
Vision-Language Models Provide Promptable
Representations for Reinforcement Learning

William Chen, Oier Mees, Aviral Kumar, Sergey Levine
U.C. Berkeley

Abstract

Intelligent beings have the ability to quickly learn new behaviors and tasks by
leveraging background world knowledge. We would like to endow RL agents
with a similar ability to use contextual prior information. To this end, we propose
a novel approach that uses the vast amounts of general-purpose, diverse, and
indexable world knowledge encoded in vision-language models (VLMs) pre-trained
on Internet-scale data to generate text in response to images and prompts. We
initialize RL policies with VLMs by using such models as sources of promptable
representations: embeddings that are grounded in visual observations and encode
semantic features based on the VLM’s internal knowledge, as elicited through
prompts that provide task context and auxiliary information. We evaluate our
approach on RL tasks in Minecraft and find that policies trained on promptable
embeddings significantly outperform equivalent policies trained on generic, non-
promptable image encoder features and instruction-following methods. In ablations,
we find that VLM promptability and text generation both are important in yielding
good representations for RL. Finally, we give a simple method for evaluating
prompts used by our approach without running expensive RL trials, ensuring that it
extracts task-relevant semantic features from the VLM.

1 Introduction
Embodied decision-making often requires representations informed by extensive world knowledge for
perceptual grounding, planning, and control. Humans can rapidly learn to perform sensorimotor tasks
by drawing on prior knowledge, which might be high-level and abstract (“If I’m cooking something
that needs milk, the milk is probably in the refrigerator”) or grounded and low-level (e.g., what
refrigerators and milk look like). These capabilities would prove highly beneficial for reinforcement
learning (RL) too: we aim for our agents to interpret tasks in terms of concepts that can be reasoned
about with relevant prior knowledge and grounded with previously-learned representations, thus
enabling more efficient learning. However, doing so requires a condensed source of general world
knowledge, captured in a form that allows us to specifically index into and access task-relevant
information. Therefore, we need representations that are contextual, such that agents can use a
concise task context to draw out relevant background knowledge, abstractions, and grounded features
that aid it in acquiring a new behavior.

One way to do this is with pre-trained foundation models. Transformer-based language models
(LMs) and vision-language models (VLMs) are trained on Internet-scale data to enable generalization
in downstream tasks requiring facts or common sense. These successes have seen some transfer
to embodied control, with (V)LMs being used to reason about goals to produce executable plans
[3] or as pre-trained encoders of useful information (like instructions [25] or feedback [37]) that
the policy utilizes. Both of these paradigms have major limitations: actions generated by LMs
are often not appropriately grounded and (V)LMs are often only suited to producing subtasks, not
low-level control signals. On the other hand, using (V)LMs to simply encode inputs under-utilizes
their knowledge and reasoning abilities, instead focusing on producing embeddings which reflect
language’s compositionality. This motivates the development of an algorithm for learning to produce
low-level actions that are both grounded and that leverage (V)LMs’ knowledge and reasoning.

NeurIPS 2023 Workshop on Robot Learning: Pretraining, Fine-Tuning, and Generalization with Large Scale
Models, New Orleans, United States of America

Task
Env

"Spiders in Minecraft are
black. Is there a spider in

this image?"

"Yes, there is a spider."

Task-relevant Prompt Decoded Text

Learned
Policy

Observation

Promptable Representations

Frozen Vision-language Model

Rewards

Actions

Reinforcement
Learning Loop

(a) PR2L Instantiation.

RGB Observation

"Spiders in Minecraft are black. Is
there a spider in this image?"

Prompt

Image Tokens Prompt Tokens Decoded Tokens

Final Layer Representations

CLS...

Summary
Embed

Non-visual Observations
Yaw, Pitch, Position, Previous Action, ...

...

Policy Transformer Layer

Policy MLP

"Yes, there is a spider."

Decoded Text

Action

Image Encoder Tokenizer
Encoder Decoder

Vision-language Model Policy

Decoder

Frozen LLM Transformer Layer

Frozen LLM Transformer Layer

(b) PR2L Feature Extraction.

Figure 1: a)An example instantiation of PR2L. We query a VLM with a task-relevant prompt about
observations to produce promptable representations, which we train a policy on via RL. Rather than directly
asking for actions or specifying the task, the prompt enables indexing into the VLM’s prior world knowledge
to access task-relevant information. They also allow us to inject auxiliary information. b) Schematic of
how we extract task-relevant features from the VLM and use those representations in a policy that we
train with RL. These representations can incorporate task context from the prompt, while generic image
encoder representations cannot. As generative Transformers create variable length embeddings, the policy has a
Transformer layer that takes in the VLM representations and a “CLS” token to summarize the embeddings.

To this end, we introduce Promptable Representations for Reinforcement Learning (PR2L): a flexible
framework for guiding vision-language models to produce semantic features, which (i) integrate
observations with prior task knowledge, and (ii) are grounded into actions via RL (see Figure 1a).
We demonstrate our approach in Minecraft [10], as it has semantically-rich and visually-complex
tasks found in many practical, realistic, and challenging applications of RL. We find that, by using
our approach, we outperform equivalent policies trained on unpromptable visual embeddings or
with instruction-conditioning– both popular ways of using pre-trained image models and VLMs
respectively for control. Furthermore, we show that promptable representations extracted from
general-purpose VLMs can outperform domain-specific representations. Our results and ablations
highlight how visually-complex control tasks can benefit from accessing the knowledge captured
within VLMs via prompting. We present related works and preliminaries in Appendices A and B.

2 PR2L: Promptable Representations for RL
Our goal is to supplement RL with task-relevant information extracted from VLMs containing
general-purpose knowledge. One way to index into this information is by prompting the model to get
it to produce semantic information relevant to a given control task. Therefore, our approach queries a
VLM with a task-relevant prompt for each visual observation received by the agent, and receives both
the decoded text and, critically, the intermediate representations, which we refer to as promptable
representations. Even though the decoded text might often not be correct or directly actionable, our
key insight is that these VLM embeddings can still provide useful semantic features for training
control policies via RL. This recipe enables us to incorporate semantic information without the need
of re-training or fine-tuning a VLM to directly output actions, as proposed by [5]. Note that our
method is not an instruction-following method, and it does not require a description of the actual
task in natural language. Instead, our approach still learns control via RL, while benefiting from the
incorporation of background context. Additional details are presented in Appendix C.

