
EvIL: Evolution Strategies for Generalisable Imitation
Learning

Silvia Sapora
Oxford University

Chris Lu ∗

Oxford University
Gokul Swamy ∗

Carnegie Mellon University
Yee Whye Teh †

Oxford University

Jakob Nicolaus Foerster
Oxford University

Abstract

We present Evolutionary Imitation Learning (EvIL), a general approach to imitation
learning (IL) able to predict agent behaviour across changing environment dynam-
ics. In EvIL, we use Evolution Strategies to jointly meta-optimise the parameters
(e.g. reward functions and dynamics) fed to an inner loop reinforcement learning
procedure. In effect, this allows us to inherit some of the benefits of the inverse re-
inforcement learning approach to imitation learning while being significantly more
flexible. Specifically, our algorithm can be applied with any policy optimisation
method, without requiring the reward or training procedure to be differentiable. Our
method succeeds at recovering a reward that induces expert-like behaviour across a
variety of environments, even when the environment dynamics are not fully known.
We test our method’s effectiveness and generalisation capabilities in several tabular
environments and continuous control settings and find that it outperforms both
offline approaches, like behavioural cloning, and traditional inverse reinforcement
learning techniques.

1 Introduction

Imitation Learning (IL) is a popular strategy for learning to make sequences of decisions from
data that has produced repeated successes in domains from autonomous driving (Codevilla et al.,
2018) to household robotics (Levine et al., 2016). In essence, by giving the agent examples of
desired behavior, the agent does not need to explore as hard as they would have to via a tabula rasa
reinforcement learning approach. Behavioral cloning (BC, Pomerleau (1988)) is one of the simplest
IL methods, where supervised learning is used to predict expert actions from expert observations.
However, because methods like BC are entirely offline, shifts in the environment dynamics between
the environment data was collected in and the environment the learned policy will be tested in (e.g.
different cars) can lead to poor performance (Ross et al., 2011).

In this frequently encountered setting, Inverse Reinforcement Learning (IRL, (Ng et al., 2000; Ziebart
et al., 2008)) methods are often the best approach. IRL aims to recover a reward function under which
the expert is optimal. While environment dynamics can shift frequently (e.g. driving a different car to
work), the underlying goals and intentions of the expert remain more constant (e.g. driving safely),
making reward functions a more succinct and transferable description of agent behaviour (Ng et al.,
2000). IRL has been successfully used to predict agent behaviour across a variety of different settings,
such as customer responses to changes in the economic climate (Rust, 1994), pedestrian navigation

∗Equal contribution. Correspondence to silvia.sapora@gmail.com.
†YWT is at both Google DeepMind and Oxford; this work was done at Oxford

NeurIPS 2023 Workshop on Robot Learning: Pretraining, Fine-Tuning, and Generalization with Large Scale
Models, New Orleans, United States of America

mailto:silvia.sapora@gmail.com

(Kitani et al., 2012), taxi-cab driving (Ziebart et al., 2008), and underlies real-world services like
Google Maps (Barnes et al., 2023).

While successful, traditional IRL methods suffer from several key limitations: 1. Most widely used
methods are fundamentally adversarial in nature, requiring careful tuning to elicit strong performance
(Barde et al., 2020). 2. Access to the underlying dynamics or a good simulator is generally assumed,
therefore application remains challenging in settings where interaction is potentially unsafe, expensive,
or good models do not exist and 3. The reward model loss function has to be differentiable, limiting
the ability to optimise complex objectives (e.g. minimising the number of interactions required to
match expert behaviour).

To address these shortcomings, we propose Evolutionary Imitation Learning (EvIL), a general IL
framework able to optimise any non-differentiable objective function while recovering both reward
and (optionally) environment dynamics. As our environment dynamics are trained directly to induce
a behaviour similar to the experts’, we circumvent the objective mismatch issue (Farahmand et al.,
2017) common to other offline, Model-Based RL approaches.

As a result, EvIL can easily be applied to settings where the original expert training environment
is either not provided or underspecified, an extremely common setting (e.g. robotics, autonomous
driving). In settings where we have some previous knowledge of either the transition function (e.g.
through a simulation) or the reward dynamics. EvIL offers a flexible framework able to incorporate
this known information into the optimisation process.

EvIL uses a bi-level optimisation process: the outer loop generates training parameters (e.g. a reward
function or a dynamics model) passed to the inner loop. Then, the inner loop uses RL to train a
policy with the parameters provided. In our implementation, the outer loop uses a cross-entropy
loss to measure the quality of the fit between the resulting RL policies and the demonstration data.
Concretely, we use Evolution Strategies (Salimans et al., 2017) to estimate the gradient of the loss
through the policy optimisation procedure and update the outer loop parameters accordingly. This
methods effectively generates a policy that imitates the expert, while recovering information about
both the original agents’ intents and the underlying environment dynamics.

