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Abstract

Transferring representation for multitask imitation learning has the potential to pro-
vide improved sample efficiency on learning new tasks, when compared to learning
from scratch. In this work, we provide a statistical guarantee indicating that we can
indeed achieve improved sample efficiency on the target task when a representation
is trained using sufficiently diverse source tasks. Our theoretical results can be
readily extended to account for commonly used neural network architectures with
realistic assumptions. We conduct empirical analyses that align with our theoretical
findings on four simulated environments—in particular leveraging more data from
source tasks can improve sample efficiency on learning in the new task.

1 Introduction

Imitation learning (IL) is a common approach to learn sequential decision making agents—it involves
imitating the expert through matching distributions induced by the expert demonstrations [Osa
et al., 2018]. However, current methods require thousands of demonstrations even in simple tasks
[Mandlekar et al., 2022, Jang et al., 2021, Ablett et al., 2023]. Acquiring large amounts of data can be
expensive and even infeasible in domains including robotic and healthcare applications. To address
this challenge, empirical research has proposed transferring part of the agent trained from one or
more tasks to a target task with the goal of improving sample efficiency on the target task [Brohan
et al., 2023, Hansen et al., 2022, Jang et al., 2021, Li et al., 2022]. In this paper we show how much
sample efficiency on the target task improves, compared to training an agent from scratch, when we
transfer a pretrained representation to the target task via multitask imitation learning (MTIL).

We have three main contributions: (1) Although Arora et al. [2020] has investigated the benefits of
representation transfer, their result does not relate the target task and the source tasks. We cannot
guarantee that transferring the representation to a particular target task can yield any benefit. Inspired
by Tripuraneni et al. [2020], we provide an analysis that relates the source and target tasks via the
notion of task diversity. (2) This line of work [Arora et al., 2020, Tripuraneni et al., 2020, Maurer
et al., 2016] relies on Gaussian complexity, in this paper we instead use Rademacher complexity
and provide a tighter bound by a log factor than using Gaussian complexity. Our result is due to the
objective of behavioural cloning, where the method aims to minimize the Kullback–Leibler (KL)
divergence between the expert and the learner [Xu et al., 2020]. The consequence is that we can
connect our result with deep-learning theory, where commonly used neural networks are directly
quantified with Rademacher complexity [Bartlett et al., 2021]. (3) Based on our theory, we further
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conduct experiments to demonstrate that transferring representations from source tasks to target tasks
is a valid approach—the agent performs better as we increase the number of tasks and data.

2 Preliminaries

Sequential decision making problems can be formulated as Markov Decision Processes (MDPs).
An infinite-horizon MDP is a tuple M = ⟨S,A, r, P, ρ, γ⟩, where S is a finite state space, A is a
finite action space, r : S ×A → [0, 1] is the bounded reward function, P ∈ ∆S

S×A is the transition
distribution over the states for each state-action pair, ρ ∈ ∆S is the initial state distribution over the
states, and γ ∈ [0, 1) is the discount factor. The agent interacts with the environment through a policy
π ∈ Π, which we assume to be stationary and Markovian (i.e. Π = ∆A

S .)

The interconnection between the policy π and the environment M induces a random infinite-length
trajectory S0, A0, S1, A1, . . . , where S0 ∼ ρ, Ah ∼ π(·|Sh), and Sh+1 ∼ P (·|Sh, Ah). The corre-
sponding discounted stationary state(-action) distribution for policy π, which describes the “frequency”
of visiting state s (and action a) under π, can be written as νπ(s) = (1− γ)

∑∞
h=0 γ

hP(Sh = s;π)
(and µπ(s, a) = (1− γ)

∑∞
h=0 γ

hP(Sh = s,Ah = a;π).)

For any policy π ∈ Π, the corresponding value function vπ : S → R is defined as
vπ(s) = Eπ,ρ,P

[∑∞
h=0 γ

hr(Sh, Ah)|S0 = s
]
. The optimal policy π∗ is such that π∗(s) =

argmaxπ∈Π vπ(s), for any s ∈ S (randomly breaking ties in the case of two or more maxima.) In
general, the goal is to obtain an ε-optimal policy (i.e. vπ(s) ≥ vπ

∗
(s)− ε, for any s ∈ S.)

