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Abstract

What makes generalization hard for imitation learning in visual robotic manipu-
lation? This question is difficult to approach at face value, but the environment
from the perspective of a robot can often be decomposed into enumerable factors
of variation, such as the lighting conditions or the placement of the camera. Em-
pirically, generalization to some of these factors have presented a greater obstacle
than others, but existing work sheds little light on precisely how much each factor
contributes to the generalization gap. Towards an answer to this question, we study
imitation learning policies in simulation and on a real robot language-conditioned
manipulation task to quantify the difficulty of generalization to different (sets of)
factors. We also design a new simulated benchmark of 19 tasks with 11 factors
of variation to facilitate more controlled evaluations of generalization. From our
study, we determine an ordering of factors based on generalization difficulty, that
is consistent across simulation and our real robot setup.1

1 Introduction

Figure 1: Examples of our real robot environ-
ment. We systematically vary factors, including
the lighting condition, distractor objects, table
texture, background, and camera pose.

Robotic policies often fail to generalize to new envi-
ronments, even after training on similar contexts and
conditions. In robotic manipulation, data augmentation
techniques [21, 38, 12, 40, 11] and representations pre-
trained on large datasets [39, 27, 20, 32, 30, 25, 24]
improve performance but a gap still remains. Simultane-
ously, there has also been a focus on the collection and
curation of reusable robotic datasets [31, 23, 22, 6, 9],
but there lacks a consensus on how much more data,
and what kind of data, is needed for good generaliza-
tion. These efforts could be made significantly more
productive with a better understanding of which dimen-
sions existing models struggle with. Hence, this work
seeks to answer the question: What are the factors that
contribute most to the difficulty of generalization to new
environments in vision-based robotic manipulation?

To approach this question, we characterize environmental variations as a combination of independent
factors, namely the background, lighting condition, distractor objects, table texture, object texture,
table position, and camera position. This decomposition allows us to quantify how much each factor
contributes to the generalization gap, which we analyze in the imitation learning setting (see Fig. 3
for a summary of our real robot evaluations). While vision models are robust to many of these
factors already [15, 14, 10], robotic policies are considerably less mature, due to the smaller and
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less varied datasets they train on. In robot learning, data collection is largely an active process,
in which robotics researchers design and control the environment the robot interacts with. As a
result, naturally occurring variations, such as different backgrounds, are missing in many robotics
datasets. Finally, robotics tasks require dynamic, multi-step decisions, unlike computer vision tasks
such as image classification. These differences motivate our formal study of these environment
factors in the context of robotic manipulation. In our study, we evaluate a real robot manipulator
on over 20 test scenarios featuring new lighting conditions, distractor objects, backgrounds, table
textures, and camera positions. We also design a suite of 19 simulated tasks, equipped with 11
customizable environment factors, which we call Factor World, to supplement our study. With over
100 configurations for each factor, Factor World is a rich benchmark for evaluating generalization,
which we hope will facilitate more fine-grained evaluations of new models, reveal potential areas of
improvement, and inform future model design.

2 Related Work
Datasets and benchmarks. Existing robotics datasets exhibit rich diversity along multiple dimen-
sions, including objects [18, 6, 9, 2], domains [6, 40, 9], and tasks [31, 23, 22]. However, collecting
high-quality and diverse data at scale is still an unsolved challenge, which motivates the question of
how new data should be collected given its current cost. The goal of this study is to systematically
understand the challenges of generalization to new objects and domains and, through our findings,
inform future data collection strategies. Simulation can also be a useful tool for understanding the
scaling relationship between data diversity and policy performance, as diversity in simulation comes at
a much lower cost [34, 26, 4, 16]. Many existing benchmarks aim to study exactly this [41, 5, 33, 37];
these benchmarks evaluate the generalization performance of control policies to new tasks [41, 5]
and environments [33, 37]. KitchenShift [37] is the most related to our contribution Factor World,
benchmarking robustness to shifts like lighting, camera view, and texture. However, Factor World
contains a more complete set of factors (11 versus 7 in KitchenShift) with many more configurations
of each factor (over 100 versus fewer than 10 in KitchenShift).

