
Plan-Seq-Learn: Language Model Guided RL for
Solving Long Horizon Robotics Tasks

Murtaza Dalal1, Tarun Chiruvolu1, Devendra Singh Chaplot2, Ruslan Salakhutdinov1

1Carnegie Mellon University, 2Mistral AI

Abstract

Large Language Models (LLMs) are highly capable of performing planning for1

long-horizon robotics tasks, yet existing methods require access to a pre-defined2

skill library (e.g. picking, placing, pulling, pushing, navigating). However, LLM3

planning does not address how to design or learn those behaviors, which remains4

challenging particularly in long-horizon settings. Furthermore, for many tasks of5

interest, the robot needs to be able to adjust its behavior in a fine-grained manner,6

requiring the agent to be capable of modifying low-level control actions. Can7

we instead use the internet-scale knowledge from LLMs for high-level policies,8

guiding reinforcement learning (RL) policies to efficiently solve robotic control9

tasks online without requiring a pre-determined set of skills? In this paper, we10

propose Plan-Seq-Learn (PSL): a modular approach that uses motion planning11

to bridge the gap between abstract language and learned low-level control for12

solving long-horizon robotics tasks from scratch. We demonstrate that PSL is13

capable of solving 20+ challenging single and multi-stage robotics tasks on four14

benchmarks at success rates of over 80% from raw visual input, out-performing15

language-based, classical, and end-to-end approaches. Video results and code at16

https://mihdalal.github.io/planseqlearn/.17

1 Introduction18

LLM planning over a predefined set of skills [2, 46, 19, 59] has significantly transformed robot19

learning, producing strong results across a wide range of long-horizon robotics tasks. These works20

assume the availability of a pre-defined skill library that abstracts away the robotic control problem.21

They instead focus on designing methods to select the right sequence skills to solve a given task.22

However, for robotics tasks involving contact-rich robotic manipulation (Fig. 1), such skills are23

often not available, require significant engineering effort to design or train a-priori or are simply not24

expressive enough to address the task. How can we move beyond pre-built skill libraries and enable25

the application of language models to general purpose robotics tasks with as few assumptions as26

possible? Robotic systems need to be capable of online improvement over low-level control policies27

while being able to plan over long horizons.28

End-to-end reinforcement learning (RL) is one paradigm that can produce complex low-level control29

strategies on robots with minimal assumptions [3, 17, 16, 23, 24, 6, 1]. However, RL methods are30

traditionally limited to the short horizon regime due to the significant challenge of exploration in31

RL, especially in high-dimensional continuous action spaces characteristic of robotics tasks. RL32

methods struggle with longer-horizon tasks in which high-level reasoning and low-level control33

must be learned simultaneously; effectively decomposing tasks into sub-sequences and accurately34

achieving them is challenging in general [49, 43].35

Submitted to NeurIPS 2023 6th Robot Learning Workshop: Pretraining, Fine-Tuning, and Generalization with
Large Scale Models. Do not distribute.

https://mihdalal.github.io/planseqlearn/

πθ

Learning Module

Termination Condition

(e.g. grasp)

Olocal
t

at

Motion Planner

Sequencing Module

Sequence next component of plan

Pose Estimation

Oglobal
depth

Oglobal
rgb

Planning Module LLM

Region 1 
Condition 1[] Region n 

Condition n
{ Region N 

Condition N[]… …
}[]

High-level Plan

[-.11,.13,.83]

Figure 1: Method overview. PSL decomposes tasks into a list of regions and stage termination conditions
using an LLM (top), sequences the plan using motion planning (left) and learns control policies using RL (right).

Our key insight is that LLMs and RL have complementary strengths and weaknesses. Language36

models can leverage internet scale knowledge to break down long-horizon tasks [2, 18] into achievable37

sub-goals, but lack a mechanism to produce low-level robot control strategies [56], while RL can38

discover complex control behaviors on robots but struggles to simultaneously perform long-term39

reasoning [41]. Ideally, the RL agent should be able to follow the guidance of the LLM, enabling it to40

learn to efficiently solve each predicted sub-task online. How can we connect the abstract language41

space of an LLM with the low-level control space of the RL agent in order to address the long-horizon42

robot control problem?43

In this work, we propose a learning method to solve long-horizon robotics tasks by tracking language44

model plans using motion planning and learned low-level control. Our approach, called Plan-Seq-45

Learn (PSL), is a modular framework in which a high-level language plan given by an LLM (Plan) is46

interpreted and executed using motion planning (Seq), enabling the RL policy (Learn) to rapidly47

learn short-horizon control strategies to solve the overall task. This decomposition enables us to48

effectively leverage the complementary strengths of each module: language models for abstract49

planning, vision-based motion planning for task plan tracking as well as achieving robot states and RL50

policies for learning low-level control. Furthermore, we improve learning speed and training stability51

by sharing the learned RL policy across all stages of the task, using local observations for efficient52

generalization, and introducing a simple, yet scalable curriculum learning strategy for tracking the53

language model plan. To our knowledge, ours is the first work enabling language guided RL agents54

to efficiently learn low-level control strategies for long-horizon robotics tasks.55

2 Plan-Seq-Learn56

To solve long-horizon robotics tasks, we need a module capable of bridging the gap between zero-shot57

language model planning and learned low-level control. Observe that many tasks of interest can58

be decomposed into alternating phases of contact-free motion and contact-rich interaction. One59

first approaches a target region and then performs interaction behavior, prior to moving to the next60

sub-task. Contact-free motion generation is exactly the motion planning problem. For estimating61

the position of the target region, we note that state-of-the-art vision models are capable of accurate62

language-conditioned state estimation [27, 67, 34, 4, 63, 29]. As a result, we propose a Sequencing63

Module which uses off-the-shelf vision models to estimate target robot states from the language plan64

and then achieves these states using a motion planner. From such states, we train interaction policies65

that optimize the task reward using RL. See Alg. 1 and Fig. 1 for an overview of our method.66

Planning Module: Zero-Shot High-level Planning. Given a task description gl by a human, we67

prompt an LLM to produce a plan. Designing the plan granularity and scope are crucial; we need68

plans that can be interpreted by the Sequencing Module, a vision-based system that produces and69

