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Abstract

In the recent progress in embodied navigation, modular policies have emerged
as a de facto framework. However, there is more to compositionality beyond the
decomposition of the learning load into modular components. In this work, we in-
vestigate a principled way to syntactically combine these components. Particularly,
we propose Exploitation-Guided Exploration (XGX) where separate modules for
exploration and exploitation come together in a novel and intuitive manner. We
configure the exploitation module to take over in the deterministic final steps of
navigation i.e. when the goal becomes visible. Crucially, an exploitation module
teacher-forces the exploration module and continues driving an overridden policy
optimization. XGX, with effective decomposition and novel guidance, improves
the state-of-the-art performance on the challenging object navigation task from
70% to 73%. Finally, we show sim-to-real transfer to robot hardware and XGX
performs over two-fold better than the best baseline from simulation benchmarking.
Project page: XGXvisnav.github.io

1 Introduction

Consider the ‘planning’ problem you underwent when finalizing your last vacation. There is usually
plenty of uncertainty in the decision-making – where to go, is the weather good, managing the
budget, booking ground transport, etc. We tackle this uncertainty by breaking the problem down into
sub-parts and then offload some of these sub-parts to specialists or expert websites. However, there is
an ‘additional order’ that goes beyond offloading sub-parts to these reliable and modular solutions.
The very fact that you know these modular solutions exist helps you make more ambitious plans,
be more creative, and likely travel more often and better than without this information. Generally
speaking, division of work or modularity is only one aspect of a compositional approach. The
very awareness of our repertoire of skills or (associated modules) helps manage resources to plan
uncertain aspects of planning better. This intuition of our day-to-day intelligence guides our alternate
take on visual robot navigation or embodied navigation. We believe there is more to be tapped in
compositionality beyond policy decomposition. To this end, we investigate the research question:

“Can modular navigation agents learn better exploration when guided by their exploitation abilities?”

Given that we as a research community have already built most of the blocks, the investigation of this
research question is rather intuitive and straightforward! For this study, we focus on the semantic
visual navigation task of object-goal navigation [3] where the agent’s objective is to navigate to a
goal category (akin to “find a chair”), which is a standardized and reproducible benchmark [39]. Our
policy decomposition employs a state-of-the-art neural policy [31] for the exploration module. For the
exploitation module, we devise a simple-and-effective geometric policy for visuo-motor servoing the
exploitation phase (steps after the goal is in view). Contrary to prior works, in XGX, the exploitation
module provides guidance to the exploration module (implemented as teacher-forced [44] variation
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Figure 1: Overview of XGX. Within learning-based visual navigation, (a) most prior works adopt
a neural policy, trained end-to-end. (b) Some works employ a modular policy, with a dedicated
modules; we devise an effective decomposition in XGX. (c) Unlike prior work, XGX enables the
exploitation module to guide exploration module via off-policy updates and teacher forcing.

of the Proximal Policy Optimization). Note, prior works tackling vision-based navigation via modular
policy independently optimizes modules, with no guidance or interplay in loss objectives. Fig. 1
illustrates these two pillars of XGX– decomposition, and guidance.

2 Exploitation-Guided Exploration

As visualized in Fig. 1, the key components of Exploitation-Guided Exploration methodology are the
exploration module (πexplore), phase transition to the exploitation module (πexploit), and optimization
of the exploration module via guidance from the exploitation module.

2.1 XGX Modules

Exploration Module (πexplore): The architecture choice for the exploration module πexplore is orthog-
onal to our novelty of XGX (decomposition and guidance). To this end, we adopt the best-performing
available design – PIRLNav by Ramrakhya et al. [31]. Please see Sec. 7.1 for more details on the
architecture and training regime.

Phase Transition : Intuitively, we check if the agent can ‘see’ the goal and is close to it. If so, phase
transition from exploration module to exploitation module should triggered. Specifically, if semantic
segmentation contains the goal category and the agent is within a prescribed distance δ from the goal,
the control transitions to the exploitation module. The set of states for which this transition will occur
can be more mathematically described by the set:

Sj
exploit ≜ {(s) ∈ S : distj(s) ≤ δ, Oj ∈ fsemantic(s)}, (1)

where j is an index corresponding to the object-goal category labels {O1, . . . , On}, and fsemantic an
off-the-shelf semantic segmentation model. In this set, which we call the ‘exploitation states’, the
agent employs simple and effective visuo-motor servoing i.e. our exploitation module, detailed next.