Which parts of the network can be used as promptable representations? The VLMs we consider
are all based on the Transformer architecture [43], which treats the prompt, input image(s), and
decoded text as token sequences. This architecture provides a source of learned representations by
computing embeddings for each token at every layer based on the previous layer’s token embeddings.
In terms of the generative VLM formalism introduced prior, a Transformer-based VLM’s repre-
sentations ϕt(I, c, x1:t−1) consist of N embeddings per token (the outputs of the N self-attention
layers) in the input image I , prompt c, and decoded text x1:t−1. The decoder p(xt|ϕt) extracts the
final layer’s embedding of the most recent token xt−1, projecting it to a distribution over the token
vocabulary and allowing for it to be sampled. When given a visual observation and task prompt,
the tokens representing the prompt, image, and answer consequently encode task-relevant semantic
information. Thus, for each observation, we use the VLM to sample a response to the task prompt
x1:K ∼ p(x1:K |I, c). We then use some or all of these token embeddings ϕK(I, c, x1:t−1) as our
promptable representations and feed them, along with any non-visual observation information, as a
state representation into our downstream neural-network policy trained with RL. A schematic of our
approach is depicted in Figure 1b. Additional design choices are presented in Appendix D.

How do we design good prompts to elicit useful representations from VLMs? As we aim to
extract good state representations from the VLM for a downstream policy, we do not use instructions
or task descriptions, but task-relevant prompts: questions that make the VLM attend to and encode
semantic features in the image that are useful for the RL policy learning to solve the task. For
example, if the task is to find a toilet within a house, appropriate prompts include “Is there a toilet in

2

this image?” and “Am I likely to find a toilet here?” Intuitively, the answers to these questions help
determine appropriate actions, making the corresponding representations good for representing the
state for a policy. Answering the questions will require the VLM to attend to task-relevant features in
the scene, relying on the model’s internal conception of what things look like and common-sense
semantic relations. Note that prompts based on instructions or task descriptions do not enjoy the
above properties: while the goal of those prior methods is to be able to directly query the VLM for
the optimal action, the goal of task-relevant prompts is to produce a useful state representation, such
that running RL optimization on them can accelerate learning an optimal policy.
Evaluating and optimizing prompts for RL. Since the specific information and representations
elicited from the VLM are determined by the prompt, we want to design prompts that produce
promptable representations that maximize performance on the downstream task. The brute-force
approach would involve running RL with each candidate prompt to measure its efficacy, but this
would be computationally very expensive. In lieu of this, we evaluate candidate prompts on a small
dataset of observations labeled with semantic features of interest for the considered task. Example
features include whether task-relevant entities are in the image, the relative position of said entities,
or even actions. We test prompts by querying the VLM and checking how well the resulting decoded
text for each image matches ground truth labels. As this is only practical for small, discrete label
spaces that are easily expressed in words, we also draw from probing literature [39, 4] and see how
well a small model can fit the VLM’s embeddings to the labels, thus measuring how extractable said
features are from the promptable representations.
3 Experimental Evaluation
We wish to empirically show that one can prompt a VLM to elicit visually-grounded representations
that aid in a downstream control task, thus bringing the benefits of Internet-scale VLM pre-training
to RL. To this end, we design experiments to answer the following questions: (1) Can promptable
representations obtained via task-specific prompts enable more efficient learning than those of pre-
trained image encoders? (2) How does PR2L compare to approaches that directly “ask” the VLM to
generate the best possible actions for a task specified in the prompt? (3) How well do representations
obtained from a general-purpose VLM compare to other domain-specific representations, that are
also trained to associate visual observations with text, measured via control performance? For all
VLM experiments, we use the InstructBLIP instruction-tuned generative VLM [7].

3.1 Experimental Setup and Comparisons: Minecraft
To answer the questions listed above, we conduct experiments on the Minecraft domain, which
provides a number of control tasks that require associating visual observations with rich semantic
information to succeed. Moreover, since these observations are distinct from the images in the the
pre-training dataset of the VLM, succeeding on these tasks relies crucially on the efficacy of the
task-specific prompt in meaningfully affecting the learned representation, enabling us to stress-test our
method. For example, while spiders in Minecraft somewhat resemble real-life spiders, they actually
exhibit stylistic exaggerations, such as bright red eyes and a large black body. If the task-specific
prompt is indeed effective in informing the VLM of these facts, it would produce a representation
that is more conducive to policy learning and this would be reflected in task performance.
Minecraft tasks. We consider three Minecraft tasks provided by the MineDojo simulator [10]: (i)
combat spider, where the agent must find and defeat a nearby spider while equipped with a shield,
diamond sword, and diamond armor; (ii) milk cow, where the agent must milk a nearby cow by using
an equipped bucket; and (iii) shear sheep, where the agent must cut wool from a nearby sheep by
using equipped shears. We utilize proximal policy optimization (PPO) [36] as our base RL algorithm
for all approaches. Additional details are available in Appendix H.
Comparisons. To answer the questions posed at the start of this section, we compare our approach to:
(a) methods that do not utilize prompting to obtain representations of the observation, (b) a method
that directly “asks” the VLM to output the action to execute on the agent, inspired by the approach
of [5], and (c) running RL on the MineCLIP representation [10], which is obtained by fine-tuning
CLIP [33] on Minecraft data. Running RL on MineCLIP serves as an “oracle” comparison since this
representation was explicitly fine-tuned on a large dataset of Minecraft Youtube videos, whereas our
pre-trained VLM is frozen, and is not trained on any Minecraft video data. While [5] also fine-tune
the VLM backbone, we are unable to fine-tune this VLM using our computational resources. In
order to compensate for this difference, we do not just execute the action from the VLM, but train an
RL policy to map this decoded output action into a better action. Finally, comparison (a) does not
utilize the task-specific prompt altogether, instead using embeddings from the VLM’s image encoder.
While this representation of the observation is task-agnostic and still benefits from pre-training, PR2L

3

utilizes prompting to produce task-specific representations. We utilize the exact same architecture
and hyperparameters for this baseline as in PR2L. For more details, see Appendix I.

3.2 Designing Task-Specific Prompts for PR2L
Next, we discuss how to design the task-specific prompts for PR2L. These are not instructions or
task descriptions, but prompts that force the VLM to encode semantic information about the task in
its representation. The simplest relevant semantic feature for our tasks is the presence of the target
entity in a given visual observation. Thus, we choose “Is there a [x] in this image?” as the base of
our chosen prompt. We introduce two alternative prompts per task that prepend different amounts
of auxiliary information about the target entity. To choose between these prompts, we apply our
prompt evaluation strategy by measuring how well the VLM is able to decode the correct answer
to the question for annotated images in a small dataset. Full details can be found in Appendix G.
We observe that auxiliary text only helps with detecting spiders while systematically degrading the
detection of the other two entities. Our results show that this detection success rate is correlated with
performance of the RL policy for all tasks. Finally, we define additional prompts for comparison (b),
following the recipe for prompt design prescribed by [5]. In these prompts, we also provide a list of
allowed actions that the VLM can choose. All prompts are presented in Table 4.

