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Abstract

Large, high-capacity models trained on diverse datasets have shown remarkable
successes on efficiently tackling downstream applications. In domains from NLP to
Computer Vision, this has led to a consolidation of pretrained models, with general
pretrained backbones serving as a starting point for many applications. Can such a
consolidation happen in robotics? Conventionally, robotic learning methods train
a separate model for every application, every robot, and even every environment.
Can we instead train “generalist” X-robot policy that can be adapted efficiently
to new robots, tasks, and environments? In this paper, we provide datasets in
standardized data formats and models to make it possible to explore this possibility
in the context of robotic manipulation, alongside experimental results that provide
an example of effective X-robot policies. We assemble a dataset from 22 different
robots collected through a collaboration between 21 institutions, demonstrating
527 skills (160266 tasks). We show that a high-capacity model trained on this data,
which we call RT-X, exhibits positive transfer and improves the capabilities of
multiple robots by leveraging experience from other platforms.

Figure 1: We propose an open, large-scale dataset for robot learning curated from 21 institutions across the
globe. The dataset represents diverse behaviors, robot embodiments and environments.

1 Introduction
A central lesson from advances in machine learning and artificial intelligence is that large-scale
learning from broad and diverse datasets can enable capable AI systems by providing for general-
purpose pretrained models. In fact, large-scale general-purpose models typically trained on large and
diverse datasets can often outperform their narrowly targeted counterparts trained on smaller but
more task-specific data. For instance, open-vocabulary image classifiers (e.g., CLIP [80]) trained on
large datasets scraped from the web tend to outperform fixed-vocabulary models trained on more
limited datasets, and large language models [4, 75] trained on massive text corpora tend to outperform
systems that are only trained on narrow task-specific datasets. Increasingly, the most effective way to
tackle a given narrow task (e.g., in vision or NLP) is to adapt a general-purpose model. However,
these lessons are difficult to apply in robotics: any single robotic domain might be too narrow, and
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while computer vision and NLP can leverage large datasets sourced from the web, comparably large
and broad datasets for robotic interaction are hard to come by. Even the largest data collection efforts
still end up with datasets that are a fraction of the size and diversity of benchmark datasets in vision
(5-18M) [109, 112] and NLP (1.5B-4.5B) [52, 72]. More importantly, such datasets are often still
narrow along some axes of variation, either focusing on a single environment, a single set of objects,
or a narrow range of tasks. How can we overcome these challenges in robotics and move the field of
robotic learning toward the kind of large data regime that has been so successful in other domains?

Inspired by the generalization made possible by pretraining large vision or language models on
diverse data, we take the perspective that the goal of training generalizable robot policies requires
X-embodiment training, i.e., with data from multiple robotic platforms. While each individual
robotic learning dataset might be too narrow, their union provide a better coverage of variations in
environments and robots. Learning generalizable robot policies requires developing methods that
can utilize X-embodiment data, tapping into datasets from many labs, robots, and settings. Even if
such datasets in their current size and coverage are insufficient to attain the impressive generalization
results that have been demonstrated by large language models, in the future, the union of such data
can potentially provide this kind of coverage. Because of this, we believe that enabling research
into X-embodiment robotic learning is critical at the present juncture.

Following this rationale, our work has two goals: (1) Demonstrate that policies trained on data
from many different robots and environments enjoy the benefits of positive transfer, attaining better
performance than policies trained only on data from each evaluation setup. (2) Provide datasets, data
formats and models for the robotics community to enable future research on X-embodiment models.

Addressing goal (1), we demonstrate that several recent robotic learning methods, with minimal
modification, can utilize X-embodiment data and enable positive transfer. Specifically, we train the
RT-1 [14] and RT-2 [13] models on 9 different robotic manipulators. We show that the resulting
models, which we call RT-X, can improve over policies trained only on data from the evaluation
domain, exhibiting better generalization and new capabilities. Addressing (2), we provide the Open
X-Embodiment (OXE) Repository, which includes a dataset with 22 different robotic embodiments
from 21 different institutions that can enable the robotics community to pursue further research on
X-embodiment models, along with open-source tools to facilitate such research. Our aim is not to
innovate in terms of the particular architectures and algorithms, but rather to provide the model that
we trained together with data and tools to energize research around X-embodiment robotic learning.

2 The Open X-Embodiment Repository

We introduce the Open X-Embodiment Repository – an open-source repository which includes
large-scale data along with pre-trained model checkpoints for X-embodied robot learning research.
More specifically, we provide and maintain the following open-source resources to the broader
community: (1) Open X-Embodiment Dataset: robot learning dataset with 1M+ robot trajectories
from 22 robot embodiments (2) Pre-Trained Checkpoints: a selection of RT-X model checkpoints
ready for inference and fine-tuning.