Exploitation Module (πexploit): Once the goal is in sight, i.e., within exploitation state, visuo-motor
servoing is both simple and effective. To this end, our exploitation module πexploit can triangulate the
goal, navigating to it, and executing the ‘stop’ action. Further details of πexploit are given in Sec. 7.2.

2.2 Exploitation Module Teacher-Forcing (Guidance)

The objective of a policy-gradient approach like XGX with PPO is to learn a policy towards maximiz-
ing a discounted, cumulative reward. The surrogate loss objective from PPO [36] is as follows:

L(θ) = ED

[
min(pt(θ)Ât(θ), clip

(
pt(θ), 1− ϵ, 1 + ϵ

)
Ât(θ)

]
, (2)

where Ât(θ) is the advantage function, V̂t(θ) is the value estimate from the critic head, pt(θ) is ratio
function to correct for stale policy used for rollouts, and clip is performed to prevents too large of
a gradient. The replay buffer of rollouts is denoted by D consisting of (st, at, rt) tuples for state,
action, and environment rewards. The modification that allows πexploit to guide πexplore is rooted in the

2



# Method Type SR ↑ SPL ↑
1 DD-PPO [43] RL 27.9 14.2
2 OVRL [47] SSL )RL 62.0 26.8
3 OVRL-V2 [46] SSL )RL 64.7 28.1
4 RRR [34] Modular TL 30.0 14.0
5 Frontier Based Expl. [48, 16] Classical 26.0 15.2
6 Habitat-Web [32] (paper) IL 57.6 23.8
7 Habitat-Web [32] (our impl.) IL 64.1 27.1
8 PIRLNav [31] (paper) IL )RL 61.9 27.9
9 PIRLNav [31] (our impl.) IL )RL 70.4 34.1
10 XGX (ours) IL )RL 72.9 35.7
RL: reinforcement, IL: imitation, SSL: self-supervised, TL: transfer

(a) Quantitative results for navigation on ObjectNav.

# Method SR ↑ SPL ↑
1 Init. with IL on Human Demos + Fine-Tune [31] 70.4 34.1
2 1 + Policy Decomposition 71.5 34.3
3 1 + Policy Decomposition + Guidance (i.e. XGX) 72.9 35.7
4 XGX + GT Semantics (upper bound) 73.5 39.8

(b) Head-on ablations for XGX.

Table 1: (a) XGX outperforms prior works based on IL, RL, and SSL. An equivalent jump in SPL is
much harder than the same jump in success rate, indicating a significantly more efficient planning by
XGX. (b) We observe gains in performance by including the exploitation module πexploit in our policy
decomposition and adding guidance to neural exploration module. ↑ denotes higher is better.

ratio function. In standard PPO, the ratio function is pt(θ) =
π(at|st;θ)
π(at|st;θ−) , where at ∼ π(at|st; θ−)

and θ− is the stale parametrization of policy used to collect rollouts in D. In XGX, actions in the
replay buffer (at) are instead sampled from a teacher-forced policy. Concretely:

at =

{
aexploit
t ∼ πexploit(a|s) if s ∈ Sexploit

aexplore
t ∼ πexplore(a|s; θ−) otherwise

, (3)

where πexplore, Sexploit, and πexploit were introduced in Sec. 2.1, Sec. 2.1, and Sec. 2.1, respectively. The
value function relies on behavior policy as well. Since we employ the above teacher-forced policy,
XGX value (and thereby advantage) estimates are also different. Notably, with πexploit employed in
Eq. (3), the time horizon of the RL formulation shortens significantly. This allows more effective
learning from sparse success cues to optimize the parameters θ. Exploitation module πexploit is
specialized for getting to the goal, it increases the reward the agent receives overall during training.
Another advantage of the decomposition in Eq. (3), also allows for back-tracking, i.e., if the agent
leaves ‘exploitation states’ Sexploit, the agent returns to following the exploration module.