3.3 Results

0

2

4

6

8

10

12

IQ
M

 R
et

ur
ns

Combat Spider Results

0

2

4

6

8

10
Milk Cow Results

2

4

6

8

Shear Sheep Results

0 25k 50k 75k 100k 125k 150k
Training Time Steps

0

50

100

150

IQ
M

 S
uc

ce
ss

 C
ou

nt

0 25k 50k 75k 100k
Training Time Steps

0

50

100

150

200

250

0 25k 50k 75k 100k
Training Time Steps

0

10

20

30

40

(a) VLM Image Encoder Baseline (b) RT-2-Style Baseline (c) MineCLIP Encoder (oracle) PR2L (ours)

Figure 2: Performance of PR2L vs other compar-
isons. Plots show IQM returns and success counts over
time for the Minecraft tasks for 16 trials. Shaded regions
represent one standard error. PR2L outperforms the
VLM image encoder and RT-2-style baselines, while be-
ing competitive with the domain-specific representations
produced by the MineCLIP encoder oracle.

For all of our results, we report the interquar-
tile mean (IQM) standard error of the returns
and successes over 16 seeds per condition for all
Minecraft tasks in Figure 2 and the probability
of improvement of PR2L over the VLM image
encoder baseline in Figure 6, following [2]. For
the returns, we apply exponential smoothing
to the episode’s returns with smoothing factor
α = 0.05. As shown in Figure 2, on all the
three tasks, PR2L significantly outperforms both
(a) using the VLM image encoder and (b) the
method that directly “asks” the VLM for the ac-
tion, inspired by RT-2. This shows how control
tasks can benefit from extracting prior knowl-
edge encoded in VLMs by prompting them with
task context and auxiliary information, even in single-task situations where the generalization proper-
ties of instruction-following methods do not apply. While PR2L does not outperform the “oracle”
MineCLIP policy on combat spider, it performs competitively or better than MineCLIP on the other
two tasks that we study, even though the latter is fine-tuned on Minecraft-specific data while Instruct-
BLIP is not. Furthermore, we hypothesize that MineCLIP outperforms PR2L on the spider task
because, out of all the entities that we study, Minecraft spiders are the most different visually from
real spiders, giving rise to comparatively poor representations in the VLM. Nevertheless, our results
in Figure 2 show that PR2L provides an effective approach to transform a general-purpose VLM into
a strong task-specific control policy that can often outperform policies trained on domain-specific
representations on a given task. We present ablation trials and a discussion in Appendices E and F.

References
[1] Ademi Adeniji, Amber Xie, Carmelo Sferrazza, Younggyo Seo, Stephen James, and Pieter

Abbeel. Language reward modulation for pretraining reinforcement learning, 2023.

[2] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G. Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice, 2022.

[3] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David,
Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel
Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano,
Kyle Jeffrey, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell
Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers,
Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,

4

Mengyuan Yan, and Andy Zeng. Do as i can and not as i say: Grounding language in robotic
affordances. 2022.

[4] Yonatan Belinkov and James Glass. Analysis methods in neural language processing: A survey,
2019.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk
Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2:
Vision-language-action models transfer web knowledge to robotic control, 2023.

[6] Arthur Bucker, Luis Figueredo, Sami Haddadin, Ashish Kapoor, Shuang Ma, Sai Vemprala, and
Rogerio Bonatti. Latte: Language trajectory transformer, 2022.

[7] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng
Wang, Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose
vision-language models with instruction tuning, 2023.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

[9] Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models, 2023.

[10] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge. In Neural Information Processing Systems,
2022, 2022.

[11] Jennifer Hu and Roger Levy. Prompt-based methods may underestimate large language models’
linguistic generalizations, 2023.

[12] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps
for robot navigation. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), London, UK, 2023.

[13] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents, 2022.

[14] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas
Jackson, Linda Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue:
Embodied reasoning through planning with language models, 2022.

[15] Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy, 2019. Association for Computational Linguistics.

[16] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation.
ACM Computing Surveys, 55(12):1–38, mar 2023.

[17] Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston,
Sheer El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam
Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion,

5

Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei,
Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. Language models (mostly) know what they know, 2022.

[18] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023.

[19] Belinda Z. Li, Maxwell Nye, and Jacob Andreas. Implicit representations of meaning in neural
language models, 2021.

[20] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models, 2023.

[21] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation, 2022.

[22] Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin
Wattenberg. Emergent world representations: Exploring a sequence model trained on a synthetic
task, 2023.

[23] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control, 2023.

[24] Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca
Dragan. Learning to model the world with language. 2023.

[25] Hao Liu, Lisa Lee, Kimin Lee, and Pieter Abbeel. Instruction-following agents with multimodal
transformer, 2023.

[26] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured
data, 2021.

[27] Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Yecheng Jason Ma, Claire Chen, Sneha
Silwal, Aryan Jain, Vincent-Pierre Berges, Pieter Abbeel, Jitendra Malik, Dhruv Batra, Yixin
Lin, Oleksandr Maksymets, Aravind Rajeswaran, and Franziska Meier. Where are we in the
search for an artificial visual cortex for embodied intelligence?, 2023.

[28] Oier Mees, Jessica Borja-Diaz, and Wolfram Burgard. Grounding language with visual af-
fordances over unstructured data. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), London, UK, 2023.

[29] Vivek Myers, Andre He, Kuan Fang, Homer Walke, Philippe Hansen-Estruch, Ching-An Cheng,
Mihai Jalobeanu, Andrey Kolobov, Anca Dragan, and Sergey Levine. Goal representations for
instruction following: A semi-supervised language interface to control, 2023.

[30] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A
universal visual representation for robot manipulation, 2022.

[31] Karthik Narasimhan, Regina Barzilay, and Tommi Jaakkola. Grounding language for transfer in
deep reinforcement learning, 2018.

[32] Norman Di Palo, Arunkumar Byravan, Leonard Hasenclever, Markus Wulfmeier, Nicolas Heess,
and Martin Riedmiller. Towards a unified agent with foundation models, 2023.

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

[34] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

[35] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models, 2022.

6

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[37] Pratyusha Sharma, Balakumar Sundaralingam, Valts Blukis, Chris Paxton, Tucker Hermans,
Antonio Torralba, Jacob Andreas, and Dieter Fox. Correcting robot plans with natural language
feedback. In Robotics: Science and Systems, 2022, 2023.

[38] Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with
latent language, 2022.

[39] Xing Shi, Inkit Padhi, and Kevin Knight. Does string-based neural MT learn source syntax? In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pages 1526–1534, November 2016.

[40] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Proceedings of the 5th Conference on Robot Learning (CoRL), 2021.

[41] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,
Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task
plans using large language models, 2022.

[42] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline, 2019.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[44] Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. Technical report, Microsoft, 2023.

[45] Gregor Wiedemann, Steffen Remus, Avi Chawla, and Chris Biemann. Does bert make any
sense? interpretable word sense disambiguation with contextualized embeddings, 2019.