We test our method in a Gridworld environment as well as classic control tasks like Reacher (Lenton
et al., 2021) and Pointmass. In all test environments, our recovered rewards successfully generalise
and generate agents better able to imitate the expert than previous methods. Additionally, when
provided with an underspecified environment or no environment at all, our model is able to correctly
recover the missing environment parameters (or a full transition function) while also recovering the
reward function. In the case of underspecified dynamics, the reward is also generalisable to novel
environment dynamics.

For a detailed discussion of the background and problem setting, check Appendix A. A comprehensive
overview of related works can instead be found in Appendix B. More details about our methods and
experiment setup can be found in Appendices C and D respectively.

2 Method

IRL is frequently conceptualised as having an outer loop (in which a reward function is chosen
via minimising a classification loss) and an inner loop (in which the reward function is maximised
over the horizon by a reinforcement learning algorithm). At a high level, our method replaces the
outer-loop first-order supervised learning step with an zeroth-order evolutionary update. This allows
us to a) optimise non-differentiable objectives and b) optimise more than just the reward function.
More explicitly, our bi-level optimization problem has the following form:

• The outer loop’s goal is to propose a set of parameters for the inner loop training. In
traditional IRL, this is just a reward function R. In our framework, we can propose additional
components, like a set of transition dynamics T or hyperparameters for the inner loop RL
algorithm. The outer loop does this by minimising some (not necessarily differentiable) loss
function L.

• The inner loop’s goal is solving the RL problem, using the MDP and hyperparameters
defined in the outer loop. This is identical to standard IRL.

2

Algorithm 1 EvIL

Input: Trajectories τE from expert, learning rate α, noise standard deviation σ
Output: Trained policy π, learned reward Rθ, transition function Tϕ

Initialise policy π and parameters θ, ϕ, population size N , ℓ1 coefficient β
repeat ▷ Outer-loop optimisation

Generate Gaussian noise ϵ1, ...ϵN ∼ N (0, I) to generate N members in the population
for i = 0, ..., N − 1 do

(Rθi , Tϕi
) = (Rθ, Tϕ) + σϵi

πi ← policy optimisation for Rθi under Tϕi
(st+1|st, at) ▷ Inner-loop optimisation

Calculate Li = −E(st,at)∼τE [log πi(at|st)] for each policy πi

end for
(θ, ϕ)t+1 ← (θ, ϕ)t − α 1

Nσ

∑N
i=1 Liϵi ▷ Estimate gradient and update meta parameters

θD0 ← θt+1

for i = 0, ...,M − 1 do ▷ Distillation Loop

θDi+1 ← θDi − α∇θD
i

(
E(st,at)∼τE

(
Rθt+1

(st, at)−RθD
i
(st, at)

)2
+ βℓ1(θ

D
i)

)
end for
θt+1 ← θDM

until convergence

3 Experiments and Results

In our experiments, we start by verifying that we can successfully recover reward functions in a fully
online setting (i.e. with access to the true environment). We then train an agent with the recovered
rewards on a test environment with different dynamics, and compare the performance to baselines.
Afterwards, we analyse the framework’s performance in a partially offline, and then fully offline
setting (i.e. without environment access).

For all experiments, we report the Cross Entropy loss against the expert demonstration set as well
as the average reward across many different initialisations of the environment. The latter helps to
quantify how well the agent generalises to unseen train/test environment initialisations.

All our experiments are implemented in JAX (Bradbury et al., 2018) using the PureJaxRL Lu et al.
(2022), Gymnax (Lange, 2022), and evosax Lange (2023) libraries to maximise parallelisation of
training across ES population members.

(a) Gridworld

0 5000 10000 15000 20000
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Train Return

0 5000 10000 15000 20000
0.0

0.2

0.4

0.6

0.8

1.0
Test Return

0 5000 10000 15000 20000
Outer Loop Step

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Cr
os

s E
nt

ro
py

Train Cross Entropy

0 5000 10000 15000 20000
Outer Loop Step

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Test Cross Entropy

EvIL
AIRL

BC
Expert

IRL
IRL Dual

(b) Reacher

0 2000 4000 6000 8000 10000700

560

420

280

140

0

Re
tu

rn

Train Return

0 2000 4000 6000 8000 10000700

560

420

280

140

0
Test Return

0 2000 4000 6000 8000 10000
Outer Loop Step

101

102

103

Cr
os

s E
nt

ro
py

Train Cross Entropy

0 2000 4000 6000 8000 10000
Outer Loop Step

0

5

10

15

20
Test Cross Entropy

EvIL
AIRL

BC
Expert

IRL

Figure 1: At the top, train and test returns. At the bottom, cross entropy loss. Reward and cross entropy
loss on the y-axis are the average over many episodes, including initialisations of the environment
not included in the demonstration data. On the x-axis we have outer loop steps (or ES generations for
EvIL). Shading represents standard error. We compare our method (5 seeds for Gridworld, 2 seeds
for Reacher) against BC and AIRL (2 seeds) baselines.