3 Experiments

In this section, we test our XGX methodology across (1) large-scale photorealistic simulation
across, (2) physical robot runs across three diverse real-world scenes. We also present results on
the MiniGrid [11] environment in Sec. 8 where XGX outperforms PPO across multiple tasks. We
experiment with Exploitation-Guided Exploration on the semantic visual navigation task of Object-
Goal Navigation or ObjectNav [3, 2]. We adopt the protocol laid out for AIHabitat [3] which has been
standardized as a public benchmark as well [39]. At the start of an ObjectNav episode, an embodied
agent is initialized at a random location and is tasked to navigate to a goal category. At every time
step the agent can choose an action from the action space A := {move forward, turn right, turn left,
stop, look down, look up}. The episode is considered a success if the agent can navigate within 1
meter of an instance of the goal category and execute the stop action. Consistent with prior work, we
too adopt a sparse reward structure that returns a 1 on success and a 0 otherwise, at every time step.
We include further details on the task, sensors, and metrics in Sec. 9.

3.1 Methods

We benchmark across a diverse set of baselines spanning purely reinforcement learning, imitation
learning, self-supervised representation learning, transfer learning, and classical baselines:
• DDPPO [43]: RL baseline that employs proximal policy optimization in a distributed manner.
• OVRL [47]: OVRL pretrains a modified ResNet50 [19] head on the Omnidata Starter Dataset [14]
with self-supervised learning. Then finetunes the encoder and the policy on top using 500M frames.
• OVRL-V2 [46]: Similar to OVRL, but the choice of the encoder is changed to vision transformers
(ViT) [13] with a compression layer through a masked auto-encoding [18].
• Habitat-Web [32]: Purely IL on ∼80k human-collected episodes using a simulation-web interface.
• PIRLNav [31]: Going a step further from Habitat-Web baseline, this adopts a two-stage training
regime – imitation learning for 500M steps followed by PPO updates for 300M frames.
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• RRR [34]: Modular policy with a zero-shot transfer learning from an HM3D point-goal module.
• FBE [48, 16]: Frontier-Based exploration while incorporating semantics; adopted by Gervet et
al. [16]. We report results on full HM3D-Val split (not just environments with a single floor [16]).

3.2 Results and Analysis (Photorealistic Simulation)

Metrics from empirical runs in AIHabitat are reported in Tab. 1a and Tab. 1b. We discuss these
results and analysis in the following text. As detailed in Sec. 3, all results are reported on the HM3D
validation scenes (never seen during training).

XGX improves over all prior IL, RL, and SSL baselines (Tab. 1a). Compared with diverse
baselines (Sec. 3.1), XGX (in row 10) demonstrates significant gains, improving 70.4 ) 72.9 in
success rate (relative 4% ↑) over the previous best IL+RL method – PIRLNav [31] (in row 9). The
best SSL method, OVRL-V2 [46] (in row 3), is fairly competitive in success rate (64.7 vs. 72.9) but
significantly lags behind on SPL (28.1 vs. 35.7).

Both the exploitation module and guidance are helpful (Tab. 1b). Two key aspects of our
proposed approach are (1) exploitation module: based on basic visuo-motor servoing and geometric
computer vision and (2) guidance from this module to exploration. Here we undertake head-on
ablations to quantitatively evaluate the utility of both in Tab. 1b. We observe improvements of
70.4 ) 71.5 ) 72.9% (row 1 ) 2 ) 3) in success rate by successively adding the policy decomposition
and guidance to the initialization. These trends are more pronounced for the efficiency metric of SPL.

3.3 Results and Analysis (Physical Robot)

Method SR ↑ SPL ↑
1 PIRLNav (released ckpt) 0.0 0.0
2 PIRLNav w/ our adaptation 14.2 8.4
3 XGX (ours) 35.7 23.3

Table 2: Real world object-goal
navigation results. In real world
robotics experiments, XGX per-
forms the best.

We sim-to-real transfer PIRLNav and our XGX on a wheeled
navigation robot employed by navigation works [20, 15, 22, 42].
We navigate to five goal categories {couch, TV, chair, toilet,
potted plant} across 14 trajectories per method. Further details
about the environments are given in Sec. 11.