[46] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent
Vanhoucke, and Pete Florence. Socratic models: Composing zero-shot multimodal reasoning
with language, 2022.

[47] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny Lee. Transporter
networks: Rearranging the visual world for robotic manipulation. Conference on Robot Learning
(CoRL), 2020.

A Related Works

Embodied (V)LM reasoning. Many recent works have leveraged (V)LMs as embodied reasoners
by treating them as priors over effective plans for a given goal. These works use the model’s
language modeling and auto-regressive generation capabilities to extract such priors as textual subtask
sequences [3, 14, 38] or code [23, 41, 46, 44], by effectively using the LM to decompose long-horizon
tasks into executable parts or instructions. These systems often need grounding mechanisms to ensure
feasibility of their plans (e.g., affordance estimators [3], scene captioners [46], or trajectory labelers
[32]). Furthermore, these works often assume access to low-level policies that can execute these
subtasks, such as skills to allow a robot to pick up objects [3, 23], which is often a strong assumption.
These methods generally do not address how such policies can be acquired, nor how these low-level
skills can themselves benefit from the prior knowledge in (V)LMs. Even works in this area that use
RL still use (V)LMs as state-dependent priors over reasonable high-level goals to learn [9]. This is a
key difference from our work: instead of considering priors on plans or goals, we rely on VLM’s
implicit knowledge of the world to extract representations which encode task-relevant information.
We train a policy to solve the task by converting these features into low-level actions via standard RL,
meaning the VLM does not need to know how to take actions for a task.

Embodied (V)LM pre-training. Other works use (V)LMs to embed useful information like in-
structions [25, 29, 26, 28], feedback [37, 6], reward specifications [10], and data for world modeling

7

[24, 31]. These works use (V)LMs as encoders that capture the compositional semantic structure of
input text and images, which often aids in generalization: a instruction-conditioned model may never
have learned to grasp apples (but was trained to grasp other objects), but by interacting with them in
other ways and receiving associated language descriptions, the model might learn what an apple is
and its physical properties, thus potentially being able to grasp it zero-shot. In contrast, our method’s
primary advantage is that the resulting embeddings are informed by world knowledge, both from
prompting and pretraining. Rather than just specifying that the task is to acquire an apple, we ask a
VLM to parse observations into directly relevant features, like whether there is an apple in the image
or if the observed location is likely to contain apples – all information that is useful for RL, even in
single-task settings. Thus, we use VLMs to help RL solve new tasks, rather than just to learn how to
perform instruction following.

We note these two categories are not binary. For instance, [5] use VLMs to understand instructions,
but also reasoning (e.g., figuring out the “correct bowl” for a strawberry is one that contains fruits);
[32] use a LM to reason about goal subtasks and a VLM to understand when a trajectory matches a
subtask description, automating the demonstration collection/labeling of [3], while [1] use a similar
framework to pretrain a language-conditioned RL policy that can then be transferred to learning
other tasks; and [40] use CLIP to merge vision and text instructions directly into a form that a
Transporter [47] policy can operationalize. Nevertheless, these works primarily focus on instruction
following in robot manipulation domains. In contrast, our approach prompts a VLM to supplement
RL with representations of world knowledge, rather than relying on commands or task specifications.
In addition, except for [1], these works focus on imitation learning, assuming access to existing
demonstrations for policy training and fine-tuning, which we forgo by using online RL.

B Preliminaries

Reinforcement learning task and objective. We adopt the standard deep RL partially-observed
Markov decision process (POMDP) framework, where the objective is to find parameters of policy
that defines a distribution over trajectories with maximum expected returns.

Vision-language models. In this work, we utilize generative VLMs (like [21, 20, 7]): models that
generate language in response to an image and a text prompt passed as input. This is in contrast to
other designs of combining vision and language that either generate images or segmentation [35, 18]
and CLIP [33]. Formally, the VLM enables sampling from p(x1:K |I, c), where x1:K represents the
K tokens of the output, I is the input image(s), c is the prompt, and p is the distribution over natural
language responses produced by the VLM on those inputs. Typically, the VLM is pre-trained on
tasks that require building association between vision and language such as image captioning, visual-
question answering, or instruction-following. While these differ from the “pure” language modeling
objective, all these tasks nonetheless require learning to attend to certain semantic features of input
images depending on the given prompt. For auto-regressive generative VLMs, this distribution is
factorized as

∏
t p(xt|I, c, x1:t−1). Typical architectures for generative VLMs parameterize these

distributions using weights that define a representation ϕt(I, c, x1:t−1), which depends on the image
I , the prompt c, and the previously emitted tokens, and a decoder p(xt|ϕt(I, c, x1:t−1)), which
defines a distribution over the next token.

C Motivation for Promptable Representations

Why do we choose to use VLMs in this way, instead of the many other ways of using them for
control? In principle, one can directly query a VLM to produce actions for a task given a visual
observation. While this may work when high-level goals or subtasks are sufficient, VLMs are
empirically bad at yielding the kinds of low-level actions used commonly in RL [13]. As VLMs are
mainly trained to follow instructions and answer questions about visual aspects of images, it is more
appropriate to use these models to extract semantic features about observations that are conducive to
being linked to actions. Specifically, we elicit features that are useful for the downstream task by
querying these VLMs with task-relevant prompts that provide contextual task information, thereby
causing the VLM to attend to and interpret appropriate parts of observed images. Extracting these
features naïvely by only using the VLM’s decoded text has its own challenges: such models often
suffer from both hallucinations [16] and an inability to report what they “know” in language, even
when their embeddings contain such information [17, 11]. However, even when the text is bad, the

8

0 25k 50k 75k 100k 125k 150k
Training Time Steps

0

20

40

60

80

100

IQ
M

 S
uc

ce
ss

 C
ou

nt

Combat Spider Ablation Results

0 25k 50k 75k 100k
Training Time Steps

0

50

100

150

200

Milk Cow Ablation Results

0 25k 50k 75k 100k
Training Time Steps

0

10

20

30

Shear Sheep Ablation Results

No Prompt No Generation Change Auxiliary Text (a) VLM Image Encoder Baseline PR2L (ours)

Figure 3: Ablation studies on all Minecraft tasks with the VLM image encoder baseline (blue) and our full
approach (red), as shown in Figure 2. All ablations achieve worse performance than PR2L, highlighting the
importance of each ablated component (the prompt, VLM generation, or inclusion of auxiliary text). Curves are
IQM success counts and shaded regions are the standard error. We apply a third-order Savitsky-Golay filter with
window size 10 to improve readability. We present additional metrics in Figure. 5 in the Appendix.

underlying representations still contain valuable granular world information that is potentially lost in
the projection to language [19, 45, 12, 22]. Thus, we disregard the generated text in our approach
and instead provide our policy the embeddings produced by the VLM in response to prompts asking
about relevant semantic features in observations instead.