Generalization studies. Several prior works have studied the robustness of robotic policies to
different environmental shifts, such as harsher lighting, new backgrounds, and new distractor ob-
jects [17, 37, 2, 43]. Many interesting observations have emerged from them, such as how mild
lighting changes have little impact on performance [17] and how new backgrounds (in their case, new
kitchen countertops) have a bigger impact than new distractor objects [2]. However, these findings
are often qualitative or lack specificity. For example, the performance on a new kitchen countertop
could be attributed to either the appearance or the height of the new counter. A goal of our study is to
formalize these prior observations through systematic evaluations and to extend them with a more
comprehensive and fine-grained set of environmental shifts.

3 Environment Factors
To draw more robust conclusions, our study is conducted across three different domains: on a real
robot and in the Factor World and KitchenShift [37] simulators. On the real robot and in KitchenShift,
we use pre-existing datasets to understand how models trained on them are impacted by factored
variations. Importantly, the environmental factors and distributions over them are not designed by
us, and thus are representative of experimental setups studied in robotics research. To augment
these domains, we also design Factor World which allows easier control over individual factors
and generation of datasets with specific factor distributions. See App. A for more details on the
implementation of the environment factors in simulation.

3.1 Real Robot Manipulation

In our real robot evaluations, we study: lighting condition, distractor objects, background, table
texture, and camera pose. In addition to selecting factors that are specific and controllable, we also
take inspiration from prior work, which has studied robustness to many of these shifts [17, 37, 2],
thus signifying their relevance in real-world scenarios. Our experiments are conducted with mobile
manipulators. The robot has a right-side arm with seven DoFs, gripper with two fingers, mobile base,
and head with integrated cameras. The environment, visualized in Fig. 1, consists of a cabinet top that
serves as the robot workspace and an acrylic wall that separates the workspace and office background.
To control the lighting condition in our evaluations, we use several bright LED light sources with
different colored filters to create colored hues and new shadows. We introduce new table textures
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Figure 2: Factor World, a suite of 19 visually diverse robotic manipulation tasks. Each task can be configured
with multiple factors of variation such as lighting; texture, size, shape, and initial position of objects; texture of
background (table, floor); position of the camera and table relative to the robot; and distractor objects.

(a) (b) (c) (d)
Figure 4: (a) Generalization gap under shifts to individual factor in Factor World. (b) Generalization gap versus
the radius of the range that camera and table positions are sampled from, in Factor World. (c) Performance on
pairs of factors, reported as the percentage difference relative to the harder factor of the pair, in Factor World. All
results are averaged across the 3 simulated tasks with 5 seeds for each task. Error bars represent standard error of
the mean. (d) Generalization gap with data augmentations, pretrained representations, and different architectures
in Factor World. Lower is better. Results are averaged across the 7 factors, 3 tasks, and 5 seeds for each task.

and backgrounds by covering the cabinet top and acrylic wall, respectively, with patterned paper. We
shift the camera pose by changing the robot’s head orientation. Due to the impracticality of studying
factors like the table position and height, we reserve them for our simulated experiments.

4 Experimental Results
Our experiments aim to answer the following questions. How much does each environment factor
contribute to the generalization gap? (Sec. 4.1) What effects do data augmentation, pretrained
representations, and model architecture have on the generalization performance? (Sec. E.2) How do
different data collection strategies, such as prioritizing visual diversity in the data, impact downstream
generalization? (Sec. E.3) We also study different image resolutions and control frequencies. The
results of these ablations are on the website.

4.1 Impact of Environment Factors on Generalization

Figure 3: Success rates on different shifts across 3
domains. Object texture is not evaluated on the robot.

Individual factors. We begin our real robot
evaluation by benchmarking the model’s per-
formance on the set of six training tasks, with
and without shifts. Without shifts, the policy
achieves an average success rate of 91.7%. Our
results with shifts are presented in Fig. 7, as the
set of green bars. We find that the new back-
grounds have little impact on the performance
(88.9%), while new distractor objects and new
lighting conditions have a slight effect, decreas-
ing success rate to 80.6% and 83.3% respec-
tively. Finally, changing the table texture and camera orientation causes the biggest drop, to 52.8%
and 45.8%, as the entire dataset uses a fixed head pose. Since we use the same patterned paper to
introduce variations in backgrounds and table textures, we can directly compare these two factors,
and conclude that new textures are harder to generalize to than new backgrounds.