Accurate embodiment reduces the sim-to-real gap (Tab. 2,
rows 1 & 2). The best-performing prior method, PIRLNav,
does not demonstrate successful behaviors on the robot (see
row 1, Tab. 2). We adapt PIRLNav (see row 2) by retraining it
with a robot-specific configuration (height and FoV) as the default simulator configuration is different.
This improved navigation behavior is consistant with a recent real world study [16].

XGX improves the performance of the robot as well (Tab. 2, row 3). In Tab. 2, we find that XGX
empirically has the best performance in physical robot experiments as well. Comparing rows 2 and 3,
we observe an improvement from 8.4% ) 23.3% in SPL.

4 Conclusion

In this work, we ask a fundamental question: “Can decomposed navigation agents learn better
exploration when guided by their exploitation abilities?” To this end, we introduce XGX which
utilizes teacher forcing implemented via off-policy updates. We deploy XGX with standard choices
of parametric exploration and simple geometric exploitation modules, leading to state-of-the-art
performance in simulation and an over two-fold improvement in physical robotics experiments.
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6 Related Work

Embodied Navigation. A popular paradigm for solving object-goal navigation has been to learn
directly from simulation. This has been achieved through modular [17] approaches, end-to-end [43]
approaches, and by fine-tuning to the environment [31]. DDPPO [43] has been used as a baseline
for many experiments for its success in solving point-goal navigation. They train a policy via a
decentralized and distributed update rule, allowing them to train a policy in the high-fidelity simulator,
AIHabitat [?], with over 2.5 billion frames. Habitat-Web [32] was able to achieve competitive
performance on the 2022 Habitat Challenge by utilizing imitation learning over trajectories collected
from a human. In contrast to directly using the simulator for fully training a policy from scratch,
several methods have also attempted to use pretraining [47, 46, 24] to improve the navigation
results. OVRL-v2 has achieved the current SOTA performance on the image-goal and object-goal
by first pretraining a transformer head via masked autoencoding on HM3D [29] and Gibson [45].
Moving further away from simulation, a number of methods have been proposed to solve visual
navigation tasks without any training in simulation. These zero-shot methods include frontier-based
exploration [16] or heuristics [42] in conjunction with a module to solve the navigation task, as well
as learning from real-world demonstrations [17, 4].

Modular Policies in Visual Navigation. Using modular policies is a popular paradigm for solving
the visual-navigation task. Previous methods such as NRNS [17] use a modular strategy to build a
topological map and with a Graph Neural Network predicts where on the topological map the agent
should explore to find the image-goal. They propose a neural exploitation policy to complete the task.
In Chaplot et al. [5] the authors optimize for exploration by training a semantic-map conditioned
policy to predict a long-term goal of where in the map the agent should explore to. Once their agent
is near the goal, they utilize a deterministic local policy to arrive at the goal. In NTS [7] the authors
follow a similar paradigm by training a topological map to explore the environment and then using a
local policy to reach a relative waypoint from the agent. Finally, in PONI [28], the authors propose a
potential function network that predicts “where to look” in the environment by predicting the most
promising area along the boundaries of a map. The authors also use an analytical planner to predict
an action to solve how to navigate to a given boundary. In all of these previous works, the authors
keep the exploration and exploitation modules separated. In contrast to these previous works, XGX
does not learn to explore separately from the exploitation module. Instead, we learn to explore the
environment with feedback from our exploitation module included during training.

Goal-Conditioned Navigation on Physical Robots. Recently, with the definition of the object-goal
task in the embodied AI community, a number of papers have attempted to demonstrate their method
for solving this task on a physical robot. This is an especially challenging task as real-world robots
are susceptible to error modes not seen in simulation such as actuation and sensing noise, no access to
ground truth data, and collecting trajectory examples is much slower [41, 8, 40]. Related works have
studied image-goal and point-goal tasks and have shown transfer to a physical robot. ViKiNG [37]
was proposed to solve the image-goal task at a kilometer scale by utilizing geographical hints through
a top-down map. SLING [42] was able to improve over all previous baselines in simulation and
real by utilizing a geometric-based solution for solving last-mile navigation. TGSM [25] utilizes a
cross-graph mixer over a topological map that incorporates both image and object nodes to achieve
SOTA performance on the image-goal task when a panoramic camera is utilized. However, in these
tasks, an exact image or position of the goal is required. This does not allow for generalizing to our
semantic visual navigation setting of navigating to a label such as “chair”.