D Design Choices for Instantiating PR2L

To instantiate our method, several design choices must be made. First, the representations of the
VLM’s decoded text are dependent on the chosen decoding scheme. E.g., greedy decoding is fast
and deterministic, but may yield low-probability decoded tokens; beam search improves on this by
considering multiple “branches” of decoded text, at the cost of requiring more compute time (for
potentially small improvements); lastly, sampling-based decoding can quickly yield estimates of the
maximum likelihood answer, but at the cost of introducing stochasticity, which may increase variance.
Given the inherent high-variance of our tasks (due to sparse rewards and partial observability) and
the computational expense of VLM decoding, we opt for greedy decoding.

Second, one must choose which VLM layers’ embeddings to utilize in the policy. While theoretically,
all layers of the VLM could be used, pre-trained Transformer models tend to encode valuable high-
level semantic information in their later layers [42, 15]. Thus, we opt to only feed the final two layers’
representations into our policy. It’s worth noting that unlike conventional fixed-dimensional state
representations used in RL, these representation sequences are of variable length. To accommodate
this, we incorporate an encoder-decoder Transformer layer in the policy. At each time step in a
trajectory, this Transformer receives variable-length VLM representations, which are attended to
and converted into a fixed-length summarization by the embeddings of a learned “CLS” token [8]
in the decoder (green in Figure 1b). We also note that this policy can receive the observed image
directly (e.g., after being tokenized and embedded by the image encoder), so as to not lose any visual
information from being processed by the VLM. However, we choose not to do this in our experiments
in order to more clearly isolate and demonstrate the usefulness of the VLM’s representations in
particular.

Finally, while it is possible to fine-tune the VLM for RL end-to-end with the policy, akin to what was
proposed by [5], this approach incurs substantial compute, memory, and time overhead, particularly
with larger VLMs. Nonetheless, we find that our approach performs better than not using the language
and prompting components of the VLM. This holds true even when the VLM is frozen, and only
the policy is trained via RL, or when the decoded text occasionally fails to answer the task-specific
prompt correctly.

E Ablations

We run several ablation experiments to isolate and understand the importance of various components
of PR2L towards extracting good promptable representations for RL. First, we run PR2L with no
prompt to see if prompting with task context actually tailors the VLM’s generated representations
favorably towards the target task, improving over an unprompted VLM. Note that this is not the same

9

as simply utilizing the image encoder (comparison (a)) alone, since this ablation decodes through the
VLM, just with an empty prompt. Second, we run PR2L with our chosen prompt, but no generation
of text – i.e., the policy only receives the embeddings associated with the image and prompt (the
left and middle red groupings of tokens at the top of Figure 1b, but not the right-most group). This
tests the hypothesis that representations of generated text might make certain task-relevant features
more salient. For instance, the embeddings for “Spiders in Minecraft are black. Is there a spider in
this image?”, might not encode the presence of a spider as clearly as if the VLM generates “Yes”
in response, impacting downstream performance. Finally, to check if our prompt evaluation and
optimization strategy provides a good proxy for downstream task performance while tuning prompts
for P2RL, we run PR2L with alternative prompts that were not predicted to be the best, as per our
criterion in Appendix G. Concretely, this amounts to removing the auxiliary text from the prompt for
combat spider and including it for milk cow and shear sheep.

Results from these ablation experiments are presented in Figure 3. In general, all of these ablations
perform worse than PR2L. For milk cow, we note the most performant ablation is no generation,
perhaps because the generated text is often wrong – among the chosen prompts, it yields the lowest
true positive and negative rates for classifying the presence of its corresponding target entity (see
Table 1 in Appendix G), though adding auxiliary text makes it even worse, perhaps explaining why
milk cow experienced the largest performance decrease from adding it back in. Regardless, based on
the overall trends, we conclude that (i) the promptable and generative aspects of VLM representations
are important for extracting good features for control tasks and (ii) our simple evaluation scheme is
an effective proxy measure of how good a prompt is for PR2L.

F Discussion

In this work, we propose Promptable Representations for Reinforcement Learning (PR2L), a method
for extracting semantic features from images by prompting VLMs with task context, thereby making
use of their extensive general-purpose prior knowledge. We demonstrate this approach in Minecraft,
a domain that benefits from interpreting its visually-complex observations in terms of semantic
concepts that can be related to task context. This general framework for using VLMs for control tasks
opens many new paths of research. For example, prompts are currently hand-crafted based on the
user’s conception of useful features for the task. While coming up with effective prompts for our
tasks in particular was not difficult, the process of generating and efficiently evaluating/optimizing
them could be automated, which we leave for future works. Additionally, running PR2L with offline
RL may provide even more in-depth insights into the benefits of this approach, since it removes the
need for exploration (which we do not expect PR2L to help with). Finally, while we consider VLMs
as our source of promptable representations, other types of promptable foundation models pre-trained
with more sophisticated methods could also be used: e.g., ones trained on videos, domain-specific
data, or even physical interactions might yield even better representations, perhaps which encode
physics or action knowledge, rather than just common-sense visual semantics. Developing and using
such models with PR2L offers an exciting way to transfer diverse prior knowledge to a broad range
of control applications.

G Prompt Evaluation for RL in Minecraft

We discuss how to evaluate prompts to use with PR2L, by showcasing an example for a Minecraft
task. We start by noting that the presence and relative location of the entity of interest for each task
(i.e., spiders, sheep, or cows) are good features for the policy to have. To evaluate if a prompt elicits
these features from the VLM, we collect a small dataset of videos in which each Minecraft entity
of interest is on the left, right, middle, or not on screen for the entirety of the clip. Each video is
collected by a human player screen recording visual observations from Minecraft of the entity from
different angles for around 30 seconds at 30 frames per second (with the exception of the video where
the entity is not present, which is a minute long).

We propose prompts that target each of the two features we labeled. First, we evaluate prompts that
ask “Is there a(n) [entity] in this image?” As the answers to these questions are just yes/no, we see
how well the VLM can directly generate the correct answer for each frame in the collected videos.
The VLM should answer “yes” for frames in the three videos where the target entity is on the left,
right, or middle of the screen and “no” for the final video. Second, we evaluate if our prompts can

10

Target Entity Prompt True Positive Rate True Negative Rate

Spider
“Is there a spider in this image?" 22.27% 100.00%

“Spiders in Minecraft are black.
Is there a spider in this image?" 73.42% 94.54%

“Spiders in Minecraft are black
and have red eyes and long, thin

legs. Is there a spider in this image?"
50.50% 99.85%

Cow
“Is there a cow in this image?" 71.00% 45.41%

“Cows in Minecraft are black and white.
Is there a cow in this image?" 98.22% 2.00%

“Cows in Minecraft are black and white
and have four legs.