Fig. 4a compares the generalization gap due to each individual factor on Factor World. We plot this as
a function of the number of training environments represented in the dataset, where an environment
is parameterized by the sampled value for each factor of variation. The success rates under individual
factor shifts in KitchenShift are visualized in Fig. 3. Consistent across simulated and real-world
results, new backgrounds, distractors, and lighting are easier factors to generalize to, while new
table textures and camera positions are harder. In Factor World, new backgrounds are harder than
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distractors and lighting, in contrast to the real robot results, where they were the easiest. This may be
because the real robot dataset contains a significant amount of background diversity, relative to the
lighting and distractor factors, as described in Sec. B.1. In Factor World, we additionally study object
textures and table positions, including the height of the table. New object textures are about as hard
to overcome as camera positions, and new table positions are as hard as table textures. Fortunately,
the generalization gap closes significantly for all factors, from a maximum gap of 0.4 to less than
0.1, when increasing the number of training environments from 5 to 100. Notably, table textures are
easier in KitchenShift compared to Factor World and the real robot. This is likely because while the
texture of the counter changes, the texture of the stovetop, on which the kettle lies, does not.

Pairs of factors. Next, we evaluate with respect to pairs of factors to understand how they interact,
i.e., whether generalization to new pairs is harder (or easier) than generalizing to one of them. On
the real robot, we study the factors with the most diversity in the training dataset: table texture +
distractors and table texture + background. Introducing new background textures or new distractors
on top of a new table texture does not make it any harder than the new table texture alone (green bars
in Fig. 7). The success rate with new table texture + background is 55.6% and with new table texture
+ distractors is 50.0%, comparable to the evaluation with only new table textures, which is 52.8%.

In Factor World, we evaluate all 21 pairs, and report the success rate gap, normalized by the harder of
the two factors. Concretely, this metric is defined as (PA+B −min(PA, PB)) /min(PA, PB), where
PA is the success rate under shifts to factor A, PB is the success rate under shifts to factor B, and
PA+B is the success rate under shifts to both. Most pairs of factors do not have a compounding
effect on generalization performance. For 16 of 21 pairs, the relative percentage difference in
the success rate lies between −6% and 6%. In other words, generalizing to the combination of
two factors is not significantly harder or easier than individual factors. In Fig. 4c, we visualize the
performance difference for the remaining 5 factor pairs that lie outside of this (−6%, 6%) range (see
website for results with all factor pairs). Interestingly, the following factors combine synergistically,
making it easier to generalize to compared to the (harder of the) individual factors: object texture +
distractor and light + distractor. This result suggests these factors can be studied independently of
one another, and improvements with respect to one factor may carry over to multiple factor shifts.

5 Discussion
In this work, we studied the impact of different environmental variations on generalization perfor-
mance. We determined an ordering of the environment factors in terms of generalization difficulty,
that is consistent across simulation and our real robot setup, and quantified the impact of different
solutions like data augmentation. Notably, many of the solutions studied were developed for computer
vision tasks like image classification. While some of them transferred well to the robotic imitation
learning setting, it may be fruitful to develop algorithms that prioritize this setting and its unique con-
siderations, including the sequential nature of predictions and the often continuous, multi-dimensional
action space in robotic setups. We hope this work encourages researchers to develop solutions that
target the specific challenges in robotic generalization identified by our work.
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A Environment Factors
Factor World. We implement the environmental shifts on top of Meta World [41]. While Meta
World is rich in diversity of control behaviors, it lacks diversity in the environment, placing the same
table at the same position against the same background. Hence, we implement 11 different factors of
variation, visualized in Fig. 2 and fully enumerated on the supplementary website. These include
lighting; texture, size, shape, and initial position of objects; texture of the table and background; the
camera pose and table position relative to the robot; the initial arm pose; and distractor objects. In our
study, we exclude the object size and shape, as an expert policy that can handle any object is more
difficult to design, and the initial arm pose, as this can usually be fixed whereas the same control
cannot be exercised over the other factors, which are inherent to the environment.

Textures (table, floor, objects) are sampled from 162 texture images (81 for train, 81 for eval) and
continuous RGB values in [0, 1]3, which modifies the texture image. Distractor objects are sampled
from 170 object meshes (100 for train, 70 for eval) in Google’s Scanned Objects Dataset [42, 8]. For
lighting, we sample continuous ambient and diffuse values in [0.2, 0.8]. Changes in camera and table
positions are sampled from [−0.025, 0.025] meters. While fixing the initial position of an object
across trials is feasible with a simulator, it is generally difficult to precisely replace an object to its
original position in physical setups. Thus, we randomize the initial position of the object (between
[−0.1, 0.1] meters) in each episode in the experiments.