7 Further Details of XGX

7.1 Further Detail of the Exploration Module (Supplements Sec. 2.1)

The architecture includes a ResNet [19] i.e. convolutional blocks for visual encoding and gated-
recurrent unit [12] for connecting observation across time. A multi-layer perceptron policy head on
top outputs a categorical action distribution. For further details, kindly refer to [31]. Taking lessons
from their extensive benchmarking, we too warm-start the neural exploration module by imitation
learning over offline demonstrations (from [32]) and then fine-tune with reinforcement learning via
XGX. The decomposed policy transitions from the exploration module to the exploitation module, if
certain criterion is met.
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(a) Lava Cross-
ing (b) Rewards for Empty (c) Rewards for 4-Rooms (d) Rewards for Lava Crossing

Figure 2: (a) one of the three navigation tasks XGX is tested on MiniGrid Platform. (b,c,d) Across
these three tasks, XGX outperforms PPO and trains faster. As task complexity increases (b )c )d), the
gains from XGX become increasly prominent.

7.2 Further Detail of the Exploitation Module (Supplements Sec. 2.1)

The exploitation module, utilizing the same off-the-shelf semantic segmentation model as phase
transition, it transforms the RGB to a semantic mask of the goal object. Next, it lifts the 2D semantic
mask to 3D by utilizing the depth mask. From this depth mask, and with knowledge of the camera
intrinsics, a waypoint is calculated. To navigate to this waypoint, direct planning works well. For this,
we utilize a local metric map (free from the depth sensor) and employ a fast-marching method [6, 17]
for collision avoidance.

8 Diagnostic Task: Navigation in 2D MiniGrid (Supplements Sec. 3)

As a proof of concept, we investigate XGX in the fast MiniGrid environments [11]. The three tasks
we benchmark on are: Empty, 4-Rooms, and Lava Crossing. These tasks require the navigation agent
to explore the environment, avoid obstacles (particularly the detrimental lava) and stop at the goal
represented as a green square. The standard reward structure used in these tasks is 1− 0.9 ∗ step count

max steps
where max steps is the maximum number of steps the agent is allowed to take in a given episode. The
agent observes a local, ‘egocentric’ (along the direction the agent is facing) patch of the 2D maze.
An example Lava Crossing environment (mazes are procedurally generated and randomized) with
helpful annotations is visualized in Fig. 2a. For XGX’s exploitation module πexploit, the agent uses
a local planner to create an action that will navigate it toward the goal (only when goal is agent’s
egocentric view).

Results. As demonstrated in Fig. 2, XGX unanimously outperforms PPO across the three tasks. XGX
demonstrates faster convergence over vanilla PPO. In the empty environment task, XGX achieves
a reward of 0.9 after just 5% of training budget, while PPO needs 40%. In the Lava Crossing
environment, XGX attains a reward of 0.41 while PPO is stuck at ∼ 0.01 despite training it for over
500k steps.

9 Object-Goal Task Definition (Supplements Sec. 3)

Task Definition. The goal definition, i.e., the category of object to navigate to is sampled from a set
of 6 categories [3] that are visually and physically well-defined. Consistent with several works on
ObjectNav [3, 27, 47, 33, 1], we adopt the Habitat-Matterport3D (HM3D) scenes dataset. HM3D
consists of high-quality photorealistic scans of 1000 real-world indoor scans. HM3D is an ideal
choice for our study as it includes several scene types – homes, workspaces, eateries, and retail shops.
Scenes span many geographical locations, floor area, and multiple floored scenes are also included.
This diversity allows for a better chance at generalizing to real-robot runs. For evaluation, we adopt
the standard and publicly available 2000 episodes HM3D-val split.