3

(a) EvIL+Reward

0 5000 10000
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

BC

0 5000 10000
Outer Loop Step

4

2

0

2

4

6

Cr
os

s E
nt

ro
py

BC

(b) EvIL

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

1.0

BC

0 2500 5000 7500 10000
Outer Loop Step

4

2

0

2

4

6

BC

(c) EvIL+Superv.

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

1.0

BC

0 2500 5000 7500 10000
Outer Loop Step

4

2

0

2

4

6

BC

(d) Supervised

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

1.0

BC

0 2500 5000 7500 10000
Outer Loop Step

4

2

0

2

4

6

BC

(e) Superv. 20%

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

1.0

BC

0 2500 5000 7500 10000
Outer Loop Step

4

2

0

2

4

6

BC

(f) Online

0 2500 5000 7500 10000
0.0

0.2

0.4

0.6

0.8

1.0

BC

0 2500 5000 7500 10000
Outer Loop Step

4

2

0

2

4

6

BC

Figure 2: Different strategies for optimising transition dynamics All plots are using EvIL to
recover a reward function. Each plot uses a different strategy for optimising the environment transition
function used to train the agent. The environment is Pointmass, and the expert demonstrations include
only one trajectory. Shading represents standard error. a. and b learn a transition function in
order to optimise BC loss with EvIL. In a, the structure of the reward function is partially known.
c. The transition function is optimising both the EvIL loss and a supervised loss over provided
demonstrations. d. and e. Learn the transition function through supervised learning on the provided
demonstrations. e. Only 20% of the demonstration data is used to train the transition function f.
Baseline online setting, the environment is known

3.1 Reward Recovery - Online Setting

We test our method on a Gridworld and Reacher environment. Details about setup and environment
can be found in Appendix D. For both environments, we match the AIRL baseline in terms of average
reward in the train environment, but we outperform it according to all other metrics - return in test
environment, as well as Cross Entropy in both train and test.

3.2 Environment and Reward Recovery

We analyse the performance of our method in the partially offline and fully offline setting in a simple
Pointmass environment. The agent’s goal is to move, in a continuous action space, towards a goal.
When it gets close enough, the agent receives a reward and the agent position is reset to a random
position. The goal position is reset at the end of every episode (T=20). The observations include the
agent and goal position at each time step.

Underspecified Environment In this first setting, we have access to the real environment which
has an obstacle of unknown size at an unknown position. In this experiment, we assume the goal
position is static, and what the reward function needs to recover is the position of the goal. We first
imitate expert trajectories from an environment where no obstacle is present. EvIL correctly chooses
an obstacle with the minimum possible size value and on the border of the explorable space. If we
instead try to imitate expert demonstrations where an obstacle was present, EvIL correctly recovers
the position and size of the obstacle, as well as the correct reward position (Figure 3).

Offline EvIL Here, we assume no access or knowledge of the environment. All that is provided
are the expert trajectories. We compare different approaches to generating our model, all shown in
Figure 2. All of them use EvIL to optimise a reward function, but different strategies to optimise the
transition dynamics. A detailed description of the different strategies can be found in Appendix D.

Overall, we observe that 1. All implementations vastly outperform the BC baseline 2. Knowledge of
the reward function helps performance, indicating EvIL is using knowledge of the reward function
shape to recover the transition function. 3. In 2c we notice, once again, that the ES procedure
struggles to jointly optimise two different objectives (BC loss and transition dynamics MSE). This
slows down convergence and hinders performance.

4

References
Paul Barde, Julien Roy, Wonseok Jeon, Joelle Pineau, Chris Pal, and Derek Nowrouzezahrai. Adver-

sarial soft advantage fitting: Imitation learning without policy optimization. Advances in Neural
Information Processing Systems, 33:12334–12344, 2020.

Matt Barnes, Matthew Abueg, Oliver F Lange, Matt Deeds, Jason Trader, Denali Molitor, Markus
Wulfmeier, and Shawn O’Banion. Massively scalable inverse reinforcement learning in google
maps. arXiv preprint arXiv:2305.11290, 2023.

Hans-Georg Beyer. Evolutionary algorithms in noisy environments: theoretical issues and guidelines
for practice. Computer Methods in Applied Mechanics and Engineering, 186(2):239–267, 2000.
ISSN 0045-7825. doi: https://doi.org/10.1016/S0045-7825(99)00386-2. URL https://www.
sciencedirect.com/science/article/pii/S0045782599003862.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and Alexey Dosovitskiy. End-to-
end driving via conditional imitation learning. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 4693–4700. IEEE, 2018.

Miroslav Dudik, Steven J Phillips, and Robert E Schapire. Performance guarantees for regularized
maximum entropy density estimation. In International Conference on Computational Learning
Theory, pp. 472–486. Springer, 2004.

Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-aware loss function for
model-based reinforcement learning. In Artificial Intelligence and Statistics, pp. 1486–1494.
PMLR, 2017.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001. doi: 10.1162/106365601750190398.