KitchenShift [37]. In addition to Factor World, we examine a second simulated environment,
KitchenShift. KitchenShift modifies Franka Kitchen with variations to the lighting, camera view, and
textures (object, counter, and floor). There are 4 lighting settings, 10 camera positions, 4 counter
textures, 7 floor textures, 4 microwave models, 6 cabinet textures, and 8 kettle models. The microwave
and cabinets represent distractors, while the kettle models are different object textures. The table
position is fixed in KitchenShift.

B Study Design
We seek to understand how each factor in Sec. 3 contributes to the difficulty of generalization. In
our pursuit of an answer, we aim to replicate, to the best of our ability, the scenarios that robotics
practitioners are likely to encounter in the real world. We therefore start by selecting a set of tasks
commonly studied in the robotics literature and the data collection procedure (Sec. B.1). Then, we
describe the algorithms studied and our evaluation protocol (Sec. B.2).

B.1 Control Tasks and Datasets

Real robot. We study the language-conditioned manipulation problem from [2], specifically, focusing
on the “pick” skill for which the most data is available. The goal is to pick up the object specified
in the language instruction. For example, when given the instruction “pick pepsi can”, the robot
should pick up the pepsi can among the distractor objects from the countertop (Fig. 1). We select six
objects for our evaluation; all “pick” tasks can be found on the website. The observation consists
of 300 × 300 RGB image observations from the last six time-steps and the language instruction,
while the action controls movements of the arm (xyz-position, roll, pitch, yaw, opening of the
gripper) and movements of the base (xy-position, yaw). The actions are discretized along each of
the 10 dimensions into 256 uniform bins. The real robot manipulation dataset consists of over 115K
human-collected demonstrations, collected across 13 skills, with over 100 objects, three tables, and
three locations. The dataset is collected with a fixed camera orientation but randomized initial base
position in each episode.

Simulation. While Factor World supports 19 manipulation tasks, our study focuses on 3 tasks
commonly studied in robotics: pick-place (Fig. 2a), bin-picking (Fig. 2b), and door-open (Fig. 2c). In
pick-place, the agent must move a block to the goal among a distractor object placed in the scene. In
bin-picking, the agent must move a block from the right-side bin to the left-side bin. In door-open, the
agent must pull on the door handle. We use scripted expert policies from the Meta World benchmark,
which compute expert actions given the object poses, to collect demonstrations in each simulated
task. The agent is given 84× 84 RBG image observations, the robot’s end-effector position from the
last two time-steps, and the distance between the robot’s fingers from the last two time-steps. The
actions are the desired change in the 3D-position of the end-effector and whether to open or close the
gripper. In KitchenShift, we study the kettle task, which requires moving the kettle from the bottom
to the top burner. See [37] for environment details.
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(a) Pepsi, water bottle (b) Blue chip bag (c) Blue plastic bottle (d) Green jalapeno chip bag (e) Oreo

Figure 5: The six pick tasks in our real robot evaluations.

B.2 Algorithms and Evaluation Protocol

The real robot manipulation policy uses the RT-1 architecture [2], which tokenizes the images,
text, and actions, attends over these tokens with a Transformer [36], and trains with a language-
conditioned imitation learning objective. In simulation, we equip vanilla behavior cloning with
several different methods for improving generalization. Specifically, we evaluate techniques for
image data augmentation (random crops and random photometric distortions) and evaluate pretrained
representations (CLIP [27] and R3M [24]) for encoding image observations. More details on the
implementation and training procedure can be found on the website.

Evaluation protocol. On the real robot task, we evaluate the policies on 2 new lighting conditions, 3
sets of new distractor objects, 3 new table textures, 3 new backgrounds, and 2 new camera poses. For
each factor of interest, we conduct 2 evaluation trials in each of the 6 tasks, and randomly shuffle
the object and distractor positions between trials. We report the success rate averaged across the
12 trials. To evaluate the generalization behavior of the trained policies in Factor World, we shift
the train environments by randomly sampling 100 new values for the factor of interest, creating 100
test environments. In KitchenShift, we evaluate on 1 lighting setting, 7 camera positions, 1 counter
texture, 4 floor textures, 1 microwave model, 3 cabinet textures, and 5 kettle models. We report the
average generalization gap, which is defined as PT − PF , where PT is the success rate on the train
environments and PF is the new success rate under shifts to factor F.

C Experimental Details
In this section, we provide additional details on the experimental setup and evaluation metrics.