Sensors. We adopt the standard sensor suite for AIHabitat ObjectNav [38, 39]. Particularly, the agent
has access to three sensor observations: (1) egocentric RGB image of 640×480, (2) corresponding
depth mask, (3) relative localization obtained from a ‘GPS+Compass sensor’ [35, 3]. For off-the-shelf
fsemantic(·), we utilize a RedNet [23] trained on the HM3D-training split to predict egocentric semantic
information in simulation. In the real-world we utilize DETIC [49] to predict semantic segmentation.
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Method % SCov ↑ Cov

PIRLNav [31] 36.3 63.5
XGX (ours) 39.1 59.8

Table 3: Analysis for exploration efficiency. We find that XGX outperforms PIRLNav (row 9 and
row 10, Tab. 1a) and it does so with more efficient, goal-conditioned exploration.

Metrics. Following the literature in embodied navigation [35, 43, 21, 9, 3], we adopt metrics of
success rate (SR) and success weighted by path length (SPL). SPL captures the policy’s efficiency
in path planning. For targeted evaluation of exploration modules, we also report a metric from
learning-based exploration [10, 6, 7, 30], particularly, the percent of the environment seen (% Cov).
A point in the environment is considered ‘covered’ if it is within 3.2m of the agent and its field of
view. Note, less coverage is better only if success rate is the same. To this end, symmetric to the
SPL metric introduced in [2], we devise a metric (% SCov) to balance task success with efficient
exploration, defined as:

1

N

N∑
i=1

Si
% Covoracle

i

max(% Covi,% Covoracle
i )

(4)

Where N is the number of total episodes, Si specifies the success of episode i, and % Covoracle
i is the

% Cov of a given episode when using an shortest-path policy.

10 XGX is More Efficient at Exploration (Supplements Sec. 3.2)

Efficiency Analysis – XGX can explore faster (Tab. 3). Here we undertake a focused investigation
of learned-based exploration i.e. quantifying exploration and not navigation success to the goal. We
find that XGX explores an average of 59.8% per scene (compared to PIRLNav’s 63.5%), while still
performing better on other navigation success metrics. This is because XGX’s exploration module
was a priori optimized to offload servoing to the goal of the exploitation module. XGX taps into
compositionality, making exploration significantly more efficient while also improving performance.
This intuition is also empirically supported by XGX outperforming PIRLNav on % SCov at 36.3% to
39.1%.

11 Real World Environment Description (Supplements Sec. 3.3)

We test our robotics setup in three diverse scenes (1) Apartment - as visualized in Fig. 3 (2) Office
- environment with long hallways and many connecting rooms and (3) Food Court - containing
many chairs and furniture that needs to be avoided. In order to acquire pose information, we employ
localization using the robot’s LiDAR sensor and SLAM [26].

12 Error Modes

Error Analysis. The failure modes of XGX are visualized in Fig. 4. The largest source of failure is
missing annotations, where fsemantic of RedNet would correctly classify a goal object, only for the
environment’s semantic mesh to not be correctly labeled for the given object. Major failure modes
for the exploration module are due to not searching the environment well by either just looping over
the same space (‘Exploration in Loops’) or not trying to go up/down stairs when it should (‘Missed
Staircases’). Furthermore, the exploration module will occasionally call the ‘stop’ action immediately
at the start of an episode (‘Stop Right Away’). Issues with the switching mechanism includes failing
to correctly recognize the goal (‘Recognition Errors’) and failing to switch between the exploration
and exploitation modules (‘Switching Error’). Other simulator errors include the floor geometry not
being connected between spaces (‘Broken Floor Geometry’) and incomplete meshes where if the
agent tries to go up/down stairs it can not (‘Stuck on Stairs’).
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Figure 3: Physical robot navigation setup and rollout visualization in Apartment environment.
The agent navigates to one of 4 goal categories. Here, we visualize an actual rollout for the ‘toilet’
category and mark the phase transition to the exploit module. Note: The agent has not seen the scene
or access the top-down map (the map is for visualization).

Figure 4: Error Analysis of XGX (simulation). Beyond missing annotations in the dataset, the top
three error modes of XGX are (1) πexplore manifesting a looping behavior, (2) missing staircases, (3)
and errors in semantic segmentation.
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