2

RS-Bread RS-Can RS-Milk RS-Cereal RS-NutRound RS-NutSquare

E2E .52 ± .49 0.32 ± .44 .02 ± .04 0.0 ± 0.0 .06 ± .13 0.02 ± .045
RAPS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
TAMP 0.9 ± .01 1.0 ± 0.0 .85 ± .06 1.0 ± 0.0 0.4 ± 0.3 .35 ± .2
SayCan .93 ± .09 1.0 ± 0.0 0.9 ± .05 .63 ± .09 .56 ± .25 .27 ± .21

PSL 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 .98 ± .04 .97 ± .02

Table 1: Robosuite Two Stage Results. Performance is measured in terms of success rate on two-stage (2
planner actions) tasks. SayCan is competitive with PSL on pick-place style tasks, but SayCan’s performance
drops considerably (86.5% to 41.5% on average) on contact-rich tasks involving assembling nuts due to
cascading failures. Online learning methods (E2E and RAPS) make little progress on the long-horizon tasks in
Robosuite. On the other hand, PSL is able to solve each task with at least 97% success rate.

achieves robot poses using motion planning. As a result, the LLM predicts a target region (a natural70

language label of an object/receptacle in the scene, e.g. “silver peg”) which can be translated into a71

target pose to achieve at the beginning of each stage of the plan. When the RL policy is executing72

a step of the plan, we propose to add a stage termination condition (e.g. grasped, placed, etc.) to73

know the stage is complete and to move onto the next stage. We format the language plans as follows:74

(“Region 1”, “Termination Condition 1”), ... (“Region N”, “Termination Condition N”), assuming the75

LLM predicts N stages. We provide additional details in Appendix B.76

Sequencing Module: Vision-based Plan Tracking. Given a high-level language plan, we now wish77

to step through the plan and enable a learned RL policy to solve the task, using off-the-shelf vision78

to produce target poses for a motion planning system to achieve. At stage X of the high-level plan,79

the Sequencing Module takes in the corresponding step high-level plan (“Region Y”, “Termination80

Condition Z”) as well as the current global observation of the scene Oglobal (RGB-D view(s) that81

cover the whole scene), predicts a target robot pose qtarget and then reaches the robot pose.82

Using a text label of the target region of interest from the high-level plan and observation Oglobal,83

we need to compute a target robot state qtarget for the motion planner to achieve. In principle,84

we can train an RL policy to solve this task (learn a policy πv to map Oglobal to qtarget) given85

the environment reward function. However, observe that the 3D position of the target region is a86

reasonable estimate of the optimal policy π∗
v for this task: intuitively, we wish to initialize the robot87

nearby to the region of interest so it can efficiently learn interaction. Thus, we can bypass learning a88

policy for this step by leveraging a vision model to estimate the 3D coordinates of the target region.89

We opt to use Segment Anything [27] to perform segmentation, as it is capable of recognizing a wide90

array of objects, use calibrated depth images to estimate the coordinates of the target region and91

estimate the target robot pose qtarget using inverse kinematics.92

Given a robot start configuration q0 and a robot goal configuration qtarget of a robot, the motion93

planning module aims to find a trajectory of way-points τ that form a collision-free path between94

q0 and qtarget. For manipulation tasks, for example, q represents the joint angles of a robot arm. In95

our implementation, we use AIT* [47], a sampling-based planner, to solve this problem due to its96

minimal setup requirements (only collision-checking) and favorable performance on planning. For97

implementation details, please see Appendix B.98

Learning Module: Efficiently Learning Local Control. Once the agent steps through the plan and99

achieves states near target regions of interest, it needs to train an RL policy πθ to learn low-level100

control for solving the task. We train πθ using DRQ-v2 [62], a SOTA visual model-free RL algorithm,101

to produce low-level control actions (joint control or end-effector control) from images. Furthermore,102

we propose three modifications to the learning pipeline in order to further improve learning speed103

and stability which we describe in the Appendix A.104

3 Results105

We begin by evaluating PSL on a variety of single stage tasks across Robosuite, Meta-World, Kitchen106

and ObstructedSuite. Next, we scale our evaluation to the long-horizon regime in which we show that107

PSL can leverage LLM task planning to efficiently solve multi-stage tasks. We include additional108

experiments, ablations and analyses in Appendix A.109

3

RS-CerealMilk RS-CanBread RS-NutAssembly K-MS-3 K-MS-4 K-MS-5
Stages 4 4 4 3 4 5

E2E 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
RAPS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 .89 ± 0.1 0.3 ± .15 0.0 ± 0.0
TAMP .71 ± .05 .72 ± .25 0.2 ± 0.3 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
SayCan .73 ± .05 .63 ± .21 .23 ± .21 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PSL .85 ± .21 0.9 ± 0.2 .96 ± .08 1.0 ± 0.0 .67 ± .22 .67 ± .22

Table 2: Multistage (Long-horizon) results. Performance is measured in terms of mean task success rate
at convergence. PSL is the consistently solves each task, outperforming planning methods by over 70% on
challenging contact-intensive tasks such as NutAssembly.

PSL accelerates learning efficiency on a wide array of single-stage benchmark tasks. For110

single-stage manipulation, (in which the LLM predicts only a single step in the plan), the Sequencing111

Module motion plans to the specified region, then hands off control to the RL agent to complete the112

task. In this setting, we solely evaluate the learning methods since the planning problem is trivial113

(only one step). We observe improvements in learning efficiency (with respect to number of trials) as114

well as final performance in comparison to the learning baselines E2E, RAPS and MoPA-RL, across115

11 tasks in Robosuite, Meta-World, Kitchen and ObstructedSuite (Fig. A.2, left). For all learning116

curves, please see the Appendix A.117

PSL efficiently solves tasks with obstructions by leveraging motion planning. As we observe118

in Fig. A.2 and Fig. A.3, PSL is able to learn control in the presence of obstacles, solving each task119

within 5K episodes, while E2E fails to make progress. PSL is able to do so because the Sequencing120

Module handles the obstacle avoidance implicitly via motion planning and initializes the RL policy121

in advantageous regions near the target object. In contrast, E2E spends a significant amount of time122

attempting to reach the object in spite of the obstacles, failing to learn the task.123