Is there a cow in this image?"
96.67% 7.35%

Sheep
“Is there a sheep in this image?" 88.00% 59.83%

“Sheep in Minecraft are white.
Is there a sheep in this image?" 100.00% 0.00%

“Sheep in Minecraft are white and
have four legs.

Is there a sheep in this image?"
100.00% 0.00%

Table 1: InstructBLIP’s performance at decoding text indicating that it detected the presence of a
target entity when given different prompts. We use this as a proxy metric for prompt engineering for
RL, allowing us to determine which prompt to use for PR2L.

extract the entity’s relative position (left, right, or middle) in the videos where it is present. We
note that the prompts we tried could not extract this feature in the decoded text (e.g., asking “Is the
[entity] on the left, right, or middle of the screen?” will always cause the VLM to decode the same
text). Thus, we try to see if this feature can be extracted from the decoded texts’ representations. We
measure this by fitting a three-category linear classifier of the entity’s position given the token-wise
mean of the decoded tokens’ final embeddings. This is an unsophisticated and unexpressive classifier,
i.e., we do not have to worry about the model potentially memorizing the data, which means that
good classification performance corresponds to an easy extractability of said feature.

We evaluate three types of prompts per task entity for the first feature: one simply asking if the
entity is present in the image (e.g., “Is there a spider in this image?”) and two others adding varying
amounts of auxiliary information about visual characteristics of the entity (e.g., “Spiders in Minecraft
are black. Is there a spider in this image?” and “Spiders in Minecraft are black and have red eyes
and long, thin legs. Is there a spider in this image?”). We present evaluations of all such prompts in
Table 1. We find that the VLM benefits greatly from auxiliary information for the spider case only,
likely because spiders in Minecraft are the most dissimilar to the ones present in natural images of
real spiders, whereas cows and sheep are still comparatively similar, especially in terms of scale and
color. However, adding too much auxiliary information degrades performance, perhaps because the
input prompt becomes too long, and therefore is out-of-distribution for the types of prompts that
the VLM was pre-trained on. This same argument may explain why auxiliary information degrades
performance for the other two target entities as well, causing them to almost always answer that
said entities are present, even when they are not. Once more, considering that these targets exhibit a
higher degree of visual resemblance to to their real counterparts compared to Minecraft spiders, it is
reasonable to infer that the VLM would not benefit from auxiliary information. Furthermore, taking
into account that the auxiliary information we gave is more common-sense than the information given
for the spider, it could imply that the prompts are also more likely to be out-of-distribution (given
that “sheep are white” is so obvious that people would not bother expressing it in language), causing
the systematic performance degradation.

For the probing evaluation, we find that all three prompts reach similar final linear classifiabilities for
each of their target entities, as shown in Figure 4. While this does not aid in choosing one prompt
over another, it does confirm that the VLM’s decoded embeddings for each prompt still contains this

11

valuable and granular position information about the target entity, even though the input prompt did
not ask for it.

H MineDojo Environment Details

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Linear Classifier Accuracy of Relative Position of Spider

Is there a spider in this image?
Spiders in Minecraft are black. Is there a spider in this image?
Spiders in Minecraft are black and have red eyes and long, thin legs.
Is there a spider in this image?

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Linear Classifier Accuracy of Relative Position of Cow

Is there a cow in this image?
Cows in Minecraft are black and white. Is there a cow in this image?
Cows in Minecraft are black and white and have four legs.
Is there a cow in this image?

0 100 200 300 400 500
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

Linear Classifier Accuracy of Relative Position of Sheep

Is there a sheep in this image?
Sheep in Minecraft are white. Is there a sheep in this image?
Sheep in Minecraft are white and have four legs.
Is there a sheep in this image?

Figure 4: We train a linear classifier to predict the rela-
tive position of the target entity (left/right/middle) based
on the average VLM embeddings decoded in response to
each associated candidate prompt. We find that all three
candidate prompts per task elicit embeddings that are
similarly highly conducive to this classification scheme.

Spaces. The observation space for the Minecraft
tasks consists of the following:

1. RGB: Egocentric RGB images from
the agent. (160, 256, 3)-size tensor of
integers ∈ {0, 1, ..., 255}.

2. Position: Cartesian coordinates of
agent in world frame. 3-element vector
of floats.

3. Pitch, Yaw: Orientation of agent in
world frame in degrees. Note that we
limit the pitch to 15◦ above the hori-
zon to 75◦ below for combat spider,
which makes learning easier (as the
agent otherwise often spends a signif-
icant amount of time looking straight
up or down). Two 1-element vectors of
floats.

4. Previous Action: The previous action
taken by the agent. Set to no operation
at the start of each episode. One-hot
vector of size |A| = 53 for combat
spider and 89 otherwise (see below).

This differs from the simplified observation
space used in [10] in that we do not use any
nearby voxel label information and impose pitch
limits for combat spider. This observation space
is the same for all Minecraft experiments.

The action space is discrete, consisting of 53 or
89 different actions:

1. Turn: Change the yaw and pitch of
the agent. The yaw and pitch can be
changed up to ±90◦ in multiples of
15◦. As they can both be changed at the same time, there are 9 × 9 = 81 total different
turning actions. The turning action where the yaw and pitch changes are both 0◦ is the no
operation action. Note that, since we impose pitch limits for the spider task, we also limit
the change in pitch to ±30◦, meaning there are only 45 turning actions in that case.

2. Move: Move forward, backward, left,
right, jump up, or jump forward for 6
actions total.

3. Attack: Swing the held item at what-
ever is targeted at the center of the
agent’s view.

4. Use Item: Use the held item on what-
ever is targeted at the center of the
agent’s view. This is used to milk cows
or shear sheep (with an empty bucket
or shears respectively). If holding a
sword and shield, this action will block
attacks with the latter.

12

Hyperparameter Task
Combat Spider Milk Cow Shear Sheep

Total Train Time Steps 150000 100000 100000
Rollout Steps 2048

Action Entropy Coefficient 5e-3
Value Function Coefficient 0.5

Max LR 5e-5 1e-4 1e-4
Min LR 5e-6 1e-4 1e-4

Batch Size 64
Update Epochs 10

γ 0.99
GAE λ 0.95

Clip Range 0.2
Max Gradient Norm 0.5

Normalize Advantages True

Table 2: PPO hyperparameters for Minecraft tasks, shared by the baselines, our method, and ablations.

This non-combat spider action space is the same as the simplified one in [10]. All experiments for a
given task share the same action space.

World specifications. MineDojo implements a fast reset functionality that we use. Instead of
generating an entirely new world for each episode, fast reset simply respawns the player and all
specified entities in the same world instance, but with fully restored items, health points, and other
relevant task quantities. This lowers the time overhead of resets significantly, but also means that
some changes to the world (like block destruction) are persistent. However, as breaking blocks
generally takes multiple time steps of taking the same action (and does not directly lead to any
reward), the agent empirically does not break many blocks aside from tall grass (which is destroyed
with a single strike from any held item). We keep all reset parameters (like the agent respawn radius,
how far away entities can spawn from the agent, the episode length of 500, etc) at their default values
provided by MineDojo.