We intend for these resources to form a foundation for X-embodiment research in robot learning,
but they are just the start. Open X-Embodiment is a community-driven effort, currently involving
21 institutions from around the world, and we hope to further broaden participation and grow the
initial Open X-Embodiment Dataset over time. The Open X-Embodiment Dataset contains 1M+
real robot trajectories spanning 22 robot embodiments, from single robot arms to bi-manual robots
and quadrupeds. The dataset was constructed by pooling 60 existing robot datasets from 34 robotic
research labs around the world and converting them into a consistent data format for easy download
and usage. We use the RLDS data format [83], which saves data in serialized tfrecord files and
accommodates the various action spaces and input modalities of different robot setups.

3 RT-X Design

To evaluate how much X-embodiment training can improve the performance of learned policies, we
require models that have sufficient capacity to productively make use of such large and heterogeneous
datasets. To that end, our experiments build on two recently proposed Transformer-based robotic
policies: RT-1 [14] and RT-2 [13]. Both models take in a visual input and natural language instruction
describing the task, and output tokenized actions.
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Figure 2: RT-1-X and RT-2-X both take images and a text instruction as input and output discretized end-effector
actions. RT-1-X is an architecture designed for robotics, with a FiLM [78] conditioned EfficientNet [105] and a
Transformer [106]. RT-2-X builds on a VLM backbone by representing actions as another language, and training
action text tokens together with vision-language data.

We define the robotics data mixture used across all of the experiments as the data from 9 manipulators,
and taken from RT-1 [14], QT-Opt [44], Bridge [108], Task Agnostic Robot Play [66, 85], Jaco
Play [21], Cable Routing [56], RoboTurk [64], NYU VINN [76], Austin VIOLA [126], Berkeley
Autolab UR5 [18], TOTO [122] and Language Table [58] datasets. RT-1-X is trained on only robotics
mixture data defined above, whereas RT-2-X is trained via co-fine-tuning (similarly to the original
RT-2 [13]), with an approximately one to one split of the original VLM data and the robotics data
mixture.

One challenge of creating X-embodiment models is that observation and action spaces vary signifi-
cantly across robots. We use a coarsely aligned action and observation space across datasets. The
model receives a history of recent images and language instructions as observations and predicts a
7-dimensional action vector controlling the end-effector (x, y, z, roll, pitch, yaw, and gripper opening
or the rates of these quantities). We select one canonical camera view from each dataset as the input
image, resize it to a common resolution and convert the original action set into a 7 DoF end-effector
action. We normalize each dataset’s actions prior to discretization. This way, an output of the model
can be interpreted (de-normalized) differently depending on the embodiment used. It should be noted
that despite this coarse alignment, the camera observations still vary substantially across datasets, e.g.
due to differing camera poses relative to the robot or differing camera properties, see Figure 2.

Similarly, for the action space, we do not align the coordinate frames across datasets in which the
end-effector is controlled, and allow action values to represent either absolute or relative positions or
velocities, as per the original control scheme chosen for each robot. Thus, the same action vector
may induce very different motions for different robots.

4 Experimental Results

Our experiments answer three questions about the effect of X-embodiment training: (1) Can policies
trained on our X-embodiment dataset effectively enable positive transfer, such that co-training on data
collected on multiple robots improves performance on the training task? (2) Does co-training models
on data from multiple platforms and tasks improve generalization to new, unseen tasks? To answer
these questions we conduct the total number of 3600 evaluation trials across 6 different robots.

Figure 3: RT-1-X mean success rate is 50% higher than that of either the Original Method or RT-1. RT-1 and
RT-1-X have the same network architecture. Therefore the performance increase can be attributed to co-training
on the robotics data mixture. The lab logos indicate the physical location of real robot evaluation, and the robot
pictures indicate the embodiment used for the evaluation.
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Row Model Size History Length Dataset Co-Trained w/ Web Initial Checkpoint Emergent Skills Evaluation

(1) RT-2 55B none Google Robot action Yes Web-pretrained 27.3%
(2) RT-2-X 55B none Robotics data Yes Web-pretrained 75.8%

Table 1: RT-2-X outperforms RT-2 by ∼ 3× in emergent skills evaluation.

4.1 In-distribution performance across different embodiments

To assess the ability of the RT-1-X model variant to learn from X-embodiment data, we evaluate its
performance on in-distribution tasks on domains that only have small-scale datasets (Fig. 3), where
we would expect transfer from larger datasets to significantly improve performance. We consider
Kitchen Manipulation [21], Cable Routing [56], NYU Door Opening [76], AUTOLab UR5 [18], and
Robot Play [1]. We use the same evaluation and robot embodiment as in the respective publications.