PSL enables visuomotor policies to learn long-horizon behaviors with up to 5 stages. Two-stage124

results across Robosuite and Meta-World are shown in Table 1 and Table A.3, with learning curves125

in Fig. A.2 (right) and Fig. A.4. On the Robosuite tasks, E2E and RAPS fail to make progress:126

while they learn to reach the object, they fail to consistently grasp it, let alone learn to place it in127

the target location. On the Meta-World tasks, the learning baselines perform well on most tasks,128

achieving similar performance to PSL due to shaped rewards. However, PSL is significantly more129

sample-efficient than E2E and RAPS as shown in Fig. A.4. TAMP and SayCan are able to achieve130

high performance across each PickPlace variant of the Robosuite tasks (93.75%, 86.5% averaged131

across tasks), as the manipulation skills do not require significant contact-rich interaction, reducing132

failure skill failure rates. Cascading failures still occur due to the baselines’ open-loop nature of133

execution. Only PSL is able to achieve perfect performance across each task, avoiding cascading134

failures by learning from online interaction.135

On multi-stage tasks (involving 3-5 stages), we find that TAMP and SayCan performance drops136

significantly in comparison to PSL (61%, 51% vs. 90% averaged across tasks). For multiple stages,137

the cascading failure problem becomes all the more problematic, causing all three baselines to fail at138

intermediate stages, while PSL is able to learn to adapt to imperfect Sequencing Module behavior via139

RL. See Table 2 for a detailed breakdown of the results.140

PSL solves contact-rich, long-horizon control tasks such as NutAssembly. In these experi-141

ments, we show that PSL can learn to solve contact-rich tasks (RS-NutRound, RS-NutSquare,142

RS-NutAssembly) that pose significant challenges for classical methods and LLMs with pre-trained143

skills due to the difficulty of designing manipulation behaviors under continuous contact. By learning144

an interaction policy whose purpose is to produce locally correct contact-rich behavior, we find145

that PSL is effective at performing contact-rich manipulation over long horizons (Table 1, Table 2),146

outperforming SayCan by a wide margin (97% vs. 35% averaged across tasks). Our decomposition147

into contact-free motion generation and contact-rich interaction decouples the what (target nut) and148

where (peg) from the how (precision grasp and contact-rich place), allowing the RL agent to simply149

focus on the aspect of the problem that is challenging to estimate a-priori: how to interact with the150

objects in the appropriate manner.151

4

References152

[1] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains153

using egocentric vision. In Conference on Robot Learning, pages 403–415. PMLR, 2023.154

[2] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,155

K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic156

affordances. arXiv preprint arXiv:2204.01691, 2022.157

[3] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,158

M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint159

arXiv:1910.07113, 2019.160

[4] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak. Affordances from human videos as a161

versatile representation for robotics. 2023.162

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,163

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural164

information processing systems, 33:1877–1901, 2020.165

[6] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal. Visual dexterity: In-hand166

dexterous manipulation from depth. arXiv preprint arXiv:2211.11744, 2022.167

[7] S. Cheng and D. Xu. Guided skill learning and abstraction for long-horizon manipulation. arXiv168

preprint arXiv:2210.12631, 2022.169

[8] C. Colas, T. Karch, N. Lair, J.-M. Dussoux, C. Moulin-Frier, P. Dominey, and P.-Y. Oudeyer.170

Language as a cognitive tool to imagine goals in curiosity driven exploration. Advances in171

Neural Information Processing Systems, 33:3761–3774, 2020.172

[9] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement learning173

via parameterized action primitives. Advances in Neural Information Processing Systems, 34:174

21847–21859, 2021.175

[10] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta, and J. Andreas.176

Guiding pretraining in reinforcement learning with large language models. arXiv preprint177

arXiv:2302.06692, 2023.178

[11] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven179

reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.180

[12] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox. Online replanning in181

belief space for partially observable task and motion problems. In 2020 IEEE International182

Conference on Robotics and Automation (ICRA), pages 5678–5684. IEEE, 2020.183

[13] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-P´erez.184

Integrated Task and Motion Planning. Annual review of control, robotics, and autonomous185

systems, 4, 2021.186

[14] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving187

long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956,188

2019.189

[15] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill190

acquisition. In Proceedings of the 2023 Conference on Robot Learning, 2023.191

[16] A. Handa, A. Allshire, V. Makoviychuk, A. Petrenko, R. Singh, J. Liu, D. Makoviichuk,192

K. Van Wyk, A. Zhurkevich, B. Sundaralingam, et al. Dextreme: Transfer of agile in-hand193

manipulation from simulation to reality. arXiv preprint arXiv:2210.13702, 2022.194

5

[17] A. Herzog*, K. Rao*, K. Hausman*, Y. Lu*, P. Wohlhart*, M. Yan, J. Lin, M. G. Arenas, T. Xiao,195

D. Kappler, D. Ho, J. Rettinghouse, Y. Chebotar, K.-H. Lee, K. Gopalakrishnan, R. Julian, A. Li,196

C. K. Fu, B. Wei, S. Ramesh, K. Holden, K. Kleiven, D. Rendleman, S. Kirmani, J. Bingham,197

J. Weisz, Y. Xu, W. Lu, M. Bennice, C. Fong, D. Do, J. Lam, N. Brown, M. Kalakrishnan,198

J. Ibarz, P. Pastor, and S. Levine. Deep rl at scale: Sorting waste in office buildings with a fleet199

of mobile manipulators. In arXiv preprint arXiv:2305.03270, 2023.200

[18] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:201

Extracting actionable knowledge for embodied agents. In International Conference on Machine202

Learning, pages 9118–9147. PMLR, 2022.203

[19] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,204

Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language205

models. arXiv preprint arXiv:2207.05608, 2022.206

[20] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic207

manipulation. IEEE Robotics and Automation Letters, 7(2):1612–1619, 2022.208

[21] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning209

for visual robotic manipulation via discretisation. In Proceedings of the IEEE/CVF Conference210

on Computer Vision and Pattern Recognition, pages 13739–13748, 2022.211

[22] L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space. The212

International Journal of Robotics Research, 32(9-10):1194–1227, 2013.213

[23] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-214

ishnan, V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic215

manipulation. In Conference on Robot Learning, pages 651–673. PMLR, 2018.216

[24] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and217

K. Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at scale. arXiv218

preprint arXiv:2104.08212, 2021.219

[25] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes, M. Wüthrich, V. Berenz, S. Schaal,220