C.1 Experimental Setup

Real robot tasks. We define six real-world picking tasks: pepsi can, water bottle, blue chip bag, green
jalapeno chip bag, and oreo, which are visualized in Fig. 5.

Factor World. The factors of variation implemented into Factor World are enumerated in Fig. 6. In
Table 1, we specify the ranges of the continuous-valued factors.

C.2 Dataset Details

Factor World datasets. In the pick-place task, we collect datasets of 2000 demonstrations, across
N = 5, 20, 50, 100 training environments. A training environment is parameterized by a collection
of factor values, one for each environment factor. We collect datasets of 1000 demonstrations for
bin-picking and door-open, which we empirically found to be easier than the pick-place task.

C.3 Evaluation Metrics

Generalization gap. Besides the success rate, we also measure the generalization gap which is defined
as the difference between the performance on the train environments and the performance on the
test environments. The test environments have the same setup as the train environments, except 1
(or 2 in the factor pair experiments) of the factors is assigned a new value. For example, in Fig. 3,
‘Background’ represents the change in success rate when introducing new backgrounds to the train
environments.

Percentage difference. When evaluating a pair of factors, we report the percentage differ-
ence with respect to the harder of the two factors. Concretely, this metric is computed as
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(a) Object position (b) Initial arm position

(c) Camera position (d) Table position

(e) Object size (f) Object texture

(g) Distractor objects & positions (h) Floor texture

(i) Table texture (j) Lighting

Figure 6: The 11 factors of variation implemented into Factor World, depicted for the pick-place environment.
Videos are available at: https://sites.google.com/view/factor-envs

Factor Parameters Narrow Medium Wide

Object position X-position [−0.05, 0.05] [−0.1, 0.1] -
Y-position [−0.05, 0.05] [−0.075, 0.075] -

Camera position

X-position [−0.025, 0.025] [−0.05, 0.05] [−0.075, 0.075]
Y-position [−0.025, 0.025] [−0.05, 0.05] [−0.075, 0.075]
Z-position [−0.025, 0.025] [−0.05, 0.05] [−0.075, 0.075]
q1 [−0.025, 0.025] [−0.05, 0.05] [−0.075, 0.075]
q2 [−0.025, 0.025] [−0.05, 0.05] [−0.075, 0.075]
q3 [−0.025, 0.025] [−0.05, 0.05] [−0.075, 0.075]
q4 [−0.025, 0.025] [−0.05, 0.05] [−0.075, 0.075]

Table position
X-position [−0.025, 0.025] [−0.05, 0.05] [−0.075, 0.075]
Y-position [−0.025, 0.025] [−0.05, 0.05] [−0.075, 0.075]
Z-position [−0.025, 0.025] [−0.05, 0.025] [−0.05, 0.025]

Table 1: Range for each continuous factor in meters. As a point of comparison for the position-based factors,
the table in the environment measures at 0.7m× 0.4m.
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(pA+B −min(pA, pB)) /min(pA, pB), where pA is the success rate under shifts to factor A, pA is
the success rate under shifts to factor B, and pA+B is the success rate under shifts to both.

D Implementation and Training Details
In this section, we provide additional details on the implementation and training of all models.

D.1 RT-1

Behavior cloning. We follow the RT-1 architecture that uses tokenized image and language inputs with
a categorical cross-entropy objective for tokenized action outputs. The model takes as input a natural
language instruction along with the 6 most recent RGB robot observations, and then feeds these
through pre-trained language and image encoders (Universal Sentence Encoder [3] and EfficientNet-
B3 [35], respectively). These two input modalities are fused with FiLM conditioning, and then
passed to a TokenLearner [28] spatial attention module to reduce the number of tokens needed for
fast on-robot inference. Then, the network contains 8 decoder only self-attention Transformer layers,
followed by a dense action decoding MLP layer. Full details of the RT-1 architecture that we follow
can be found in [2].

Data augmentations. Following the image augmentations introduced in Qt-Opt [19], we perform
two main types of visual data augmentation during training only: visual disparity augmentations
and random cropping. For visual disparity augmentations, we adjust the brightness, contrast, and
saturation by sampling uniformly from [-0.125, 0.125], [0.5, 1.5], and [0.5, 1.5] respectively. For
random cropping, we subsample the full-resolution camera image to obtain a 300× 300 random crop.
Since RT-1 uses a history length of 6, each timestep is randomly cropped independently.

