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Abstract

Imitation Learning (IL) holds great promise for enabling agile locomotion in
embodied agents. However, many existing locomotion benchmarks primarily
focus on simplified toy tasks, often failing to capture the complexity of real-world
scenarios and steering research toward unrealistic domains. To advance research in
IL for locomotion, we present a novel benchmark designed to facilitate rigorous
evaluation and comparison of IL algorithms. This benchmark encompasses a
diverse set of environments, including quadrupeds, bipeds, and musculoskeletal
human models, each accompanied by comprehensive datasets, such as real noisy
motion capture data, ground truth expert data, and ground truth sub-optimal data,
enabling evaluation across a spectrum of difficulty levels. To increase the robustness
of learned agents, we provide an easy interface for dynamics randomization and
offer a wide range of partially observable tasks to train agents across different
embodiments. Finally, we provide handcrafted metrics for each task and ship our
benchmark with state-of-the-art baseline algorithms to ease evaluation and enable
fast benchmarking. The code and videos can be found here:
https://github.com/robfiras/loco-mujoco.

1 Introduction

Imitation Learning (IL) plays a pivotal role in machine learning, especially in robotics, enabling
rapid skill acquisition without requiring manual skill programming or reward function tuning. Recent
advancements, particularly in Adversarial IL and Inverse Reinforcement Learning (IRL), have
expanded the applicability of IL algorithms to complex, high-dimensional tasks. In locomotion, IL
is essential due to the inherent complexity of defining reward functions and limitations of classical
approaches in challenging environments. However, the lack of standardized benchmarks and datasets
is a significant issue in the field. Many IL works use locomotion tasks for evaluation but define
their own unique environments and expert datasets. This variability hampers evaluation consistency,
conceals method strengths and weaknesses, and impedes reproducibility. While many IL benchmarks
are available, particularly for manipulation, we still lack a proper benchmark for the locomotion tasks.
Existing benchmarks for this setting either tackle toy tasks, are very far from realistic settings and
real robotic platforms or are not designed for IL, therefore lacking proper datasets.

To address this challenge, we present LocoMuJoCo, a Python-based benchmark tailored for loco-
motion within the context of imitation learning (IL). Our benchmark is designed to enhance method
usability by offering compatibility with Gymnasium [22], a widely adopted interface for Reinforce-
ment Learning (RL) algorithms. Additionally, we provide native support for the Mushroom-RL [6]
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library. Furthermore, we supply a collection of baseline approaches capable of yielding reasonable
solutions for the benchmark tasks. LocoMuJoCo encompasses various locomotion tasks, including
humanoid locomotion, quadruped locomotion, and musculoskeletal human models. For each of
these environments, we provide a wide variety of tasks and comprehensive datasets, including a)
realistic noisy motion capture data mapped to the respective embodiment, b) ground truth expert
data with actions for many environments, and c) ground truth sub-optimal expert data with actions
for regularization in offline IRL or preference-based IL. This wide variety of tasks and datasets
allows the benchmark to cover a broad spectrum of complexities, ranging from relatively simple
tasks to extremely challenging problems yet to be fully solved. To propel application to real-world
robotic systems, LocoMuJoCo allows the users to easily include domain randomization, reducing the
sim-to-real gap. Finally, our benchmark provides a reward function for every task, allowing the user
to measure the agent’s performance. Alternatively, the user can define his own reward function to use
it either as a performance metric or to use the whole benchmark for pure RL.