Michael Herman, Tobias Gindele, Jörg Wagner, Felix Schmitt, and Wolfram Burgard. Inverse
reinforcement learning with simultaneous estimation of rewards and dynamics. In Artificial
intelligence and statistics, pp. 102–110. PMLR, 2016.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49:209–232, 2002.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

Kris M Kitani, Brian D Ziebart, James Andrew Bagnell, and Martial Hebert. Activity forecasting. In
Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy,
October 7-13, 2012, Proceedings, Part IV 12, pp. 201–214. Springer, 2012.

Swagat Kumar. Balancing a cartpole system with reinforcement learning – a tutorial, 2020.

5

https://www.sciencedirect.com/science/article/pii/S0045782599003862
https://www.sciencedirect.com/science/article/pii/S0045782599003862
http://github.com/google/jax

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calandra. Objective mismatch in
model-based reinforcement learning. arXiv preprint arXiv:2002.04523, 2020.

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library, 2022. URL
http://github.com/RobertTLange/gymnax.

Robert Tjarko Lange. evosax: Jax-based evolution strategies. In Proceedings of the Companion
Conference on Genetic and Evolutionary Computation, pp. 659–662, 2023.

Daniel Lenton, Fabio Pardo, Fabian Falck, Stephen James, and Ronald Clark. Ivy: Templated deep
learning for inter-framework portability. arXiv preprint arXiv:2102.02886, 2021.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Bo Liu, Xidong Feng, Jie Ren, Luo Mai, Rui Zhu, Haifeng Zhang, Jun Wang, and Yaodong Yang. A
theoretical understanding of gradient bias in meta-reinforcement learning, 2022.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022.

Chris Lu, Timon Willi, Alistair Letcher, and Jakob Nicolaus Foerster. Adversarial cheap talk. In
International Conference on Machine Learning, pp. 22917–22941. PMLR, 2023.

Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman. Gradients are not all you
need, 2022.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287. Citeseer, 1999.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pp. 2, 2000.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. Proceedings of the AAAI Conference on Artificial Intelligence, 33
(01):4780–4789, Jul. 2019. doi: 10.1609/aaai.v33i01.33014780. URL https://ojs.aaai.org/
index.php/AAAI/article/view/4405.

Sid Reddy, Anca Dragan, and Sergey Levine. Where do you think you’re going?: Inferring beliefs
about dynamics from behavior. Advances in Neural Information Processing Systems, 31, 2018.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

John Rust. Chapter 51 structural estimation of markov decision processes. volume 4 of
Handbook of Econometrics, pp. 3081–3143. Elsevier, 1994. doi: https://doi.org/10.1016/
S1573-4412(05)80020-0. URL https://www.sciencedirect.com/science/article/pii/
S1573441205800200.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning, 2017.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

6

http://github.com/RobertTLange/gymnax
https://ojs.aaai.org/index.php/AAAI/article/view/4405
https://ojs.aaai.org/index.php/AAAI/article/view/4405
https://www.sciencedirect.com/science/article/pii/S1573441205800200
https://www.sciencedirect.com/science/article/pii/S1573441205800200

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning, 2018.

Gokul Swamy, Sanjiban Choudhury, J Andrew Bagnell, and Steven Wu. Of moments and matching:
A game-theoretic framework for closing the imitation gap. In International Conference on Machine
Learning, pp. 10022–10032. PMLR, 2021.

Gokul Swamy, Sanjiban Choudhury, Drew Bagnell, and Steven Wu. Causal imitation learning under
temporally correlated noise. In International Conference on Machine Learning, pp. 20877–20890.
PMLR, 2022a.

Gokul Swamy, Sanjiban Choudhury, J Bagnell, and Steven Z Wu. Sequence model imitation learning
with unobserved contexts. Advances in Neural Information Processing Systems, 35:17665–17676,
2022b.

Gokul Swamy, Sanjiban Choudhury, J. Andrew Bagnell, and Zhiwei Steven Wu. Inverse reinforce-
ment learning without reinforcement learning, 2023.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. Advances
in neural information processing systems, 20, 2007.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 00359246. URL http://www.
jstor.org/stable/2346178.

Anirudh Vemula, Yuda Song, Aarti Singh, Drew Bagnell, and Sanjiban Choudhury. The virtues of
laziness in model-based rl: A unified objective and algorithms. In International Conference on
Machine Learning, pp. 34978–35005. PMLR, 2023.

Kevin Waugh, Brian D Ziebart, and J Andrew Bagnell. Computational rationalization: The inverse
equilibrium problem. arXiv preprint arXiv:1308.3506, 2013.

P.J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,
78(10):1550–1560, 1990. doi: 10.1109/5.58337.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
ment learning, 2016.

Junzhe Zhang, Daniel Kumor, and Elias Bareinboim. Causal imitation learning with unobserved
confounders. Advances in neural information processing systems, 33:12263–12274, 2020.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

7

http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178

A Background and Problem Setting

We assume a Markov Decision Process (MDP) (Puterman, 1994) parameterised by
⟨S,A, T, T0, R, λ,H⟩ where S,A are the state and action spaces, T (st+1|st, at) is the transition
function, T (s0) is the initial state distribution, R(rt+1|st, at, st+1) is the reward function (where
rt+1 ∈ [−1, 1]), λ is the discount factor and H the time horizon.