Pretrained representations. Following the implementation in RT-1, we utilize an EfficientNet-B3
model pretrained on ImageNet [35] for image tokenization, and the Universal Sentence Encoder [3]
language encoder for embedding natural language instructions. The rest of the RT-1 model is
initialized from scratch.

D.2 Factor World

Behavior cloning. Our behavior cloning policy is parameterized by a convolutional neural network
with the same architecture as in [29] and in [37]: there are four convolutional layers with 32, 64,
128, and 128 4× 4 filters, respectively. The features are then flattened and passed through a linear
layer with output dimension of 128, LayerNorm, and Tanh activation function. The policy head is
parameterized as a three-layer feedforward neural network with 256 units per layer. All policies are
trained for 100 epochs.

Data augmentations. In our simulated experiments, we experiment with shift augmentations (analo-
gous to the crop augmentations the real robot policy trains with) from [38]: we first pad each side
of the 84× 84 image by 4 pixels, and then select a random 84× 84 crop. We also experiment with
color jitter augmentations (analogous to the photometric distortions studied for the real robot policy),
which is implemented in torchvision. The brightness, contrast, saturation, and hue factors are set to
0.2. The probability that an image in the batch is augmented is 0.3. All policies are trained for 100
epochs.

Pretrained representations. We use the ResNet50 versions of the publicly available R3M and
CLIP representations. We follow the embedding with a BatchNorm, and the same policy head
parameterization: three feedforward layers with 256 units per layer. All policies are trained for 100
epochs.

E Additional Experimental Results
In this section, we provide additional results from our simulated and real experiments.

E.1 Continuous Factors

The camera position and table position factors are continuous, unlike the other factors which are
discrete, hence the generalization gap with respect to these factors will depend on the range that we
train and evaluate on. We aim to understand how much more difficult training and generalizing to
a wider range of values is, by studying the gap with the following range radii: 0.025, 0.050, and
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Figure 7: Performance of real-robot policies trained without data augmentation (blue), with random photometric
distortions (red), with random crops (yellow), and with both (green). The results discussed in Sec. 4.1 are with
“Both”. “Original” is the success rate on train environments, “Background” is the success rate when we perturb
the background, “Distractors” is where we replace the distractors with new ones, etc. Error bars represent
standard error of the mean. We also provide the average over all 7 (sets of) factors on the far right.

0.075 meters. For both camera-position and table-position factors, as we linearly increase the radius,
the generalization gap roughly doubles (see Fig. 4b). This pattern suggests: (1) performance can
be dramatically improved by keeping the camera and table position as constant as possible, and (2)
generalizing to wider ranges may require significantly more diversity, i.e., examples of camera and
table positions in the training dataset. However, in Sec. E.2, we see that existing methods can address
the latter issue to some degree.

E.2 Augmentations, Pretrained Representations, Architectures

Data augmentation. We study 2 forms of augmentation: (1) random crops and (2) random photo-
metric distortions. The photometric distortion randomly adjusts the brightness, saturation, hue, and
contrast of the image, and applies random cutout and random Gaussian noise. Fig. 7 and Fig. 4d
show the results for the real robot and Factor World respectively. On the robot, crop augmentation
improves generalization along multiple environment factors, most significantly to new camera
positions and new table textures. While the improvement on a spatial factor like camera position
is intuitive, we find the improvement on a non-spatial factor like table texture surprising. More in
line with our expectations, the photometric distortion augmentation improves the performance on
texture-based factors like table texture in the real robot environment and object, table and background
in the simulated environment (see the website for Factor World results by factor).

Pretrained representations. On the real robot, we evaluate the RT-2 policy [1], which finetunes
PaLI-55B on a robot dataset. RT-2 has been shown to generalize better to new objects, instructions,
and, most relevant to our work, environments. Importantly, the new “environments” that [1] evaluate
include a kitchen and desk, which present new objects and workstation heights, among many other
factors. Hence, we are interested in evaluating RT-2 along factored environment variations. As shown
in Fig. 8, the generalization performance of RT-2 (green) does not improve upon RT-1 (yellow).
Interestingly, the success rate of RT-2 on all factors is similar, except on camera positions.