Related Work. RLBench [13] is a benchmarking platform for testing and evaluating RL algorithms
in the context of robotic manipulation. It offers standardized tasks and environments and provides a
planner to solve each task, allowing the use of this benchmark for IL. It comes with a realistic Franka
Panda robot arm model, allowing zero-shot transfer of the policies to the real world [1]. Meta-World
[24] a benchmark for multi-task and meta RL. However, it does not provide expert demonstration,
rendering it unsuitable for imitation learning. Robosuite [26] is a manipulation benchmark focusing
on modularity, which provides utilities for collecting human demonstrations for IL. Simitate [14]
is a benchmark explicitly designed for IL, where a dataset of 1938 sequences of human tasks are
provided together with a simulator. Franka Kitchen [9] is another multi-task manipulation benchmark
based on the Franka Panda robot, in which multiple tasks have to be solved in parallel. While an
unlabelled dataset is available, it is not suitable for IL. Adroit [18] is a small manipulation benchmark
using a floating human hand, which also comes with a set of demonstrations. Gym-Mujoco [3]
and DeepMind Control Suite [23] are two popular reinforcement benchmarks encompassing many
locomotion tasks, ranging from 2D-walker to simple humanoid tasks. Both of the benchmarks do
not explicitly focus on the IL setting and only consider toy tasks with dynamics fine-tuned for RL.
D4RL [7] is an offline RL benchmark, including datasets for, inter alia, Franka Kitchen, Adroit,
Gym-Mujoco, and DeepMind Control Suite. For each task, multiple datasets represent agents of
different performances, which can be used for IL. Finally, the Myosuite [4] is a RL benchmark for
general muscle-actuated systems, including a humanoid. However, the benchmark does not provide
expert data for imitation learning. None of the aforementioned benchmarks focuses on IL for realistic
locomotion, emphasizing the need for such a benchmark.

2 Benchmark Design

In this section, we introduce the framework of our benchmark, which has been meticulously crafted
for versatility. This benchmark accommodates various scenarios of IL, such as cases involving IL
without access to expert actions or dealing with correspondence mismatches of different embodiments.
It encompasses tasks spanning a range of difficulty levels and offers user-friendliness, effectively
addressing the diverse requirements of IL in realistic locomotion scenarios.

Environments are the core building blocks of this benchmark and are presented in Figure 1. At
the time of writing, the benchmark includes 12 environments. The environments consist of 6 base
environments: the Talos robot, the Atlas robot, the Unitree H1 humanoid, the Unitree A1 quadruped,
a torque-actuated skeleton model, and a musculoskeletal human model. Additionally, both human
models can be scaled to 4 different human sizes to represent an infant (∼ 2-year-old), a child (∼
5-year-old), a teenager (∼ 12-year-old), and an adult. To generate the different models, the links
(i.e., the bones) are scaled linearly, the masses are scaled cubically, the inertias are scaled quintically,
and the actuator torques or muscle forces are scaled quadratically w.r.t. the height of the human
model. The skeleton models are converted models from [10], the Talos model is converted from the
official library1, the Atlas model is converted from the one provided by the Open Source Robotics
Foundation2, and the Unitree H1 and A1 models are taken from the MuJoCo menagerie [5].

1https://github.com/pal-robotics/talos_robot
2https://github.com/osrf/drcsim
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Figure 1: Overview of environments. Each task is defined by a certain dataset in an environment,
e.g., the Talos carry or the muscle humanoid running task. Currently, LocoMuJoCo encompasses 12
environments with a total of 27 tasks.

Tasks are defined by a dataset representing the expert’s behavior. For example, the musculoskeletal
human environment encompasses two tasks, walking and running, represented by two datasets. Each
environment comes with at least two tasks, resulting in 27 tasks in total, with more to come in the
future. Each dataset can be quickly loaded and replayed to allow easy inspection. Furthermore, we
construct Partially Observable Markov Decision Process (POMDP) environments by randomizing the
carry weight in the Atlas, Talos, and the Unitree H1 environment or randomizing the height of the
skeleton model. In these cases, state masks are provided, which can be used to hide the important
information regarding these tasks – weight of mass or type of humanoid. In doing so, the user
can choose which part of his algorithm can get access to privileged information and which not. A
typical use case is the teacher-student scenario, in which the policy only receives an observation
– the masked state – and the critic gets the complete state information. Finally, we provide the
possibility of initializing the simulation from either a randomly sampled or a specifically chosen
expert demonstration, which has proven crucial in imitation learning settings with environment
interactions [15, 17].