N. Ratliff, and J. Bohg. Real-time perception meets reactive motion generation. IEEE Robotics221

and Automation Letters, 3(3):1864–1871, 2018.222

[26] O. Khatib. A unified approach for motion and force control of robot manipulators: The223

operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53, 1987.224

[27] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.225

Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.226

[28] M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh. Reward design with language models. arXiv227

preprint arXiv:2303.00001, 2023.228

[29] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Tremblay, J. Carpentier,229

M. Aubry, D. Fox, and J. Sivic. Megapose: 6d pose estimation of novel objects via render &230

compare. arXiv preprint arXiv:2212.06870, 2022.231

[30] M. A. Lee, C. Florensa, J. Tremblay, N. Ratliff, A. Garg, F. Ramos, and D. Fox. Guided232

uncertainty-aware policy optimization: Combining learning and model-based strategies for233

sample-efficient policy learning. In 2020 IEEE International Conference on Robotics and234

Automation (ICRA), pages 7505–7512. IEEE, 2020.235

[31] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language236

instructions to feasible plans. arXiv preprint arXiv:2303.12153, 2023.237

6

[32] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, and P. Stone. Llm+ p: Empowering238

large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,239

2023.240

[33] I.-C. A. Liu, S. Uppal, G. S. Sukhatme, J. J. Lim, P. Englert, and Y. Lee. Distilling motion241

planner augmented policies into visual control policies for robot manipulation. In Conference242

on Robot Learning, pages 641–650. PMLR, 2022.243

[34] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding244

dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint245

arXiv:2303.05499, 2023.246

[35] T. Lozano-Perez, M. T. Mason, and R. H. Taylor. Automatic synthesis of fine-motion strategies247

for robots. The International Journal of Robotics Research, 3(1):3–24, 1984.248

[36] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff, T. Kröger,249

J. Kuffner, and K. Goldberg. Dex-net 1.0: A cloud-based network of 3d objects for robust grasp250

planning using a multi-armed bandit model with correlated rewards. In IEEE International251

Conference on Robotics and Automation (ICRA), pages 1957–1964. IEEE, 2016.252

[37] M. T. Mason. Mechanics of robotic manipulation. MIT press, 2001.253

[38] A. T. Miller and P. K. Allen. Graspit! a versatile simulator for robotic grasping. IEEE Robotics254

& Automation Magazine, 11(4):110–122, 2004.255

[39] A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for object256

manipulation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,257

pages 2901–2910, 2019.258

[40] R. R. Murphy. Introduction to AI robotics. MIT press, 2019.259

[41] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.260

Advances in neural information processing systems, 31, 2018.261

[42] R. OpenAI. Gpt-4 technical report. arXiv, pages 2303–08774, 2023.262

[43] R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. Advances in263

neural information processing systems, 10, 1997.264

[44] R. P. Paul. Robot manipulators: mathematics, programming, and control: the computer control265

of robot manipulators. Richard Paul, 1981.266

[45] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suenderhauf. Sayplan: Ground-267

ing large language models using 3d scene graphs for scalable task planning. arXiv preprint268

arXiv:2307.06135, 2023.269

[46] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and270

A. Garg. Progprompt: Generating situated robot task plans using large language models. In271

2023 IEEE International Conference on Robotics and Automation (ICRA), pages 11523–11530.272

IEEE, 2023.273

[47] M. P. Strub and J. D. Gammell. Adaptively informed trees (ait): Fast asymptotically optimal274

path planning through adaptive heuristics. In 2020 IEEE International Conference on Robotics275

and Automation (ICRA), pages 3191–3198. IEEE, 2020.276

[48] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof277

grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and278

Automation (ICRA), pages 13438–13444. IEEE, 2021.279

7

[49] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal280

abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.281

[50] Y. Tang, W. Yu, J. Tan, H. Zen, A. Faust, and T. Harada. Saytap: Language to quadrupedal282

locomotion. arXiv preprint arXiv:2306.07580, 2023.283

[51] R. H. Taylor, M. T. Mason, and K. Y. Goldberg. Sensor-based manipulation planning as a game284

with nature. In Fourth International Symposium on Robotics Research, pages 421–429, 1987.285

[52] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012286

IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,287

2012.288

[53] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,289

E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv290

preprint arXiv:2302.13971, 2023.291

[54] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,292

P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv293

preprint arXiv:2307.09288, 2023.294

[55] M. Vukobratović and V. Potkonjak. Dynamics of manipulation robots: theory and application.295

Springer, 1982.296

[56] Y.-J. Wang, B. Zhang, J. Chen, and K. Sreenath. Prompt a robot to walk with large language297

models. arXiv preprint arXiv:2309.09969, 2023.298

[57] D. E. Whitney. The mathematics of coordinated control of prosthetic arms and manipulators.299

1972.300

[58] D. E. Whitney. Mechanical assemblies: their design, manufacture, and role in product develop-301

ment, volume 1. Oxford university press New York, 2004.302

[59] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and303

T. Funkhouser. Tidybot: Personalized robot assistance with large language models. arXiv304

preprint arXiv:2305.05658, 2023.305

[60] F. Xia, C. Li, R. Martı́n-Martı́n, O. Litany, A. Toshev, and S. Savarese. Relmogen: Lever-306

aging motion generation in reinforcement learning for mobile manipulation. arXiv preprint307

arXiv:2008.07792, 2020.308

[61] J. Yamada, Y. Lee, G. Salhotra, K. Pertsch, M. Pflueger, G. Sukhatme, J. Lim, and P. En-309

glert. Motion planner augmented reinforcement learning for robot manipulation in obstructed310

environments. In Conference on Robot Learning, pages 589–603. PMLR, 2021.311

[62] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved312

data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.313

[63] Y. Ye, X. Li, A. Gupta, S. De Mello, S. Birchfield, J. Song, S. Tulsiani, and S. Liu. Affordance314

diffusion: Synthesizing hand-object interactions. In Proceedings of the IEEE/CVF Conference315

on Computer Vision and Pattern Recognition, pages 22479–22489, 2023.316

[64] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A317

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on318

robot learning, pages 1094–1100. PMLR, 2020.319

[65] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. Gonzalez Arenas, H.-T. Lewis Chiang,320