We also study (1) R3M [24] and (2) CLIP [27] in Factor World. While these representations are
trained on real, non-robotics datasets, policies trained on top of them have been shown to perform
well in (simulated and real) robotics environments from a small amount of data. However, while they
achieve good performance on training environments, they struggle to generalize to new but similar
environments, leaving a large generalization gap across many factors (see Fig. 4d). Though, we find
that CLIP does improve upon a trained-from-scratch CNN with new object textures.

Model architectures. In addition to the CNN, we also evaluate policies trained with a ResNet [13]
and a Vision Transformer (ViT) [7] encoder. Both encoders succeed under more training environments
(see Fig. 4d). However, with fewer train environments, the ViT encoder tends to outperform the CNN
variants, while the ResNet encoder performs the worst of the three. We also find a similar ordering of
factors across architectures (see the website for results by factor), with one main exception: ResNets
generalize to camera positions better relative to other factors.

E.3 Investigating Different Strategies for Data Collection

Augmenting visual diversity with out-of-domain data. As described in Sec. B.1, our real robot
dataset includes demonstrations collected from other domains and tasks like opening a fridge and
operating a cereal dispenser. Only 35.2% of the 115K demonstrations are collected in the same
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Figure 8: Performance of RT-1 policies trained with in-domain data only (blue), a small version of the in- and
out-of-domain dataset (red), and the full version of the in- and out-of-domain dataset (yellow). The RT-2 policy
is pretrained and co-finetuned on Internet-scale data (green). Error bars represent standard error of the mean. We
also provide the average over all 7 (sets of) factors on the far right.

Figure 9: Generalization gap for different data augmentations and pretrained representations in Factor World.
Subplots share the same x- and y-axes. Results are averaged across the 3 simulated tasks with 5 seeds for each
task. Error bars represent standard error of the mean.

domain as our evaluations. While the remaining demonstrations are out of domain and focus on
other skills such as drawer manipulation, they add visual diversity, such as new objects and new
backgrounds, and demonstrate robotic manipulation behavior, unlike the data that R3M and CLIP
pretrain on. We consider the dataset with only in-domain data, which we refer to as In-domain only. In
Fig. 8, we compare In-domain only (blue) to the full dataset, which we refer to as With out-of-domain
(full) (yellow). While the performance on the original six training tasks is comparable, the success
rate of the In-domain only policy drops significantly across the different environment shifts, and
the With out-of-domain (full) policy is more successful across the board. Unlike representations
pretrained on non-robotics datasets (Sec. E.2), out-of-domain robotics data can improve in-
domain generalization.

Prioritizing visual diversity with out-of-domain data. We also consider a uniformly subsampled
version of the With out-of-domain (full) dataset, which we refer to as With out-of-domain (small).
With out-of-domain (small) has the same number of demonstrations as In-domain only, allowing us to
directly compare whether the in-domain data or out-of-domain data is more valuable. We emphasize
that With out-of-domain (small) has significantly fewer in-domain demonstrations of the “pick” skill
than In-domain only. Intuitively, one would expect the in-domain data to be more useful. However,
in Fig. 8, we see that the With out-of-domain (small) policy (red) performs comparably with the
In-domain only policy (blue) across most of the factors. The main exception is scenarios with new
distractors, where the In-domain only policy has a 75.0% success rate while the With out-of-domain
(small) policy is successful in 44.4% of the trials. Thus, if a particular application demands good
generalization to distractors or table textures over other factors, in-domain data should be prioritized.
However, if we only consider the average performance over all factors, collecting out-of-domain data
does not harm performance.
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Figure 10: Generalization gap on all pairs of factors, reported as the percentage difference relative to the harder
factor of the pair. Results are averaged across the 3 simulated tasks with 5 seeds for each task.

E.4 Simulation: Factor Pairs

In Fig. 10, we report the results for all factor pairs, a partial subset of which was visualized in Fig. 4c.
In Fig. 4c, we selected the pairs with the highest magnitude percentage difference, excluding the
pairs with error bars that overlap with zero.

E.5 Simulation: Success Rates

In Fig. 11, we report the performance of policies trained with data augmentations and with pretrained
representations, in terms of raw success rates. We find that for some policies, the performance on the
train environments (see “Original”) degrades as we increase the number of training environments.
Nonetheless, as we increase the number of training environments, we see higher success rates on
the factor-shifted environments. However, it may be possible to see even more improvements in the
success rate with larger-capacity models that fit the training environments better.
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Figure 11: Success rates of simulated policies with data augmentations and with pretrained representations.
Results are averaged over the 3 simulated tasks, with 5 seeds run for each task.
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