We stage all tasks in the same area of the same programmatically-generated world: namely, a
sunflower plains biome in the world with seed 123. This is the default location for the implementation
of the spider combat task in MineDojo. We choose this specific world/location as it represents a
prototypical Minecraft scene with relatively easily-traversable terrain (thus making learning faster
and easier).

Additional task details and reward functions. We provide additional notes about our Minecraft
tasks.

Combat spider: Upon detecting the agent, the spider approaches and attacks; if the agent’s health is
depleted, then the episode terminates in failure. The agent receives +1 reward for striking any entity
and +10 for defeating the spider. We also include several distractor animals (a cow, pig, chicken, and
sheep) that passively wander the task space; the agent can reward game by striking these animals,
making credit assignment of success rewards and the overall task harder.

Milk cow: The agent also holds wheat in its off hand, which causes the cow to approach the agent
when detected and sufficiently nearby. For each episode, we track the minimum visually-observed
distance between the agent and the cow at each time step. The agent receives +0.1|∆dmin| reward for
decreasing this minimum distance (where ∆dmin ≤ 0 is the change in this minimum distance at a
given time step) and +10 for successfully milking the cow.

Shear sheep: As with milk cow, the agent holds wheat in its off hand to cause the sheep to approach
it. The reward function also has the same structure as that task, albeit with different coefficients:
+|∆dmin| for decreasing the minimum distance to the sheep and +10 for shearing it.

I Policy and Training Details

For our actual RL algorithm, we use the Stable-Baselines3 (version 2.0.0) implementation of clipping-
based PPO [34], with hyperparameters presented in Table 2. Many of these parameters are the same

13

Policy Transformer Hyperparameters

Transformer Token Size 512
Transformer Feedforward Dim 512

Transformer Number Heads 2
Transformer Number Decoder Layers 1
Transformer Number Encoder Layers 1

Transformer Output Dim 128
Transformer Dropout 0.1

Transformer Nonlinearity ReLU

Policy MLP Hyperparameters

Number Hidden Layers 1
Hidden Layer Size 128
Activation Function tanh

VLM Generation Hyperparameters

Max Tokens Generated 6
Min Tokens Generated 6

Decoding Scheme Greedy

Table 3: All policy hyperparameters for all Minecraft tasks.

PR2L Prompt RT-2-style Baseline Prompt Change Auxiliary Text Ablation Prompt

Combat Spider “Spiders in Minecraft are black.
Is there a spider in this image?”

“I want to fight a spider.
I can attack, move, or turn. What should I do?” “Is there a spider in this image?”

Milk Cow “Is there a cow in this image?" “I want to milk a cow.
I can use my bucket, move, or turn. What should I do?”

“Cows in Minecraft are black and white.
Is there a cow in this image?”

Shear Sheep “Is there a sheep in this image?” “I want to shear a sheep.
I can use my shears, move, or turn. What should I do?”

“Sheep in Minecraft are usually white.
Is there a sheep in this image?”

Table 4: Prompts used for querying the VLM with PR2L, comparison (b), and the change auxiliary text ablation.
For the last column, we remove the auxiliary text for combat spider, and add it in for the other two.

as the ones presented by [10]. For the spider trials, we use a cosine learning rate schedule:

LR(current train step) = Min LR + (Max LR − Min LR)

1 + cos
(
π current train step

total train steps

)
2

 (1)

We also present the policy and VLM hyperparameters in Table 3. The hyperparameters and architec-
ture of the MLP part of the policy are primarily defined by the default values and structure defined by
the Stable-Baselines3 ActorCriticPolicy class. Note that the no generation ablation, VLM image
encoder baseline, and MineCLIP trials do not generate text with the VLM, and so all do not use the
associated process’s hyperparameters. The MineCLIP trials also do not use a Transformer layer in
the policy, due to not receiving token sequence embeddings. It instead just uses a MLP, but with two
hidden layers (to supplement the lowered policy expressivity due to the lack of a Transformer layer).

Additionally, InstructBLIP’s token embeddings are larger than ViT-g/14’s (used in the VLM image
encoder baseline), and so may carry more information. However, the VLM does not receive any
privileged information over the image encoder from the task environment – any additional information
in the VLM’s representations is therefore purely from the model’s prompted internal knowledge. Still,
to ensure consistent policy expressivity, we include a learned linear layer projecting all representations
for this baseline and our approach to the same size (512 dimensions) so that the rest of the policy is
the same for both.

J Additional Results and Ablation Plots

We extend Figure 3 with additional performance metrics in Figure 5.

14

0

2

4

6

8

IQ
M

 R
et

ur
ns

Combat Spider Ablation Results

0

2

4

6

8

10
Milk Cow Ablation Results

2

3

4

5

6

7

8
Shear Sheep Ablation Results

0 25k 50k 75k 100k 125k 150k
Training Time Steps

0

20

40

60

80

100

IQ
M

 S
uc

ce
ss

 C
ou

nt

0 25k 50k 75k 100k
Training Time Steps

0

50

100

150

200

0 25k 50k 75k 100k
Training Time Steps

0

10

20

30

No Prompt No Generation Change Auxiliary Text VLM Image Encoder Baseline PR2L (ours)

Figure 5: Extended version of Figure 3 with both the returns and success counts for the ablation trials.
All curves represent IQMs and shaded regions represent the standard error.

0.0 0.2 0.4 0.6 0.8 1.0

Combat Spider

Milk Cow

Shear Sheep

0.72

0.74

0.56

Probability of Improvement over VLM Image Encoder Baseline Returns

Figure 6: PR2L yields high probability of improvement over the VLM image encoder comparison (a).

K Additional Minecraft Experiments

K.1 Behavior Cloning

We collected expert policy data by training a policy on MineCLIP embeddings to completion on all
of our original tasks and saving all transitions to create an offline dataset. We then embedded all
transitions with either PR2L or the VLM image encoder. Finally, we train policies with behavior
cloning (BC) on successful trajectories under a specified length (300 for combat spider, 250 for milk
cow, and 500 for shear sheep) from either set of embeddings for all three tasks, then evaluate their
task success rates.

Results are presented in Fig. 7. We first note that, since the expert data was collected from a policy
trained on MineCLIP embeddings, the shear sheep policy is not very effective (as we found in Fig.
2). Both resulting shear sheep BC policies are likewise not very performant. We find that combat
spider in particular shows a very large gap in performance: the PR2L agent achieves approximately
twice the success rate of the VLM image encoder agent after training for just a single epoch. The
comparatively small amount of training and data necessary to achieve near-expert performance for
this task supports our hypothesis that promptable representations from general-purpose VLMs do
not help with exploration (they work better in offline cases, where exploration is not a problem), but
instead are particularly conducive to being linked to appropriate actions even though the VLM is not
producing actions itself. Further investigation of this hypothesis is presented in Appendix L.