In our setting, we assume that across tasks, the transition function T might change but everything
else, including R, stays the same. In the standard RL setting we want to maximise

J (π) = ET0,T,π[

H−1∑
t=0

λtR(rt+1|st, at, st+1)]

In the IL setup we have access to agent trajectories DE ∼ {τ0, ..., τN} where τE =
(s0, a0, ..., sH , aH) and we want to recover the policy that generated those trajectories R. BC
commonly uses a cross entropy loss to optimise the learner policy πL, i.e.:

argmin
π
L(π) = − 1

N

H∑
t=1

log πL(at|st)

A.0.1 Evolution Strategies

Evolution Strategies are population-based stochastic optimization algorithms that use random noise
to generate a population of candidate solutions. These solutions are then evaluated using a fitness
function and the population is iteratively improved over time by assigning higher weight to better-
performing population members. This causes the population to move closer and closer to the optimal
solution, and the process is repeated until a satisfactory solution is found. Recently, ES has been
successfully applied to a variety of tasks (Real et al., 2019; Salimans et al., 2017; Such et al., 2018).
ES algorithms are gradient-free and well-suited for (meta-) optimisation problems where the objective
function is noisy or non-differentiable and the search space is large or complex (Beyer, 2000; Lange,
2023; Lu et al., 2023, 2022).

There are several types of ES algorithms, one of the most well known is the covariance matrix adapta-
tion evolution strategy (CMA-ES) (Hansen & Ostermeier, 2001), which represents the population by
a full-covariance multivariate Gaussian. Although CMA-ES can be applied to our problem, it has
only proven successful in low to medium dimension optimisation spaces. Another widely applied ES
algorithm is OpenAI-ES (Salimans et al., 2017) which estimates the gradient through the following
function:

∇θEϵ∼N(0,1)F (θ + σϵ) =
1

σ
Eϵ∼N(0,1){F (θ + σϵ)ϵ}

This is an unbiased estimate and, in contrast to meta-gradient approaches, ES avoids the need to
backpropagate the gradient through the whole training procedure, which often results in biased
gradients due to truncation (Werbos, 1990; Metz et al., 2022; Liu et al., 2022).

B Related Work

B.1 Imitation Learning

Our approach straddles the gap between offline and online methods: we do not assume access to the
environment (as offline methods do), but search over reward functions rather than Q-functions (as
online methods do). If no access to the environment is provided at train time, our method cannot
guarantee robustness to compounding errors (Swamy et al., 2021), but still inherits some of the
benefits of reward-matching methods like IRL.

B.2 Inverse Reinforcement Learning

IRL is commonly framed as a two-player zero-sum game between a policy player and a reward
function player (Swamy et al., 2021). Intuitively, the reward function player tries to pick out
differences between the current learner policy and the the expert demonstration, while the policy

8

player attempts to maximise this reward function to move closer to expert behaviour. As pointed out
by Finn et al. (2016), this setup is effectively a GAN (Goodfellow et al., 2014) in the trajectory space.
On tabular problems, one can solve this game by having both players follow a no-regret strategy
like multiplicative weights (Syed & Schapire, 2007) or by having a no-regret vs. a best-response
dynamic (Ziebart et al., 2008). Our approach fits into this latter family as we compute a best response
by optimizing the current reward function via reinforcement learning. Of course, once we move out
of the tabular regime, we need to use function approximators like deep networks to represent both
our reward function and policy, which is common in the prior work (Ho & Ermon, 2016; Fu et al.,
2018; Wulfmeier et al., 2016).

The key difference between our work and the prior work is that we can pick reward function discrim-
inators based on non-differentiable objectives. In traditional IRL, we usually use a “performance
difference" objective (i.e. ℓ(r) = J(πE , r) − J(π, r)) that is linear in the reward function and
therefore differentiable (Ziebart et al., 2008; Swamy et al., 2021). However, there are a variety of
objectives we could care about that we can’t cleanly write down as differentiable function of the
reward. For example, in response to the well-established computational inefficiency of IRL (Swamy
et al., 2023), we might want to optimise for reward functions that, while differentiating between the
learner and the expert, are shaped to ensure efficient policy optimisation. Our ES-based framework
allows us to optimise these auxiliary objectives and therefore is significantly more flexible and general
than the prior art.

B.2.1 Model-Based Reinforcement Learning

By learning a model from collected data and then planning in it, model-based reinforcement learning
approaches can be far more sample-efficient than their model-free counterparts (Hafner et al., 2023;
Schrittwieser et al., 2020). However, model-based RL approaches typically assume online access to
the environment or access to a large offline dataset to fit a model that produces accurate simulated
rollouts for the learner. As we operate in the offline setting and do not assume full coverage of the
expert data, we cannot directly apply these approaches.