T. Erez, L. Hasenclever, J. Humplik, B. Ichter, T. Xiao, P. Xu, A. Zeng, T. Zhang, N. Heess,321

D. Sadigh, J. Tan, Y. Tassa, and F. Xia. Language to rewards for robotic skill synthesis. Arxiv322

preprint arXiv:2306.08647, 2023.323

8

[66] J. Zhang, J. Zhang, K. Pertsch, Z. Liu, X. Ren, M. Chang, S.-H. Sun, and J. J. Lim. Bootstrap324

your own skills: Learning to solve new tasks with large language model guidance. Conference325

on Robot Learning, 2023.326

[67] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting twenty-thousand classes327

using image-level supervision. In Computer Vision–ECCV 2022: 17th European Conference,328

Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part IX, pages 350–368. Springer, 2022.329

[68] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiriany, and Y. Zhu. robo-330

suite: A modular simulation framework and benchmark for robot learning. arXiv preprint331

arXiv:2009.12293, 2020.332

9

Appendix333

A Additional Experiments334

We perform additional analyses of PSL in this section.335

σ = 0 σ = 0.01 σ = 0.025 σ = 0.1 σ = 0.5

SayCan 1.0 ± 0.0 .93 ± .05 .27 ± .12 0.0 ± 0.0 0.0 ± 0.0
PSL 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 .75 ± .07 0.0 ± 0.0

Table A.1: Noisy Pose Ablation Results. We add noise sampled from N (0, σ) to the pose estimates and
evaluate SayCan and PSL. PSL is able to handle noisy poses by training online with RL, only observing
performance degradation beyond σ = 0.1.

PSL leverages stage termination conditions to learn faster. While the target object sequence is336

necessary for PSL to plan to the right location at the right time, in this experiment we evaluate if337

knowledge of the stage termination conditions is necessary. Specifically, on the RS-Can task, we338

evaluate the use of stage termination condition checks in PSL to trigger the next step in the plan versus339

simply using a timeout of 25 steps. We find that it is in fact critical to use stage termination condition340

checks to enable the agent to effectively sequence the plan; use of a timeout results in dithering341

behavior which slows down learning. After 10K episodes we observe a performance improvement of342

31% (100% vs. 69%) by including plan stage termination conditions in our pipeline.343

PSL produces policies that are robust to noisy pose estimates. In real world settings, there is often344

noise in pose estimation due to noisy depth values, imperfect camera calibration or even network345

prediction errors. Ideally, the agent should be adapt to such potential failure modes: open-loop346

planning methods such as TAMP and SayCan are not well-suited to do so because they do not347

improve online. In this experiment we evaluate the PSL’s ability to handle noisy/inaccurate poses348

by leveraging online interaction via RL. On the RS-Can task, we add zero-mean Gaussian noise to349

the pose, with σ ∈ 0.01, 0.025, .1, .5 and report our results in Table. A.1. While SayCan struggles350

to handle σ > 0.01, PSL is able to learn with noisy poses at σ = .1, at the cost of slower learning351

performance. Neither method performs well at σ = 0.5, however at that point the poses are not near352

the object and the effect is similar to resetting to a random robot pose in the workspace every episode.353

0 1000 2000 3000 4000 5000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

RS-Can Camera Ablation

PSL-Fixed PSL-Wrist (Ours) PSL-Wrist+Fixed

Figure A.1: Camera View Learning Performance Ablation. wrist camera views clearly accelerate
learning performance, converging to near 100% performance 4x faster than using fixed-view and 3x
faster than using wrist+fixed-view observations.

Effect of camera view on policy learning performance: As discussed in Sec. 2, for PSL we use354

local observations to improve learning performance and generalization to new poses. We validate355

this claim on the Robosuite Can task, in which we hypothesize that the local wrist camera view will356

accelerate policy learning performance. This is because the image of the can will be independent of357

the can’s position in general since the Sequencing Module will initialize the RL agent as close to the358

10

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Lift

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Microwave

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Can

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite NutAssembly Round

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

OS-Assembly

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

MW-Disassemble

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Assembly

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Bin Picking

E2E RAPS MoPA-RL PSL (Ours)

Figure A.2: Sample Efficiency Results. We plot task success rate as a function of the number of trials. PSL
improves on the sample efficiency of the baselines across each task in Robosuite, Kitchen, Meta-World, and
Obstructed Suite. PSL is able to do so because it initializes the RL policy near the region of interest (as predicted
by the Plan and Sequence Modules) and leverages local observations to efficiently learn interaction. Additional
learning curves in Appendix A.

can as possible. As observed in Fig. A.1, this is indeed the case - PSL learns 4x faster than using a359

fixed view camera in terms of the number of trials. We additionally test if combining wrist and fixed360

view inputs (a common paradigm in robot learning) can alleviate the issue, however PSL with wrist361

cam is still 3x faster at solving the task.362

Effect of camera view on chaining pre-trained policies: In this ablation, we illustrate another363

important effect of using local views, such as wrist cameras: ease of chaining pre-trained policies.364

Since we leverage motion planning to sequence between policy executions, chaining pre-trained365

policies is relatively straightforward: simply execute the Sequencing Module to reach the first region366

of interest, execute the first pre-trained policy till its stage termination condition is triggered, then367

call the Sequencing Module on the next region, and so on. However, to do so, it is also crucial that368

the observations do not change significantly, so that the inputs to the pre-trained policies are not369

out of distribution (OOD). If we use a fixed, global view of the scene, the overall scene will change370

as multiple policies are executed, resulting in future policy executions failing due to OOD inputs.371

In Table A.2, we observe this exact phenomenon, in which any version of PSL that is provided a372

fixed-view input fails to chain pre-trained policies effectively, while PSL with local (wrist) views373

only is able to chain pre-trained policies on every task, up to 5 stages.374

K-Single-Task K-MS-3 K-MS-4 K-MS-5

PSL-Wrist 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0
PSL-Fixed 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

PSL-Wrist+Fixed 1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table A.2: Chaining Pre-trained Policies Ablation. PSL can leverage local views (wrist cameras) to chain
together multiple pre-trained policies via motion-planning using the Sequencing Module. While PSL with each
camera input is able to produce a capable single-task policy, chaining only works with wrist camera observations
as the observations are kept in-distribution.