Figure 4: To assess transfer between embodiments, we
evaluate the RT-2-X model on out-of-distribution skills.

Throughout this evaluation we compare with
two baseline models: (1) The model developed
by the creators of the dataset trained only on
that respective dataset. This constitutes a rea-
sonable baseline insofar as it can be expected
that the model has been optimized to work well
with the associated data; we refer to this base-
line model as the Original Method model. (2)
An RT-1 model trained on the dataset in isola-
tion; this baseline allows us to assess whether
the RT-X model architectures have enough ca-
pacity to represent policies for multiple different
robot platforms simultaneously, and whether co-
training leads to higher performance. RT-1-X
outperforms Original Method trained on each of
the robot-specific datasets on 4 of the 5 datasets,
with a large average improvement, demonstrat-
ing limited data domains benefit substantially
from co-training (Fig. 3).

4.2 Improved generalization to out-of-distribution settings
We examine if X-embodiment training enables better generalization to out-of-distribution settings
and more complex and novel instructions. These experiments focus on the high-data domains, and
use the RT-2-X model. We conduct experiments with the Google Robot, assessing the performance
on tasks like the ones shown in Fig. 4. These tasks involve objects and skills that are not present in
the RT-2 dataset but occur in the Bridge dataset [108] for a different robot (the WidowX robot).

Results are shown in Table 1, Emergent Skills Evaluation column. Comparing rows (1) and (2), we
find that RT-2-X outperforms RT-2 by ∼ 3×, suggesting that incorporating data from other robots
into training improves the range of tasks that can be performed even by a robot that already has large
amounts of data available. Our results suggest that co-training with data from other platforms imbues
the RT-2-X controller with additional skills for the platform that are not present in that platform’s
original dataset.
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Appendices
A Related Work

Transfer across embodiments. A number of prior works have studied methods for transfer across
robot embodiments in simulation [19, 23, 34, 35, 39, 51, 65, 77, 87, 90, 92, 120, 123] and on real
robots [11, 20, 38, 81, 84, 86, 117]. These methods often introduce mechanisms specifically designed to
address the embodiment gap between different robots, such as shared action representations [65, 94], incor-
porating representation learning objectives [117, 120], adapting the learned policy on embodiment informa-
tion [19, 34, 39, 94, 116], and decoupling robot and environment representations [38]. Prior work has provided
initial demonstrations of X-embodiment training [84] and transfer [11, 81, 93] with transformer models. We inves-
tigate complementary architectures and provide complementary analyses, and, in particular, study the interaction
between X-embodiment transfer and web-scale pretraining. Similarly, methods for transfer across human and
robot embodiments also often employ techniques for reducing the embodiment gap, i.e. by translating between
domains or learning transferable representations [5, 6, 9, 24, 41, 54, 88, 97, 102, 115, 119]. Alternatively, some
works focus on sub-aspects of the problem such as learning transferable reward functions [3, 16, 50, 91, 95, 120],
goals [124], dynamics models [89], or visual representations [7, 47, 59, 62, 70, 74, 82, 114] from human
video data. Unlike most of these prior works, we directly train a policy on X-embodiment data, without any
mechanisms to reduce the embodiment gap, and observe positive transfer by leveraging that data.

Large-scale robot learning datasets. The robot learning community has created open-source robot learning
datasets, spanning grasping [10, 12, 22, 29, 31, 42, 44, 46, 53, 61, 79, 125], pushing interactions [20, 27, 32, 118],
sets of objects and models [15, 25, 33, 45, 48, 69, 98, 101, 111, 113, 121], and teleoperated demonstrations [8,
14, 28, 30, 36, 58, 63, 96]. With the exception of RoboNet [20], these datasets contain data of robots of
the same type, whereas we focus on data spanning multiple embodiments. The goal of our data repository
is complementary to these efforts: we process and aggregate a large number of prior datasets into a single,
standardized repository, called Open X-Embodiment, which shows how robot learning datasets can be shared in
a meaningul and useful way.

Language-conditioned robot learning. Prior work has aimed to endow robots and other agents with the ability
to understand and follow language instructions [17, 26, 49, 55, 60, 110], often by learning language-conditioned
policies [14, 41, 67, 68, 73, 95, 100, 103]. We train language-conditioned policies via imitation learning like
many of these prior works but do so using large-scale multi-embodiment demonstration data. Following previous
works that leverage pre-trained language embeddings [2, 14, 37, 40, 41, 43, 57, 73, 95, 107] and pre-trained
vision-language models [13, 71, 99, 104] in robotic imitation learning, we study both forms of pre-training in
our experiments, specifically following the recipes of RT-1 [14] and RT-2 [13].
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