A key concern with any approach that fits a model is how the training error of the model translates to
the quality of the policies learned by acting in it. Theory tells us that in the worst case, we need to be
close in an ℓ∞ sense to the ground truth dynamics to be able to accurately evaluate an arbitrary policy
(Kearns & Singh, 2002). Unfortunately, there is no known way to guarantee this, so in practice we
often resort to minimizing a simple loss function (e.g. MSE on the next-step prediction). However,
this means that we can no longer guarantee that a policy that is optimal in our model will perform
well at test time, an issue termed objective mismatch in the MBRL literature (Farahmand et al., 2017;
Lambert et al., 2020). Theoretically-grounded approaches to fix this issue require online interaction
or adversarial training (Vemula et al., 2023). In contrast, because our approach directly optimises a
model that induces expert-like behaviour, we are able to circumvent the objective mismatch issue
entirely. Our approach requires fewer assumptions than other IRL approaches that also optimise an
environment model (Reddy et al., 2018; Herman et al., 2016).

C Method Details

C.1 Choice of Fitness Function

We detail two example fitness functions we can use to optimise the parameters for the inner loop
which highlight the flexibility of our method over traditional IRL.

1. Assuming we don’t have access to the environment the expert was acting, we would also
need to estimate T . In essence, we want to search for an (R, T) pair such that the induced
optimal policy matches our demonstration data. We can jointly optimise over pairs by setting
L(R, T) = −Es∼τE [log π

∗
R,T (at|st)] (i.e. the behavioural cloning loss), where π∗

R,T is the
optimal policy under (R, T).

2. Even if we have access to the environment the expert was acting in, our framework enables
optimisation for non-differentiable objectives like training time. For example, the moment-
matching gradient with respect to any potential-based reward shaping term (Ng et al., 1999)
is 0 (as it sums to 0 for any trajectory). This means that we could take the reward function

9

returned by standard IRL and add to it a shaping term optimised by evolution to maximize
the “area under the curve" of performance vs. environment interactions.

C.2 Network Distillation

A naive implementation of EvIL generates reward functions that fail to generalise to new environments.
To address the issue of reward functions not generalising, we introduce a regularisation regime which
biases the reward function to be as invariant as possible to the input.

As jointly optimising the two objectives (regularisation and BC-loss) is difficult for ES, we introduce
a two stage optimisation procedure. We first update the parameters according to the ES gradient, that
optimises for a BC minimum norm solution close to the ES solution. This is effectively equivalent to
a distillation step. In our ablation experiments we verify that both technical contributions are required
to achieve good performance.

Due to the resulting sparsity, minimum ℓ1 norm solutions are known to have better generalisation
properties since they reduce dependency on potentially spurious features (Tibshirani, 1996). Ac-
cordingly, in traditional IRL, ℓ1 regularisation is commonly applied to the reward function to deal
with finite-sample spuriosity, an idea with rigorous theoretical backing (Dudik et al., 2004). The
naive option for including ℓ1 regularisation in EvIL is to simply add the regularisation term to our
outer loop fitness function. However, this both requires ES to balance two different objectives (often
unstable) and uses samples to estimate a gradient of a differentiable objective, which is inefficient.

To address this, we include the regularisation via a fully supervised distillation step: At each outer
loop iteration t, we first apply the ES update from the unregularised fitness function to obtain a
current reward function,Rθt . We next use a supervised learning step to fit this reward function on all
expert trajectories with a different network, θD (initialised to θt), applying ℓ1 regularisation to θD.
We finally use this updated θD as the new mean of the reward functions in the next outer loop.

This process uses ES to find sufficiently complex reward functions, while the distillation step ensures
they are as simple (i.e. invariant) as possible. We find that this two-stage procedure is better at
producing generalisable reward functions than directly including the ℓ1 loss as part of the fitness
function. Please see Algorithm 1 for full details of our method, including the distillation step.

C.3 Policy Resets and Inner Loop Updates

IL methods can be classified into two families (Swamy et al., 2021): primal and dual (Ziebart et al.,
2008). In dual algorithms, the agent is trained from scratch every time with a new variation of the
reward function. In practice, this has two downsides: 1. it is sample inefficient, as the reward is
only changing by a small amount, it is reasonable to continue training the previous policy. For long
training regimes, this approach quickly becomes impractical. 2. Estimating the ES gradient through
many episodes of RL training leads to vanishing gradients as shown in Figure 4a. Moreover, training
agents through many episodes leads to higher noise in results, making the outer loop objective harder
to optimise. The reward is not the only factor accounting for the final performance of an agent, as
variables such as environment resets and action sampling also play a role. If we keep optimising the
same inner loop policy π, we can minimise long data collection and interactions with the environment.
We note that this “warm-starting" is standard in most practical implementations of IRL(Swamy et al.,
2021; Ho & Ermon, 2016; Swamy et al., 2023). Unfortunately, we found that primal algorithms,
like AIRL, recover reward functions that often fail to train the agent from scratch, leading to poor
generalisation in the test set. In Figure 1, we compare the performance of EvIL (dual) against IRL
(primal) (Swamy et al., 2021).