MW-BinPick MW-Assembly MW-Hammer

E2E 1.0 ± 0.0 0.4 ± 0.5 0.0 ± 1.0
RAPS 0.0 ± 0.0 0.3 ± .25 1.0 ± 0.0
TAMP 1.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0
SayCan 1.0 ± 0.0 0.5 ± .08 1.0 ± 0.0

PSL 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Table A.3: Metaworld Two Stage Results. While the baselines perform well on most of the tasks, only PSL
is able to consistently solve every task. This is because the LLM planning and Sequencing modules ease the
learning burden for the RL policy, enabling it to learn contact-rich, long-horizon behaviors.

11

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Lift

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Robosuite Door

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Slide Cabinet

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Kettle

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Light Switch

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
ate

Kitchen Top Left Burner

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Kitchen Microwave

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

MW-Disassemble

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

OS-Assembly

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

OS-Lift

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

OS-Push

E2E RAPS MoPA-RL PSL (Ours)

Figure A.3: Single Stage Results. We plot task success rate as a function of the number of trials. PSL improves
on the efficiency of the baselines across single-stage tasks (plan length of 1) in Robosuite, Kitchen, Meta-World,
and Obstructed Suite, achieving an asymptotic success rate of 100% on all 11 tasks.

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Hammer

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Assembly

0 2000 4000 6000 8000 10000
Number of Trials

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

ate

Metaworld Bin Picking

E2E RAPS MoPA-RL PSL (Ours)

Figure A.4: Meta-World Two Stage Learning Curves. We plot task success rate as a function of the number
of trials. PSL learns faster than the baselines by employing high-level planning to accelerate RL performance.

12

B PSL Implementation Details375

Algorithm 1 Plan-Seq-Learn Overview

Require: LLM, Pose Estimator P, task description gl, Motion Planner MP, low-level horizon Hl

Planning Module
High-level plan P ← Prompt(LLM, gl)
for p ∈ P do
Sequencing Module

target region (t), termination condition← p

Compute pose qtarget = P (Oglobal
t , t)

Achieve pose MP(qtarget, O
global
t)

Learning Module
for i = 1, ...,Hl do

Get action at ∼ πθ(O
local
t)

Get next state Olocal
t+1 ∼ p(|st, at).

Store (Olocal
t , at, O

local
t+1 , r) intoR

update πθ using RL
if stage termination condition then

break
end if

end for
end for

B.1 Planning Module376

Given a task description gl, we prompt an LLM using the format described in Sec. 2 to produce377

a language plan. We experimented with a variety of publicly available and closed-source LLMs378

including LLAMA [53], LLAMA-2 [54], GPT-3 [5], Chat-GPT, and GPT-4 [42]. In initial exper-379

iments, we found that GPT-based models performed best, and GPT-4 in particularly most closely380

adhered to the prompt and produced the most accurate plans. As a result, in our experiments, we381

use GPT-4 as the LLM planner for all tasks. We sample from the model with temperature 0 for382

determinism. Sometimes, the LLM hallucinates non-existent stage termination conditions or objects.383

As a result, we add a pre-processing step in which we delete components of the plan that contain384

such hallucinations.385

B.2 Sequencing Module386

The input to the Sequencing Module is Oglobal. In our experiments, we use two camera views,387

Oglobal
1 and Oglobal

2 , which are RGB-D calibrated camera views of the scene, to obtain unoccluded388

views of the scene. We additionally provide the current robot configuration, which is joint angles for389

robot arms: qjoint and the target region label around which the RL policy must perform environment390

interaction. From this information, the module must solve for a collision free path to a region near the391

target. This problem can be addressed by classical motion planning. We take advantage of sampling-392

based motion planning due to its minimal setup requirements (only collision-checking) and favorable393

performance on planning. In order to run the motion planner, we require a collision checker, which we394

implement using point-clouds. To compute the target object position, we use predicted segmentation395

along with calibrated depth, as opposed to a dedicated pose estimation network, primarily because396

state of the art segmentation models [27, 67] have significant zero-shot capabilities across objects.397

Projection: In this step, we project the depth map from each global view of the scene, Oglobal
1 and398

Oglobal
2 into a point-cloud PCglobal using their associated camera matrices Kglobal

1 and Kglobal
2 . We399

perform the following processing steps to clean up PCglobal: 1) cropping to remove all points outside400

the workspace 2) voxel down-sampling with a size of 0.005 m3 to reduce the overall size of PCglobal401

3) outlier removal, which prunes points that are farther from their 20 neighboring points than the402

average in the point-cloud as shown in Fig. B.1.403

13

Algorithm 2 PSL Implementation
Require: LLM, task description gl, Motion Planner MP, low-level horizon Hl, segmentation model S , RGB-D

global cameras, RGB wrist camera, Camera Matrix Kglobal

1: initialize RL: πθ , replay bufferR
Planning Module

2: High-level plan P ← Prompt(LLM, gl)
3: for episode 1...N do
4: for p ∈ P do

Sequencing Module
5: target region (t), termination condition← p

6: PCglobal = Projection(Oglobal
1 , Oglobal

2 , Kglobal)
7: Mrobot,Mobj = Segmentation(Oglobal

1 , Oglobal
2 , robot, object)

8: PCrobot , PCobject = Mrobot ∗ PCglobal, Mobj ∗ PCscene

9: PCscene = PCglobal − PCrobot

10: eetarget = mean(PCobj)
11: qtarget = IK(eetarget)
12: MotionPlan(MP, qtarget, PCscene)

Learning Module
13: for i = 1, ..., h low-level steps do
14: Get action at ∼ πθ(O

local
t)

15: Get next state Olocal
t+1 ∼ p(|st, at).