Datasets not only express the tasks that are supposed to be solved but are also a tool to accommodate
various scenarios of IL defining a broad spectrum of difficulties. Within this benchmark, we cover
the following IL paradigms: a) learning with/without access to expert actions; b) learning under
mismatches between the expert’s and agent’s embodiments; c) learning with sub-optimal expert states
and actions. The first paradigm is of particular importance since it is often easy to access an expert’s
observation – e.g., the kinematic trajectory of a human walking – but it is often impossible to access
its actions – the underlying muscle actuation. The second paradigm is essential since it is easy to
collect data for some embodiment – human running – but often difficult or even impossible under
some other – Atlas running. Hence, we provide realistic motion capture datasets for all environments,
which naturally come with embodiment mismatches, while also providing ground truth datasets
for most environments. The third paradigm is relevant in the preference-based IL setting, where
preference-ranked expert datasets are used to deal with settings in which sub-optimal demonstrations
are available [20]. Together with the environments and tasks, these three paradigms can be combined
to define the complexity of the IL setting, allowing the user to decide on the difficulty. This makes our
benchmark versatile and suitable for different IL algorithms ranging from the simplest methods – such
as behavioral cloning – to state-of-the-art methods. We collected the data via the Qualisys motion
capture system, positioning a comprehensive set of markers to enable the capture of whole-body
movements. Subsequently, we used the marker-based datasets to calculate human joint kinematics.
We performed this computation using the OpenSim software platform, using a comprehensive full-
body model, adapted from the previous work [25]. In contrast, we generated the datasets for the
Unitree A1 using Model Predictive Control (MPC).
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Figure 2: Training pipeline of LocoMuJoCo. First, an environment is chosen. Then, a task and
dataset are chosen, and the training is started optionally with dynamics randomization. Finally, the
performance of the algorithm can be compared to the expert performance or the performance of one
of the provided baseline algorithms.

Training. After choosing the task and dataset, the user has the option to define a dynamics
randomization configuration. LocoMuJoCo supports randomization of different parameters, such as
the properties of the joints, the inertia, or the friction between bodies. The user can choose whether
to sample these parameters from a Gaussian with a provided standard deviation or from a uniform
distribution with provided ranges. Furthermore, we provide simple handcrafted reward functions,
which are based on the underlying goal of an expert’s task. For example, we define the reward
to be the difference in the center of mass velocity between the agent and the expert in the Talos
walking task. Despite this reward being simple and not useful for RL to train realistic gaits, it has
proven very effective for evaluation in the IL setting. Alternatively, the use can define a custom
reward function, making this benchmark also suitable for pure RL. Finally, the user has the choice of
implementing his algorithm in the framework of his choice by using the Gymnasium interface or by
using Mushroom-RL.

Evaluation. To show the feasibility of the benchmarks, we provide a set of baselines of classical
IRL and adversarial IL approaches. We base all the implementations of these approaches on the
Mushroom-RL library. For the Adversarial IL setting we provide Generative Adversarial Imitation
Learning (GAIL) [11], Variational Adversarial Imitation Learning (VAIL) [16] and Generative
Adversarial Imitation from Observation (GAIfO) [21]. In the IRL setting we consider Inverse
soft Q-Learning (IQ-Learn) [8] and the Least Squares Inverse Q-Learning (LS-IQ) [2] approaches.
Furthermore, we provide the Soft Q-Imitation Learning (SQIL) [19] algorithm, a simple IL approach
that uses fixed rewards for expert and demonstration trajectories. The whole pipeline of our method
is presented in Figure 2.

3 Conclusion

In this paper, we introduced LocoMuJoco, a novel benchmark for imitation learning in locomotion
tasks. Addressing a notable gap in the field, our benchmark enables users to evaluate IL algo-
rithms across various locomotion tasks, spanning a wide range of difficulty levels – from relatively
straightforward to highly challenging tasks. Our benchmark covers most of the open problems in IL,
including learning from real-world demonstrations or without expert actions. We provide fine-tuned
baselines for most tasks using state-of-the-art IL algorithms. LocoMuJoco is easily extensible and
provides straightforward interfaces to common RL libraries, such as Gymnasium and Mushroom-RL.
In future works, we aim to address a prevalent challenge in the majority of imitation learning (IL)
benchmarks – namely, devising effective methods for quantifying the quality of the cloned behavior.
The current implementation provides a simple reward function measuring the overall gait quality.
Our experiments show that a higher reward corresponds to a better imitation of the learned gait. Yet,
deriving metrics grounded in biomechanical principles or in theoretical principles that account for the
divergence between probability distributions is essential to propel research in this field.
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