In imitation learning, the learner has no access to the reward function r and is given demonstrations
from the optimal (expert) policy π∗ instead. The demonstrations form a set of N state-action
pairs {(sn, an)}Nn=1, where (sn, an)

i.i.d.∼ µπ∗ . The goal is to obtain an ε-optimal policy using the
demonstrations. Behavioural cloning treats this problem as a supervised learning problem and aims
to minimize the risk [Pomerleau, 1988]. The risk is defined as ℓ(π) = E(s,a)∼µπ∗ [ℓ(π(s), a)],
where π ∈ Π and ℓ(·, ·) : ∆A × A → R+ is a loss function. This paper considers the log loss
ℓ(π(s), a) = − log π(a|s), which is a surrogate of the 0-1 loss. The log loss is also equivalent to the
KL-divergence between the expert and the learner when the expert is deterministic.

3 Multitask Imitation Learning (MTIL) with Representation Transfer

We consider the transfer-learning setting where we are given demonstrations of T source tasks. We
define each task t as an MDP with different transition distributions and reward functions, but with
the same state and action spaces. When the context is unclear, we use subscript, e.g. πt, to denote
the task-specific objects. Our goal is to leverage the demonstrations of T source tasks to learn an
ε-optimal policy on a new target task τ with better sample efficiency, when compared to learning
from scratch. To achieve this, we first learn a shared representation from the source tasks and transfer
it to the target task. During the transfer, we fix the representation and only learn the task-specific
mapping, similar to a finetuning procedure [Howard and Ruder, 2018, Liu et al., 2022].

Formally, we consider softmax parameterized policies of the form πf,ϕ(s) = softmax((f ◦ ϕ)(s)),
where f ∈ F is the task-specific mapping and ϕ ∈ Φ is the representation. We perform a two-phase
procedure for transfer learning: (1) learn a representation ϕ̂ from the source tasks, and (2) learn a task-
specific mapping f̂ such that πf̂ ,ϕ̂ performs well on the target task. We call the phases respectively
the training phase and the transfer phase.

In the training phase, for each task t of the T source tasks, we are given N state-action pairs
{(st,n, at,n)}Nn=1. Let f = (f1, . . . , fT ), where ft ∈ F is the task-specific mapping for task t, for
t ∈ [T ], which we write f ∈ F⊗T for conciseness. Then, we define the empirical training risk as

R̂train(f , ϕ) :=
1

NT

T∑
t=1

N∑
n=1

ℓ(πft,ϕ(st,n), at,n), (1)

and the corresponding minimizer of equation 1 is ϕ̂ = argminϕ∈Φ minf∈F⊗T R̂train(f , ϕ).
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In the transfer phase, we are given M state-action pairs {(sm, am)}Mm=1 for a target task τ . With the
same loss function ℓ as equation 1, we define the empirical test risk as

R̂test(fτ , ϕ) :=
1

M

M∑
m=1

ℓ(πfτ ,ϕ(sm), am), (2)

where fτ ∈ F is the task-specific mapping for task τ . We obtain a task-specific mapping that
minimizes equation 2 based on the representation ϕ̂ obtained from the training phase. That is,
f̂τ = argminf∈F R̂test(f, ϕ̂).

We perform empirical risk minimization (ERM) on both stages—the empirical risks allow us to
quantify the generalization error of the learner. Observing that the log loss corresponds to the
KL-divergence, we convert the generalization error to policy error. Finally, this allows us to establish
the sample complexity bound of achieving ε-optimal policy based on the diversity of the source tasks.
The diversity is measured with a positive constant σ, where larger σ corresponds to higher diversity.
We now state our main theorem and defer the analysis to appendix B:

Theorem 1 (Transfer Imitation Learning Policy Error Bound.) Let π∗
τ be the optimal policy for the

target task τ . Let ϕ̂ be the ERM of R̂train defined in equation 1 and let f̂τ be the ERM of R̂test defined
in equation 2 by fixing ϕ̂. Let σ > 0. Suppose the source tasks are σ-diverse. With a deterministic
expert policy π∗

τ and under some assumptions, we have that with probability 1− 2δ,

Policy Error = ∥vπ
∗
τ − vsoftmax(f̂τ◦ϕ̂)∥∞ ≤ 2

√
2

(1− γ)2

√
εgen + 2ζ, (3)

where εgen = O
(
1/
√
σ2NT, 1/

√
M,RNT (Φ)/σ

)
is the generalization error, RNT (Φ) is the

Rademacher complexity, and ζ ∈ (0, 1) is a constant related to the policy realizability.

Theorem 1 indicates that we can obtain ε-optimal policy through the transfer-learning procedure.
Notably, we can trade-off the number of target data M at the cost of the number of source tasks T and
number of training data per task N . In contrast, behavioural cloning can only leverage the target data
to train both the representation and the task-specific mapping. Consequently, if the representation
class Φ is expressive, it is beneficial to pretrain the representation using the existing source data.

