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Abstract

Model-free methods for offline reinforcement learning typically suffer from value
overestimation, resulting from generalization to out-of-sample state-action pairs.
On the other hand, model-based methods must handle in compounding errors in
transition dynamics, as the policy is rolled out using the learned model. As a
solution, we propose policy-guided diffusion (PGD). Our method generates entire
trajectories using a diffusion model, with an additional policy guidance term that
biases samples towards the policy being trained. Evaluating PGD on the Adroit
manipulation environment, we show that guidance dramatically increases trajectory
likelihood under the target policy, without increasing model error. When training
offline RL agents on purely synthetic data, our early results show that guidance
leads to improvements in performance across datasets. We believe this approach is
a step towards the training of offline agents on predominantly synthetic experience,
minimizing the principal drawbacks of offline RL.

1 Introduction

Despite the success of reinforcement learning (RL) as a field, it is known to be notoriously sample-
inefficient, limiting its practicality on environments with expensive or dangerous data collection. One
paradigm for overcoming this issue is offline RL [Levine et al., 2020], in which a pre-collected or
“offline” dataset of experience is used to optimize a policy.

Naïvely applying off-policy RL to an offline dataset may result in catastrophic value overestimation
when out-of-distribution state-action pairs are encountered [Kostrikov et al., 2021], with most existing
methods aiming to explicitly counteract this [Kumar et al., 2020, An et al., 2021, Fujimoto et al.,
2019]. An alternative, model-based approach is to learn a world model from the dataset and then
rollout synthetic on-policy trajectories [Yu et al., 2020, Kidambi et al., 2020, Rigter et al., 2022, Lu
et al., 2022]. However, errors in the world model compound over many timesteps, again leading to
value overestimation and sub-optimal policies.

As an alternative to these approaches, we propose policy-guided diffusion (PGD): a novel technique
for generating on-policy trajectories from an offline dataset, without the issue of compounding model
error. PGD leverages the sampling quality of diffusion models to generate trajectories from the
behavior distribution. We then augment the denoising process of this pre-trained diffusion model
with guidance from the policy being trained, biasing the sample distribution towards the target policy.
Crucially, PGD models the joint distribution over trajectories, meaning it generates entire trajectories
all at once, thereby sidestepping the issue of compounding model error.

We demonstrate that policy guidance dramatically increases the likelihood of generated trajectories
under the target distribution, without increasing the model dynamics error. Early results on D4RL [Fu
et al., 2020] show promise for using guided synthetic data to learn effective policies, especially on
datasets that are small or contain sub-optimal trajectories.

NeurIPS 2023 Workshop on Robot Learning: Pretraining, Fine-Tuning, and Generalization with Large Scale
Models, New Orleans



2 Background

2.1 Offline Reinforcement Learning

We adopt the standard reinforcement learning (RL) formulation where an agent acts in a Markov De-
cision Process (MDP, Sutton and Barto [2018]). An MDP is defined as a tuple M = ⟨S,A, T ,R, γ⟩,
where S and A are the state and action spaces, T : S × A −→ P(S) is the transition function,
R : S × A −→ R is the reward function, and γ is the discount factor. The goal of RL is to learn a
policy π : S −→ P(A) which is trained to maximize expected return, defined as Eπ,T [

∑H
t=0 γ

trt]
where H is the horizon and rt is the reward at timestep t. In the offline RL setting [Levine et al.,
2020], the agent is unable to interact with the environment and instead is given a fixed dataset of
trajectories D = {τi}i=1,...,N gathered by some behavior policy πβ . The core problem introduced is
the distribution shift between the behavior policy πβ and the policy being optimized π, called the
target policy. This can lead to catastrophic value overestimation at unobserved actions, a problem
termed the out-of-sample issue [Kostrikov et al., 2021].

2.1.1 The Out-of-Sample Issue in Model-Based Offline Reinforcement Learning

Many issues of offline RL methods result from training on the behavior distribution over trajectories
pβ(τ). Conversely, it is possible to learn a single-step world model M from D [Yu et al., 2020,
Kidambi et al., 2020, Rigter et al., 2022, Lu et al., 2022]. By rolling out the target policy using
M, we generate trajectories τ ∼ p(τ) from the trajectory distribution of the target policy, or target
distribution. While this would seem to overcome the problem of training on out-of-distribution
state-action pairs, this technique simply pushes the generalization issue into the world model. In
particular, the RL policies are prone to exploiting errors in the world model, which can compound
over the course of an episode, again causing value overestimation.

2.2 Diffusion Models

In order to generate synthetic data, we consider diffusion models [Sohl-Dickstein et al., 2015, Ho
et al., 2020], a class of generative model that allows one to sample from a distribution p(x) by
iteratively reversing a forward noising process. Karras et al. [2022] present an ODE formulation of
diffusion which, given a noise schedule σ(t), mutates data according to

dx = −σ̇(t)σ(t)∇x log p (x;σ(t)) dt, (1)

where the dot denotes a time derivative and ∇x log p (x;σ(t)) is the score function [Hyvärinen and
Dayan, 2005], which points towards areas of high data density. Intuitively, infinitesimal forward or
backward steps of this ODE either nudge a sample away or towards the data.