16: Store (Olocal
t , at, O

local
t+1 , r) intoR

17: Sample (Olocal
k , at, O

local
k+1 , r) ∼ R ▷ k = random index

18: update πθ using RL
19: if post-condition then
20: break
21: end if
22: end for
23: end for
24: end for

Mrobot

Target: can

Oglobal
rgb

qtarget

Motion Planner (AIT*)

Mobj

Inverse KinematicseetargetSegmentation (SAM)

PCglobal

qjoint

Projection

Oglobal
depth

Figure B.1: Sequencing Module. Inputs to the Sequencing Module are two calibrated RGB-D fixed views,
Oglobal, the proprioception qjoint and the target object. It performs visual motion planning to the target object
by computing a scene point-cloud (PCglobal), segmenting the target object (Mobj) to estimate its pose (qtarget),
segmenting the robot (Mrobot) to remove it from PCglobal and motion planning using AIT*.

Segmentation: We compute masks for the robot (Mrobot) and the target object (Mobj) by using a404

segmentation model (SAM [27]) S which segments the scene based on RGB input. We reduce noise405

in the masks by filling holes, computing contiguous mask clusters and selecting the largest mask. We406

use Mrobot to remove the robot from PCglobal, in order to perform collision checking of the robot407

against the scene. Additionally, we use Mobj along with PCglobal to compute the object point-cloud408

PCobj , which we average to obtain an estimate of object position, which is the target position for the409

motion planner. For the manipulation tasks we consider in the paper, this is the target end-effector410

pose of the robot, eetarget.411

14

Visual Motion Planning: Given the target end-effector pose eetarget, we use inverse kinematics412

(IK) to compute qtarget and pass qjoint, qtarget, PCglobal into a joint-space motion planner. To that413

end, we use a sampling-based motion planner, AIT* [47], to perform motion planning. In order to414

implement collision checking from vision, for a sampled joint-configuration qsample, we compute415

the corresponding position of the robot mesh and compute the occupancy of each point in the scene416

point-cloud against the robot mesh. If the object is detected as grasped, then we additionally remove417

the object from the scene pointcloud, compute its convex hull and use the signed distance function418

of the joint robot-object mesh for collision checking. As a result, the Sequencing Module operates419

entirely over visual input, and achieves a pose near the region of interest before handing off control to420

the local RL policy. We emphasize that the Sequencing Module does not need to be perfect, it merely421

needs to produce a reasonable initialization for the Learning Module.422

B.3 Learning Module423

B.3.1 Stage Termination Details424

As described in Section 2, we use stage termination conditions to determine when the Learning425

Module should hand control back to the Sequencing Module to continue to the next stage in the426

plan. For the tasks we consider, these stage termination conditions amount to checking for a grasp427

or placement for the target object in the stage. For example, for RS-NutRound, the plan for the first428

stage is (grasp, nut) and the plan for the second stage is (place, peg). Placements are straightforward429

to check: simply evaluate if the object being manipulated is within a small region near the target430

object. This can be computed using the estimated pose of the two objects (current and target). Grasps431

are more challenging to estimate and we employ a two stage pipeline to detecting a grasp. First, we432

estimate the object pose and then evaluate if the z value has increased from when the stage began.433

Second, in order to ensure the object is not simply tossed in the air, we check if the robot’s gripper is434

tightly caging the object. We do so by collision checking the object point-cloud against the gripper435

mesh. We use the same collision checking procedure as outlined in Sec 2 for checking collision436

between the scene point-cloud and robot mesh.437

B.3.2 Training Details438

For all tasks, we use the reward function defined by the environment, which may be dense or sparse439

depending on the task. We find that for PSL, it is crucial to use an action-repeat of 1, in general we440

found that increasing this harmed performance, in contrast to the E2E baseline which performs best441

with an action repeat of 2. For training policies using DRQ-v2, we use the default hyper-parameters442

from the paper, held constant across all tasks. We train policies using 84x84 images. We use the443

”medium” difficult exploration schedule defined in [62], which anneals the exploration σ from 1.0 to444

0.1 over the course of 500K environment steps. Due to memory concerns, instead of using a replay445

buffer size of 1M as done in Yarats et al. [62], ours is of size 750K across each task. Finally, for path446

length, we use the standard benchmark path length for E2E and MoPA-RL, 5 per stage for RAPS447

following Dalal et al. [9], and 25 per stage for PSL.448

15

C Tasks449

(a) MW-Hammer (b) MW-Assembly (c) MW-Disassemble (d) MW-Bin-Picking

(e) OS-Lift (f) OS-Assembly (g) OS-Push (h) K-Slide

(i) K-Kettle (j) K-Microwave (k) K-Burner (l) K-Light

(m) RS-Lift (n) RS-Door (o) RS-NutRound (p) RS-NutSquare

(q) RS-NutAssembly (r) RS-Can (s) RS-Cereal (t) RS-Milk

(u) RS-Bread (v) RS-CanBread (w) RS-CerealMilk

Figure C.1: Task Visualizations. PSL is able to solve all tasks with at least 80% success rate from purely
visual input.

16

We discuss each of the environment suites that we evaluate using PSL. All environments are simulated450

using the MuJoCo simulator [52].451

1. Meta-World (Row 1 of Fig. C.1). Meta-World, introduced by Yu et al. [64], aims to offer452

a standardized suite for multi-task and meta-learning methods. The benchmark consists453

of 50 separate manipulation tasks with a Sawyer robot, well-shaped reward functions,454

involve manipulating a single object to a randomized goal position, or multiple objects to a455

deterministic goal position. We evaluate on the single-task, multi-goal, v2 variants of the456