Remark 1 In practice, our policies are neural networks [Fujimoto et al., 2018, Haarnoja et al.,
2018, Yarats et al., 2020]—we can consider the last layer as the task-specific mapping f and the
remaining layers as the representation ϕ. These neural networks include multilayer perceptrons
and convolutional neural networks with Lipschitz activation functions (e.g. ReLU, tanh, sigmoid,
max-pooling, etc.). Their Rademacher complexities can be upper bounded based on the amount of
training data, number of layers, number of hidden units, and their parameter norms [Neyshabur et al.,
2015, Sokolic et al., 2016, Golowich et al., 2018, Truong, 2022]. Due to lemma 4 of Bartlett and
Mendelson [2002], our result provides a tighter bound than the Gaussian complexity used in existing
works by O(lnNT ) [Arora et al., 2020, Tripuraneni et al., 2020, Maurer et al., 2016].

4 Experiments

We aim to investigate the following questions regarding MTIL: (i) Can we achieve better imitation
performance than behavioural cloning (BC) with less target data?, (ii) How does the number of source
tasks or number of source data impact imitation performance?, (iii) How does the number of target
data influence on imitation performance compared to the number of source tasks and source data?

We implement our MTIL procedure with multitask behavioural cloning (MTBC). MTBC is first
pretrained with N source data from T source tasks, then finetuned with M target data (see appendix D
for details), whereas BC is trained with only M target data. The analyses are done on four simulated
environments: frozen lake, pendulum, cheetah, and walker. We convert the continuous action spaces
into discrete action spaces described in appendix E.1. The detailed descriptions of the implementation
and the varying environmental parameters are found in appendix E. For the analysis below, we
determined that each environment requires |D| demonstrations to achieve near-expert performance
when training BC from scratch. Table 1 specifies |D| for each environment.
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Table 1: The number of demonstrations |D| for each environment.
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Figure 1: The performance of MTBC as we vary N and T . Each solid line colour corresponds to a particular
N . The solid line corresponds to the mean and the shaded region is 1 standard error from the mean.
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Figure 2: The performance of MTBC as we vary M and T . Each solid line colour corresponds to a particular
M . The solid line corresponds to the mean and the shaded region is 1 standard error from the mean.

We first investigate questions (1) and (2). We fix the number of target data M = |D| while varying the
number of source data N and the number of source tasks T . Figure 1 indicates that as we increase N
and T , MTBC generally improves and can outperform BC with the same number of target data. For
cheetah and walker, which are more complex environments, MTBC outperforms BC while MTBC
and BC have comparable performance in simpler environments.

To investigate question (3), we fix the amount of source data N = 8|D| while varying the amount
of target data M by multiples of |D|. For comparison we also include BC trained with 2|D| target
data. Figure 2 shows that increasing the number of target data only marginally improves imitation
performance. This result indicates that higher returns are mainly achieved by increasing the amount
of source data N and number of source tasks T . The latter is due to the learned representation being
more expressive than the task-specific mapping.

5 Conclusion and Future Directions

We have theoretically shown a statistical bound to recover the expert policy when transferring
representation from a set of source tasks to a target task. This bound can be directly extended
to commonly used neural networks. We have also conducted experiments to further support our
theoretical analysis. In particular our experiments show that, when we pretrain a representation
increasing amount source tasks and source data, one can reduce the amount of target data to imitate
the expert policy, compared to training from scratch. However, we still require a practical method
to quantify task diversity prior to training. Another limitation in our work is assuming that there
exists one shared representation. This assumption can be relaxed by considering the meta-learning
formulation where we allow the representation per task to be in a neighbourhood of some reference
representation [Collins et al., 2022].
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A Related Work

Our work is heavily inspired by the theoretical analyses on transferring shared representations
across tasks [Arora et al., 2020, Tripuraneni et al., 2020, Maurer et al., 2016]. Existing works
use Gaussian complexity as the function class complexity measure when analyzing the sample
complexity bound. We use Rademacher complexity instead, which allows us to directly connect
our analysis with deep-learning theory [Bartlett et al., 2021, Truong, 2022]. Another line of works
focuses on continuous-control problem [Guo et al., 2023, Zhang et al., 2023], where they analyze
structure-specific systems. Our work is similar in that we focus on connecting the source tasks and
the target task via task diversity, and providing concrete sample complexity bounds based on the task
diversity. However, we remain operating in the infinite-horizon finite MDP setting with non-linear
representation class.