C.4 Recovering Environment Parameters

The EvIL framework can also be used in the offline setting, to recover information about the
environment. EvIL is flexible: recovering a full transition function is possible, although it might not
always be the best choice. Often, access to the dynamics might be partial, as if, for example, we had
some robotic trajectories as well as access to a physics simulator. In this case, we prove we are able
to successfully recover underlying information about the transition function not necessarily visible in
the observation, such as the gravity variable in Cartpole (Kumar, 2020), or the position of an obstacle

10

in Pointmass environment.

We represent the transition function T (st+1|st, at) as a VAE (Kingma & Welling, 2022). To generate
the starting state, we sample from the latent space z ∼ N(0, 1) and feed the vector through the
VAE’s decoder. The VAE’s encoder takes in p(z|st, at) and the decoder outputs st+1. If any prior
information about the structure of the reward function is known, our optimisation process can co-learn
thereward and transition function using the structural knowledge about either to optimise the other.

D Experiment Details

Gridworld: We first test our method in a 5x5 Gridworld environment with two different goals. The
goals need to be found in the correct order to maximise return. The goal positions and agent’s starting
position are randomly chosen at the beginning of each episode. The environment observations are
a one hot encoded representation of the Gridworld, where walls, different goals and the agent are
encoded in different channels. We successfully recover the reward and expert’s policy in the training
environment without walls and use the reward to train a new agent in a new Gridworld environment
with walls. We provide 100 expert demonstrations of length T=30. Figure 1a shows 5 seeds for the
EvIL runs and 2 seeds for the AIRL runs.

Reacher: We then test our method on the Reacher (Lenton et al., 2021) environment. We manage to
correctly recover a generalisable reward that performs better than baselines on the test environment
(where torque is increased by 10x). As in Gridworld, the goal and agent’s starting position are
randomly chosen at the beginning of each episode. We provide 50 expert demonstrations of length
T=200. In Figure 1b we run 2 seeds for both the EvIL runs and the AIRL baseline.

D.1 Underspecified environment

0 250 500 750
Outer Loop Step

0

1

2

3

Va
lu

e

Reward Position

0 250 500 750
Outer Loop Step

0.0

0.2

0.4

0.6

0.8

1.0
Obstacle r Pos

0 250 500 750
Outer Loop Step

0

1

2

3
Obstacle Theta Pos

0 250 500 750
Outer Loop Step

0.0

0.2

0.4

0.6

0.8

1.0
Obstacle Size

Recovered Value
True Value

Figure 3: When the transition function for the environment is known, with the exception of some
information (e.g. position of the goal), we are able to successfully recover the goal position, obstacle
position (in polar coordinates) and size.

D.2 Offline EvIL

EvIL & some reward structure 2a: The transition function parameters are randomly initialised, and
then optimised directly by EvIL. However, we assume prior, partial knowledge of the reward function
(i.e. we know it’s a function of the distance between agent and goal).

EvIL & no reward structure 2b: As above, but no knowledge of the reward function is assumed.

EvIL & Supervised Loss through ES 2c: We don’t assume any knowledge of the reward function,
but we add an MSE loss for predictions over known expert trajectories. This is to try an encourage
the model to predict realistic and interpretable transitions.

EvIL on Supervised Model 2d: The transition function is trained via MSE on the observed expert
trajectories and used in the inner loop optimisation. It is not further optimised in the inner loop.

EvIL on Partially Supervised Model 2e: Same as above, but trained on a subset (20%) of the expert
trajectory. Due to our very simple environment, even one trajectory is enough to train a good model,
so we train this model on a subset of transitions to ensure we have a suboptimal model.

11

(a) Increasing inner loop steps

0 20000 40000 60000 80000 100000 120000

Inner Loop Steps
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Return for increasing inner loop steps
6000
4000
5000
None

(b) Ablation of regularisation strategies

0 2500 5000 7500 1000012500150001750020000

Outer Loop Step
0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Train

EvIL
No Distillation

0 2500 5000 7500 1000012500150001750020000

Outer Loop Step
0.0

0.2

0.4

0.6

0.8

1.0
Test

Figure 4: Ablations On the left, we show how gradually increasing the number of inner loop steps
improves performance. When the inner loop steps are increased, we start from 1 inner loop step and
repeat N times before increasing by one. In the plot, "None" corresponds to fully training the agent at
each outer loop step. On the right, we show the impact of using distillation rather than simply adding
ℓ1 regularisation to the ES objective.

D.3 Ablations

In our ablations we aim to answer the following questions: 1. What are the benefits of periodic
distillation of the reward network with an analytical gradient vs adding a regularisation penalty to
the ES objective? 2. What are the benefits of gradually increasing the number of inner loop steps vs
always fully training the agent in the inner loop? 3. When “warm-starting" is applied, how does the
number of epochs affect training?

Distillation: In Figure 4b we show that applying the analytical gradient of the L1 regularisation term
through a separate distillation step is beneficial to both train and test performance, as ES struggles to
co-optimise the BC and regularisation objectives.