Meta-World environments. All environments use end-effector position control - a 3DOF457

arm action space along with gripper control - orientation is fixed. In our evaluation we use458

the default environment task rewards, a fixed camera view for the baselines and a wrist459

camera for our local policies. We refer the reader to the Meta-World paper for additional460

details regarding the environment suite.461

2. Obstructed Suite (Rows 1-2 of Fig. C.1). The Obstructed Suite of tasks introduced462

by Yamada et al. [61] are a challenging set of tasks requiring a Sawyer arm to perform463

obstacle avoidance while solving the task. The OS-Lift task requires the agent to pick up a464

can that is inside a tall box, requiring it to reach over the walls to grab the object and then465

lift it without making contact with the edges of the bin. The OS-Push environment tasks the466

agent with push a block to the goal in the present of a bin that forces the agent to adjust its467

motion in order to avoid being blocked by its upper joints. Finally, the OS-Assembly task468

involves moving the robot arm to a precise placement location while avoiding obstacles, then469

performing the table leg placement. Note that we evaluate our method on these environments470

from visual input, a more challenging setting than the one considered by Yamada et al. [61].471

3. Kitchen (Rows 2-3 of Fig. C.1). The Kitchen manipulation suite introduced in the Relay472

Policy Learning paper [14] and maintained in D4RL [11] is a set of challenging, sparse473

reward, joint-controlled manipulation tasks in a single kitchen. The tasks require the ability474

to explore efficiently whilst also being able to chain skills across long temporal horizons,475

to achieve behaviors such as opening the microwave, moving the kettle, flicking the light476

switch, turning the burner, and finally sliding the cabinet door (K-MS-5). Aside from the477

single-stage tasks described in Section ??, we evaluate on three multi-stage tasks which478

require chaining the single-stage tasks in a particular order. K-MS-3 involves moving the479

kettle, flicking the light switch and turning the burner, while K-MS-4 is the same as K-MS-3,480

but the agent must first open the microwave door then execute the rest of the tasks.481

4. Robosuite (Rows 3-6 of Fig. C.1). The Robosuite benchmark from Zhu et al. [68] contains482

challenging, long-horizon manipulation tasks involving pick-place and nut assembly, as well483

as simpler tasks that involve lifting a cube and opening a door. The rewards are coarsely484

defined in terms of distances to targets as well as grasp/placement conditions, which, in485

fact, are straightforward to implement in the real world as well using pose estimation. This486

stands in contrast to Meta-World which spends considerable engineering effort defining487

well-shaped dense rewards often by taking advantage of object geometry. As a result,488

learning-based methods struggle to make any progress on Robosuite tasks that involve more489

than a single-stage - optimizing the reward function tends to leave the agent a local minima.490

The suite also contains a well-tuned, realistic Operation Space Control [26] implementation491

that we leverage to train policies in end-effector space.492

17

D LLM Prompts and Plans493

In this section, we list the LLM prompts per task.494

Overall prompt structure:495

Stage termination conditions: (grasp, place). Task description: ... Give me a simple plan to solve
the task using only the stage termination conditions. Make sure the plan follows the formatting
specified below and make sure to take into account object geometry. Formatting of output: a list
in which each element looks like: (<object/region>, <operator>). Don’t output anything else.

Example: RS-NutAssembly:496

Task Description: The silver nut goes on the silver peg and the gold nut goes on the gold peg.
Plan: [(“silver nut”, “grasp”), (“silver peg”, “place”),(“gold nut”, “grasp”), (“gold peg”,
“place”)]

18

E Related Work497

Classical Approaches to Long Horizon Robotics: Historically, robotics tasks have been approached498

via the Sense-Plan-Act (SPA) pipeline [44, 57, 55, 25, 40], which requires comprehensive under-499

standing of the environment (sense), a model of the world (plan), and a low-level controller (act).500

Traditional approaches range from manipulation planning [35, 51], grasp analysis [38], and Task501

and Motion Planning (TAMP) [13], to modern variants incorporating learned vision [36, 39, 48].502

Planning algorithms enable long horizon decision making over complex and high-dimensional action503

spaces. However, these approaches can struggle with contact-rich interactions [37, 58], experience504

cascading errors due to imperfect state estimation [22], and require significant manual engineering505

and systems effort to setup [12]. Our method leverages learning at each component of the pipeline506

to sidestep these issues: it handles contact-rich interactions using RL, avoids cascading failures by507

learning online, and sidesteps manual engineering effort by leveraging pre-trained models for vision508

and language.509

Planning and Reinforcement Learning: Recent work has explored the integration of motion510

planning and RL to combine the advantages of both paradigms [30, 61, 7, 60, 20, 21, 33]. GUAPO Lee511

et al. [30] is similar to the Seq-Learn components of our method, yet their system considers the512

single-stage regime and is focused on keeping the RL agent in areas of low pose-estimator uncertainty.513

Our method instead considers long-horizon tasks by encouraging the RL agent to follow a high-level514

plan given by an LLM using vision-based motion planning. MoPA-RL [61] also bears resemblance515

to our method, yet it opts to learn when to use the motion planner via RL, requiring the RL agent to516

discover the right decomposition of planner vs. control actions on its own. Furthermore, roll-outs517

of trajectories using MoPA can result in the RL agent choosing to motion plan multiple times in518

sequence, which is inefficient - one motion planner action is sufficient to reach any position in space.519

In our method, we instead explicitly decompose tasks into sequences of contact-free reaching (motion520

planner) and contact-rich environment interaction (RL).521

Language Models for RL and Robotics LLMs have been applied to RL and robotics in a wide522

variety of ways, from planning [2, 46, 18, 19, 59, 32, 45, 31], reward definition [28, 65], generating523

quadrupedal contact-points [50], producing tasks for policy learning [10, 8] and controlling simulation-524

based trajectory generators to produce diverse tasks [15]. Our work instead focuses on the online525

learning setting and aims to leverage language model driven planning to guide RL agents to solve526

new robotics tasks in a sample efficient manner. BOSS Zhang et al. [66] is closest to our overall527

method; this concurrent work also leverages LLM guidance to learn new skills via RL. Crucially, their528

method depends on the existence of a skill library and learns skills that are combination of high-level529

actions. Our method instead efficiently learns low-level robot control skills without depending on a530

pre-defined skill library, by taking advantage of motion planning to track an LLM plan.531

19

	1 Introduction
	2 Plan-Seq-Learn
	3 Results
	A Additional Experiments
	B PSL Implementation Details
	B.1 Planning Module
	B.2 Sequencing Module
	B.3 Learning Module
	B.3.1 Stage Termination Details
	B.3.2 Training Details

	C Tasks
	D LLM Prompts and Plans
	E Related Work