2.2.1 Classifier-Guided Diffusion

Our method is designed to guide the data-generating process towards on-policy trajectories, rather
than the marginal behavior distribution pβ(x). For this, we take inspiration from classifier guid-
ance [Dhariwal and Nichol, 2021], which leverages a differentiable classifier to augment the score
function of a pre-trained diffusion model towards a class-conditional distribution p(x|y). Concretely,
this adds a classifier gradient to the score function, giving

∇x log pλ (x|y;σ(t)) = ∇x log p (x;σ(t)) + λ∇x log pθ (y|x;σ(t)) , (2)

where ∇x log pθ (y|x;σ(t)) is the gradient of the classifier and λ is the guidance weight.

3 Policy-Guided Diffusion

As described in Section 2.1, one of the main challenges in offline RL is distribution shift between the
behavior policy πβ and the target policy π. As a solution, we propose PGD, a method that augments
the denoising process of an offline diffusion model, increasing the probability of sampled trajectories
under the target distribution.

We model the behavior distribution by learning a score function ∇τ log pβ(τ) from the offline dataset
D. Inspired by classifier-guided diffusion (Section 2.2.1), we guide the diffusion process using the

2



0.0 0.5 1.0
Trajectory likelihood

0.0

0.4

0.8

D
yn

am
ic

s 
M

S
E

Guided
Unguided

0.0 0.5 1.0
Trajectory likelihood

0.0

0.4

0.8

Dy
na

m
ics

 M
SE

10−1

100

101

Po
lic

y 
gu

id
an

ce
 c

oe
ffi

cie
nt

 (λ
)

Figure 1: Dynamics mean squared error v.s. trajectory likelihood for a set of synthetic trajectories
generated from a diffusion model trained on the pen-cloned-v1 offline dataset. The guidance policy
was trained using PPO on the online environment. Left: Synthetic trajectory statistics, for guided
(λ = 2.0) and unguided (λ = 0.0) models. Right: Mean trajectory statistics over a range of guidance
coefficients, with the red marker denoting no guidance.

gradient of the action distribution under the target policy, conditioned on the denoised states. This
results in a denoising step of the form

F(τ |π, λ) = ∇τ log pβ(τ) + λ
∑
t∈|τ |

∇τ log π(at|st), (3)

where (st, at) is a state-action pair from the trajectory τ . The action gradient ∇τ log π(at|st) gives
the gradient of the action at with respect to the policy π(·|st), meaning no guidance is directly
applied to states. However, both states and actions are denoised by the score function, resulting
in second-order guidance of states in response to action guidance. We note that, unlike classifier
guidance, F(τ |π, λ) does not model the score function for the conditional p(τ |π).
Intuitively, the guidance term nudges the actions in the trajectory towards those that the target policy
would choose given the noised states. By tuning the guidance coefficient λ, PGD provides flexibility
in balancing target and behavior probabilities. We assume that trajectories with high behavior
probability will have lower dynamics error due to increased proportion in the offline dataset, making
this tuning a proxy for trading-off target probability with dynamics error. Furthermore, PGD avoids
the compounding error found when rolling out policies in learned world models by modeling the
joint trajectory distribution.

4 Experiments

4.1 Experimental Setup

We investigate the performance of PGD on the Pen task from the Adroit environment [Ra-
jeswaran et al., 2017] using the pen-human-v1 (“Human”, a small dataset of human trajectories),
pen-expert-v1 (“Expert”, a large dataset of expert trajectories) and pen-cloned-v1 (“Cloned”, a
large dataset of behavior-cloned trajectories) offline datasets from D4RL [Fu et al., 2020]. In order
to train an expert agent (Section 4.2), we train with PPO [Schulman et al., 2017] directly on the
environment, whilst we use IQL [Kostrikov et al., 2021] for policy optimization on synthetic data
(Section 4.3). Hyperparameters for diffusion and RL are given in the supplemental material.

4.2 Trajectory Analysis

In order to analyze PGD, we define two metrics of synthetic trajectories τ = (s0, a0, ..., sT , aT ):

• Trajectory Likelihood — The mean of the action probabilities 1
T−1 (

∑T−1
t=0 π(at|st)) for

a target policy. This is a proxy objective for p(τ |π), intended to measure how on-policy a
trajectory is.

• Dynamics Error — Forward dynamics model mean squared error, which is defined by
1

T−1

∑T−1
t=0 (T (st, at)− st+1)

2 (further discussion in the supplementary material).
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In Figure 1, we observe that, with a tuned guidance coefficient, guided synthetic trajectories are
both further on-policy and exhibit lower dynamics error when compared to unguided trajectories.
This occurs despite the Cloned behavior policy achieving significantly lower return than the expert
PPO policy, demonstrating the generalization capability of PGD when guided by out-of-distribution
target policies. The reduction in dynamics error is particularly interesting, as one might expect the
guidance term to induce high model error. We hypothesize this is due to expert trajectories in the Pen
environment being smoother and having lower state-space coverage, making them easier to model.
This behavior is in contrast to offline model-based RL methods that use a forward dynamics model,
where target policy rollouts can lead to large compounding model errors (Section 5). As the policy
guidance coefficient increases beyond a threshold value (around 2.0 in our experiments) the generated
trajectories become less on-policy and dynamics error rapidly increases. We hypothesize that this
threshold value is where the magnitude of the guidance term starts to destabilize the diffusion process.