Increasing Inner Loop Steps: In Figure 4a we show how gradually increasing the number of inner
loop steps leads to better performance than fully training the inner loop at each outer loop step,
which leads to vanishing meta-gradients and therefore a loss landscape that is hard to optimise.
Reducing the number of inner loop steps not only makes the optimisation more robust, but also
reduces computational cost.

Warm-Starting Epochs: To minimise interaction with the environment it is common to keep
optimising the same inner loop policy π, rather than restarting it from a random initialisation for
every inner loop. We found that always optimising the previous policy leads to very unstable training,
and complete failure to recover the original reward function in most cases. However, we found a way
to address this: We first start from the same policy, e.g. π0, for hundreds of outer loop steps and only
then use the final policy at the end of the inner loop, e.g. π1, as a new initial policy for the subsequent
outer loop steps. Overall, balances stability vs speed and converges faster than always re-initialising
the agent policy from scratch.

E Additional Discussion

Limitations. Evolution-based methods can be sample inefficient. Our work makes heavy use of
JAX-based simulators and algorithms to rapidly perform ES. Our method would likely struggle to
scale to slow and complex simulators or other scenarios where environment interactions are expensive.

Future Work. Our inner loop optimisation procedure is repeatedly solving a slightly different
RL optimisation problem at every outer loop step. This seems suboptimal, and other work in the
area (Swamy et al., 2023) has demonstrated how using the state distribution of the expert can speed
up the RL subroutine, by alleviating the exploration cost. ES could also help in this aspect by
shaping the reward function to one that is easier and faster to learn, or learning a generator that can
reset the training state to particularly useful states, limiting exploration. Additionally, our method
could be applied to a multi-agent setting where, additionally to the current setting, agents’ beliefs
about other agents could be recovered, as well as specific training conditions that lead to a certain
equilibrium among agents (Waugh et al., 2013). Finally, given the strong theoretical conditions
required for imitation under causal confounding (Zhang et al., 2020; Swamy et al., 2022a,b), it would
be interesting if evolution presented a more practically applicable solution.

12

ES

RL()

TRAIN

TEST

RL()

Figure 5: The EvIL framework

E.1 Extended discussion on limitations

Although co-optimising the full transition can help generalise to unseen states in the train environment,
it is unlikely to offer any benefits in a completely new test environment. Moreover, the reward function
learnt on the optimised dynamics is unlikely to generalise to the test setting. However, if we have a
strong prior over the space of possible transition functions (e.g. through a simulator) one can easily
use EvIL to recover environment parameters and a transferable reward function that can be used at
test time (e.g. on the same simulator but with different parameters).

In practice, we observe that transition functions recovered by EvIL are generally not interpretable,
and don’t produce transitions similar to the original environment. This is entirely to be expected
given no prior knowledge of the environment.

E.2 Hyperparameters

In all of our experiments, we parameterise the reward function with a neural network with two hidden
layers of size 256 and in the inner loop, policies are trained using PPO (Schulman et al., 2017). To
minimise variance, we provide the same training seed to each population member within a generation,
but change seeds across generations to ensure different environment initialisation are observed during
training.

Table 1: Important parameters for Training EvIL on a 5x5 Gridworld
Parameter Value
Population Size 128
Number of Reward Hidden Layers 2
Size of Reward Hidden Layer 256
Reward Activation tanh
Number of Generations 20000
ES Sigma Init 0.03
ES Sigma Decay 1.00
Inner Loop LR 1e-3
Number of Minibatches 4
Inner Loop Updates Start 1
Increase Inner Loop Updates Every 1000
Number of Update Epochs 8
Outer Loop Learning Rate 7e-3
Number of Environments 256
Reward Activation tanh

13

Table 2: Important parameters for Training EvIL Offline on Reacher
Parameter Value
Population Size 128
Number of Reward Hidden Layers 2
Size of Reward Hidden Layer 256
Number of Transition Dynamics Hidden Layers 2
Size of Transition Dynamics Hidden Layer 256
Number of Generations 10000
ES Sigma Init 0.03
ES Sigma Decay 1.00
Inner Loop LR 0.004
Inner Loop Updates Start 1
Increase Inner Loop Updates Every 500
Number of Minibatches 10
Number of Update Epochs 10
Outer Loop Learning Rate 7e-3
Number of Environments 256
Batch Size 1024
Reward Activation ReLU

14

	Introduction
	Method
	Experiments and Results
	Reward Recovery - Online Setting
	Environment and Reward Recovery

	Background and Problem Setting
	Evolution Strategies

	Related Work
	Imitation Learning
	Inverse Reinforcement Learning
	Model-Based Reinforcement Learning

	Method Details
	Choice of Fitness Function
	Network Distillation
	Policy Resets and Inner Loop Updates
	Recovering Environment Parameters

	Experiment Details
	Underspecified environment
	Offline EvIL
	Ablations

	Additional Discussion
	Extended discussion on limitations
	Hyperparameters