K.2 Additional Baselines

We provide additional baselines in combat spider, milk cow, and shear sheep. Specifically, as Instruct-
BLIP’s image encoder may not be especially good for control tasks, we train policies on embeddings
from VC-1 and R3M – two image encoders with representations that are specifically pretrained
for embodied control and decision-making [27, 30]. As they both yield fix-sized embeddings, we
use the same policy architecture and task hyperparameters as the MineCLIP baseline experiments.
Additionally, to disambiguate whether PR2L is simply more performant due to being able to more
reliably detect the task-relevant entity, we train a baseline policy on top of both the VLM image

15

0.0 0.2 0.4 0.6 0.8 1.0
Success Rate

Combat
Spider

Milk
Cow

Shear
Sheep

Behavior Cloning Success Rate

PR2L (ours)
VLM Image Encoder Baseline

Figure 7: Success rates for BC on either PR2L or VLM image encoder baseline representations for
all original tasks. PR2L excels at combat spider, even after the policy is trained for a single epoch.

0 25k 50k 75k 100k 125k 150k
Training Time Steps

0

20

40

60

80

100

IQ
M

 S
uc

ce
ss

 R
at

e

Combat Spider Results

0 25k 50k 75k 100k
Training Time Steps

0

50

100

150

200

250

Milk Cow Results

0 25k 50k 75k 100k
Training Time Steps

0

10

20

30

40

Shear Sheep Results

VLM Image Encoder Baseline VC-1 encoder R3M encoder Oracle detector PR2L (ours)

Figure 8: Success counts for the following additional baseline trials: (1) using VC-1 as an encoder,
(2) using R3M as an encoder, and (3) using VLM image encoder embeddings with privileged oracle
entity detection. All curves represent IQMs and shaded regions represent the standard error (some
are omitted for visual clarity).

encoder embeddings and an indicator of whether the entity is in view based on a privileged oracle
semantic LIDAR readings (as provided by MineDojo)1. This baseline uses the same hyperparameters
as the VLM image encoder baseline. We present all results in Fig. 8 and find that PR2L beats all
three baselines in all cases.

L Representation Analysis

Why do our prompts yield higher performance than one asking for actions or instruction-following?
Intuitively, despite appropriate responses to our task-relevant prompts not directly encoding actions,
there should be a strong correlation: e.g., when fighting a spider, if the spider is in view and the
VLM detects this, then a good policy should know to attack to get rewards. We therefore wish to
investigate if our representations are conducive to easily deciding when certain rewarding actions
would be appropriate for a given task – if it is, then such a policy may be more easily learned by RL,
which would explain PR2L’s improved performance over the baselines.

To investigate this, we use the embeddings of our offline data from the BC experiments (collected
by training a MineCLIP encoder policy to high performance on all of our original three tasks, as
discussed in Appendix K.1). We specifically look at the embeddings produced by a VLM when given
our standard task-relevant prompts and when given the instructions used for our RT-2-style baseline.
We then perform principal component analysis (PCA) on the tokenwise average of all embeddings
for each observation, thereby projecting the embeddings to a 2D space with maximum variance.

We visualize these low-dimensional space in Fig. 9 for the final 20 successful observations from
each task, with the point colors of orange and blue respectively indicating whether the observation
results in a functional action (attack or use item) or movement (translation or rotation) by the expert

1We note that, as InstructBLIP uses its image encoder’s representations as its sole source of visual information,
if InstructBLIP is actually just doing better object detection, then any information about the presence of the
entity must also be available to the VLM image encoder baseline.

16

0 5 10 15 20

10

5

0

5

10

15

PC
2

Combat Spider PR2L Reps PCA
Movement
Attack

15 10 5 0 5 10 15

15

10

5

0

5

10

15
Milk Cow PR2L Reps PCA

Movement
Use

20 15 10 5 0 5 10

15

10

5

0

5

10

15
Shear Sheep PR2L Reps PCA
Movement
Use

15 10 5 0 5 10
PC1

15

10

5

0

5

10

PC
2

Combat Spider Instruction Reps PCA
Movement
Attack

15 10 5 0 5 10 15
PC1

10

5

0

5

10

15

Milk Cow Instruction Reps PCA
Movement
Use

15 10 5 0 5 10 15
PC1

10

5

0

5

10

15

Shear Sheep Instruction Reps PCA
Movement
Use

Figure 9: PCA of VLM representations of observations from twenty episode rollouts of expert policies
in all three Minecraft tasks. Larger points correspond to transitions where the expert received > 0.1
reward. We vary the prompt to be either our task-relevant prompt or the RT-2-style baseline instruction
prompt. Our prompt’s representations are bi-modal, with the clusters on the left corresponding to the
VLM outputting “yes” (the entity is in view). We find that most functional actions (orange points)
that yielded rewards are located in said clusters. Note that, since these expert policies are trained on
top of MineCLIP embeddings, the shear sheep policy is not very performant, as seen in Fig. 2.

policy. Additionally, we enlarge points corresponding to when the agent received rewards in order to
recognize which actions aided in or achieved the task objective.

We find that our considered prompts resulted in a bimodal distribution over representations, wherein
the left-side cluster corresponds to the VLM outputting “yes (the entity is in view)” and the right-side
one corresponds to “no.” Additionally, observations resulting in functional actions that received
rewards (large orange points in Fig. 9) tend to be on the left-side (“yes”) cluster for representations
elicited by our prompt, but are more widely distributed in the instruction prompt case, in agreement
with intuition. This is especially clear in the milk cow plot, wherein nearly all rewarding functional
actions (using the bucket on the cow to successfully collect milk) are in the lower left corner.

This analysis supports that the representations yielded by InstructBLIP in response to our chosen style
of prompts are more structured than representations from instructions. Such structure is useful in
identifying and learning rewarding actions, even when said actions were taken from an expert policy
trained on unrelated embeddings. This suggests that such representations may similarly be more
conducive to being mapped to good actions via RL, which we observe empirically (as our prompt’s
representations yield more performant policies than the instructions for the RT-2-style baseline).

17

	Introduction
	PR2L: Promptable Representations for RL
	Experimental Evaluation
	Experimental Setup and Comparisons: Minecraft
	Designing Task-Specific Prompts for PR2L
	Results

	Related Works
	Preliminaries
	Motivation for Promptable Representations
	Design Choices for Instantiating PR2L
	Ablations
	Discussion
	Prompt Evaluation for RL in Minecraft
	MineDojo Environment Details
	Policy and Training Details
	Additional Results and Ablation Plots
	Additional Minecraft Experiments
	Behavior Cloning
	Additional Baselines

	Representation Analysis