4.3 Benchmark Evaluation

Table 1: Performance of IQL agents on Pen,
trained on synthetic data with and without policy
guidance (mean ± standard error over 5 seeds).

Dataset Return
λ = 0.0 λ = 2.0

Human 2232± 230 2448± 130
Cloned 1649± 113 1763± 89
Expert 3113± 134 3166± 146

We train an IQL agent [Kostrikov et al., 2021]
on purely synthetic data from PGD, with λ = 0
and λ = 2 (Table 1). These results show an
improvement on all datasets, but lack statistical
significance. Notably, the largest performance
increase is found on the smallest dataset (Hu-
man), reflecting the potential of guidance in the
low-data domain. We believe that these results,
along with the analysis presented in Figure 1,
are an early indication of the potential of agents
trained with purely synthetic data from PGD.

5 Related Work

Model-Based Offline Reinforcement Learning Model-based methods in offline RL [Yu et al.,
2020, Kidambi et al., 2020, Rigter et al., 2022, Lu et al., 2022] are designed to augment the offline
buffer with additional on-policy samples in order to mitigate distribution shift. This is typically
done by rolling out a policy in a learned world model [Janner et al., 2019] and applying a suitable
pessimism term in order to account for dynamics model errors. While these methods share the same
overall motivation as our paper, the empirical realization is quite different. In particular, forward
dynamics models are liable to compounding errors over long horizons, resulting in model exploitation,
whereas our trajectories are generated in a single step.

Model-Free Offline Reinforcement Learning Model-free methods in offline RL typically tackle
the out-of-sample issue by applying conservatism to the value function or by constraining the policy
to remain close to the data. For example, CQL [Kumar et al., 2020] and EDAC [An et al., 2021]
both aim to minimize the values of out-of-distribution actions. Meanwhile, BCQ [Fujimoto et al.,
2019] ensures that actions used in value targets are in-distribution with the behavioral policy using
constrained optimization. We take the opposite approach in this paper—by enabling our diffusion
model to generate on-policy samples without diverging from the behavior distribution, we reduce the
need for conservatism. SynthER [Lu et al., 2023] proposed the use of unguided diffusion models to
upsample the offline dataset with synthetic transitions from the behavior policy, to then be operated on
by model-free offline RL methods. Whilst this improves performance, the use of unguided diffusion
results in the same issue of distributional shift.

6 Conclusion

In conclusion, we present policy-guided diffusion, a method for generating on-policy trajectories
from an offline dataset, whilst avoiding the issue of compounding model error experienced by
model-based offline RL methods. We intend to further explore this method by experimenting with
noise-resistant policies for guidance, improving multi-step value estimation with guided synthetic
data, and leveraging large-scale offline datasets for increasingly complex environments.
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A Model Hyperparameters

A.1 EDM

For EDM we used the default hyperparameters from Lu et al. [2023] (Table 2). We observed instability
from policy guidance early in the diffusion process, as a result of trajectory noise. We avoided this by
implementing a warm-up period, during which no guidance was applied.

Table 2: EDM hyperparameters
Hyperparameter Value

Diffusion timesteps 400
Guidance warm-up 64

Schurn 80
Snoise 1.003
Stmax 50
Stmin 0.05
σmax 80
σmin 0.002

A.2 Diffusion model

For the diffusion model we used a U-Net architecture [Ronneberger et al., 2015] with the hyperpa-
rameters outlined in Table 3.

Table 3: U-Net hyperparameters
Hyperparameter Value

# of epochs 512
Batch size 16

Learning rate 0.001
# of blocks 2

# of features 1024
Optimizer Adam

Trajectory length 128

A.3 IQL

For IQL we used the hyperparameters outlined in Table 4.

Table 4: IQL hyperparameters
Hyperparameter Value

β 3
τ 0.7
γ 0.99

Learning rate 0.0003
Batch size 512
Train steps 50000
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B Approximating Simulation Error in Adroit

Since our diffusion model generates observations, we were unable to exactly recover the underlying
states to be fed into the simulator in order to calculate the forward dynamics error. Of the 64 scalars
that make up the state space in adroit-pen, 24 are given to us in the observation (positions of joints).
The corresponding 8 velocities (each 3 dimensions) of these joints can be calculated using the finite
difference between subsequent observations, divided by the api frequency (200 Hz). A further 4
scalars can be calculated by converting the Euler angles of the desired orientation into a Quaternion.
This leaves 12 scalars (2 positions and 2 velocities) unaccounted for that we cannot approximate,
which we simply set to 0. While clearly not a perfect representation of the true state, we believe that
this approximation is close enough to be a useful approximation.
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