figure 8: Averaged performance of
Premier-TACO on 10 Deepmind Con-
trol Suite Tasks across different batch
sizes.

Compared with TACO, the negative example sampling strategy279

employed in Premier-TACO allows us to sample harder280

negative examples within the same episode as the positive281

example. We expect Premier-TACO to work much better282

with small batch sizes, compared with TACO where the283

negative examples from a given batch could be coming from284

various tasks and thus the batch size required would scale up285

linearly with the number of pretraining tasks. In ours previous286

experimental results, Premier-TACO is pretrained with a287

batch size of 4096, a standard batch size used in contrastive288

learning literature. Here, to empirically verify the effects289

of different choices of the pretraining batch size, we train290

Premier-TACO with batch sizes other than 4096, and compare291

with the performance of TACO using a batch size of 4096.292

Figure 8 displays the average performance of few-shot imitation learning across all ten tasks in293

the DeepMind Control Suite. As depicted in the figure, our model markedly surpasses TACO,294

maintaining this superiority even with a batch size of 512, and exhibits performance saturation beyond295

a batch size of 4096. This observation substantiates that the negative example sampling strategy296

employed by Premier-TACO is indeed the key for the success of multitask offline pretraining.297

D.2 Window Size298

Figure 9: Averaged performance of
Premier-TACO on 10 Deepmind Con-
trol Suite Tasks across different window
sizes

In Premier-TACO, the window size W determines the hard-299

ness of the negative example. A smaller window size results300

in negative examples that are more challenging to distinguish301

from positive examples, though they may become excessively302

difficult to differentiate in the latent space. Conversely, a larger303

window size makes distinguishing relatively straightforward,304

thereby mitigating the impacts of negative sampling. In the305

preceding experiments, a consistent window size of 5 was ap-306

plied across all trials on both the DeepMind Control Suite and307

MetaWorld. Here we empirically evaluate the effects of varying308

window sizes on the average performance of our model across309

ten DeepMind Control Tasks, as depicted in Figure X. Notably,310

our observations reveal that performance is comparable when311

the window size is set to 3, 5, or 7, whereas excessively small312

(W = 1) or large (W = 9) window sizes lead to worse performance.313

E Implementation Details314

Dataset For six pretraining tasks of the Deepmind Control Suite, we train visual RL agents for315

individual tasks with DrQ-v2 [36] until convergence, and we store all the historical interaction316

steps in a separate buffer. Then, we sample 200 trajectories from the buffer for all tasks except317

for Humanoid Stand and Dog Walk. Since these two tasks are significantly harder, we use 1000318

pretraining trajectories instead. Each episode in the Deepmind Control Suite consists of 500 time319

steps. In terms of the randomly collected dataset, we sample trajectories by taking actions with each320

dimension independently sampled from a uniform distribution U(−1., 1.) For MetaWorld, we collect321

1000 trajectories for each task, where each episode consists of 200 time steps. We add a Gaussian322

noise of standard deviation 0.3 to the provided scripted policy.323
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Pretraining For the shallow convolutional network, we follow the same architecture as in (author?)324

[36] and add a layer normalization on top of the output of the ConvNet encoder. We set the feature325

dimension of the ConNet encoder to be 100. In total, this encoder has around 3.95 million parameters.326

1 class Encoder(nn.Module):327

2 def __init__(self):328

3 super().__init__ ()329

4 self.repr_dim = 32 * 35 * 35330

5331

6 self.convnet = nn.Sequential(nn.Conv2d (84, 32, 3, stride =2),332

7 nn.ReLU(), nn.Conv2d (32, 32, 3, stride =1),333

8 nn.ReLU(), nn.Conv2d (32, 32, 3, stride =1),334

9 nn.ReLU(), nn.Conv2d (32, 32, 3, stride =1),335

10 nn.ReLU())336

11 self.trunk = nn.Sequential(nn.Linear(self.repr_dim ,337

feature_dim),338

12 nn.LayerNorm(feature_dim), nn.Tanh())339

13340

14 def forward(self , obs):341

15 obs = obs / 255.0 - 0.5342

16 h = self.convnet(obs).view(h.shape[0], -1)343

17 return self.trunk(h)344

Listing 1: Shallow Convolutional Network Architecture Used in Premier-TACO

For Premier-TACO loss, the number of timesteps K is set to be 3 throughout the experiments,345

and the window size W is fixed to be 5. The Action Encoder is a two-layer MLP with input size346

being the action space dimensionality, hidden size being 64, and output size being the same as the347

dimensionality of the action space. The projection layer G is a two-layer MLP with input size being348

feature dimension plus the number of timesteps times the dimensionality of the action space. Its349

hidden size is 1024. In terms of the projection layer H , it is also a two-layer MLP with input and350

output size both being the feature dimension and hidden size being 1024. Throughout the experiments,351

we set the batch size to be 4096 and the learning rate to be 1e-4. For the contrastive/self-supervised352

based baselines, CURL, ATC, and SPR, we use the same batch size of 4096 as Premier-TACO. For353

Multitask TD3+BC and Inverse dynamics modeling baselines, we use a batch size of 1024.354

Imitation Learning A batch size of 128 and a learning rate of 1e-4 are used. During behavior355

cloning, we finetune the Shallow ConvNet Encoder. However, when we applied Premier-TACO for356

the large pre-trained ResNet/ViT model, we keep the model weights frozen.357

In total, we take 100,000 gradient steps and conduct evaluations for every 1000 steps. For evaluations358

within the DeepMind Control Suite, we utilize the trained policy to execute 20 episodes, subse-359

quently recording the mean episode reward. In the case of MetaWorld, we execute 50 episodes and360

document the success rate of the trained policy. We report the average of the highest three episode361

rewards/success rates from the 100 evaluated checkpoints.362

Computational Resources For our experiments, we use 8 NVIDIA RTX A6000 with PyTorch363

Distributed DataParallel for pretraining visual representations, and we use NVIDIA RTX2080Ti for364

downstream imitation learning.365
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