B Theoretical Analysis

Our goal is to analyze the sample complexity of obtaining an ε-optimal policy. The analysis contains
the following two steps: (1) establishing a sample complexity bound for achieving near optimal risk
when transferring the representation to a new target task, and (2) bounding the policy error of the
transferred policy through the transfer risk. The transfer risk is the excess risk on the target task τ :

Rtransfer(f̂τ , ϕ̂) = Rtest(f̂τ , ϕ̂)−Rtest(f
∗
τ , ϕ

∗), (4)

where Rphase(·) = ER̂phase(·), for phase ∈ {train, test} is the expectation of the corresponding
empirical risk. The expectation taken is over the randomness of the state-action pairs.

7

https://zenodo.org/record/8127025
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099


The first step is heavily inspired by Tripuraneni et al. [2020] but we only leverage Rademacher com-
plexity to quantify the sample complexity bound. Our result differs in that we use only Rademacher
complexity throughout the analysis due to our assumptions. The second step leverages the fact that
our loss function is the KL-divergence that allows us to upper bound the policy error through the
transfer risk. In general, the results may include few extra constant terms including CΦ, CF , and B
that follow from our assumptions. We provide the detailed assumptions and proofs in appendix C.

First, we compare the training error between the learned representation and true representation. This
error is quantified by their similarity—Tripuraneni et al. [2020] proposed to consider the task-average
prediction difference:

Definition 1 (Task-average Representation Difference [Tripuraneni et al., 2020].) Fix a function
class F , T functions f = (f1, . . . , fT ) ∈ F⊗T , a loss function ℓ(·, ·), and data (st, at) ∼ µπ∗

t
. The

task-average representation difference between ϕ, ϕ′ ∈ Φ is defined as

d̄F (ϕ
′;ϕ,f) :=

1

T

T∑
t=1

inf
f ′∈F

E(st,at) [ℓ((f
′ ◦ ϕ′)(st), at)− ℓ((ft ◦ ϕ)(st), at)] . (5)

The error between the learned representation ϕ̂ and the true representation ϕ∗ can be upper bounded
by the task-average difference—the bound is dependent on the number of source tasks T , the amount
of training data per task N , and the Rademacher complexity of the representation class.

Theorem 2 (Learned Representation Risk Bound.) Let ϕ̂ be the ERM of R̂train defined in equation 1.
Let ϕ∗ be the true representation and f∗ = (f∗

1 , . . . , f
∗
T ) ∈ F⊗T be the T true task-specific mappings.

Under some assumptions, we have that with probability at least 1− δ,

d̄F (ϕ̂;ϕ
∗,f∗) ≤ 8

√
2CFRNT (Φ) + 2B

√
log(2/δ)

2NT
.

We now consider the test error when using the learned representation on the target task. This requires
a different notion of similarity—Tripuraneni et al. [2020] proposed to consider the worst-case
task-specific mapping in F .

Definition 2 (Worst-case Representation Difference [Tripuraneni et al., 2020].) Fix a task τ , a
function class F , a loss function ℓ(·, ·), and data (s, a) ∼ µπ∗

τ
. The worst-case representation

difference between ϕ, ϕ′ ∈ Φ is defined as

dτ,F (ϕ
′;ϕ) := sup

f∈F
inf

f ′∈F
E(s,a) [ℓ((f

′ ◦ ϕ′)(s), a)− ℓ((f ◦ ϕ)(s), a)] . (6)

We can then use definition 2 to upper bound the generalization error for the transfer phase ERM
estimator:

Theorem 3 (Transfer Risk Bound.) Let f̂τ be the ERM of R̂test defined in equation 2 with some fixed
ϕ̂ ∈ Φ. Under some assumptions, then with probability 1− δ,

Rtransfer(f̂τ , ϕ̂) ≤ 8CFCΦ

√
|A|
M

+ 2B

√
log(2/δ)

2M
+ dτ,F (ϕ̂;ϕ

∗). (7)

We connect the training error of the learned representation ϕ̂ with the transfer risk via the notion of
task diversity similar to the one defined by Tripuraneni et al. [2020]:

Definition 3 (σ-diversity.) Let σ > 0 and fix a task τ . Fix a function class F , T functions f =
(f1, . . . , fT ) ∈ F⊗T . The T tasks are σ-diverse for representation ϕ, if for all ϕ′ ∈ Φ, we have that
dτ,F (ϕ′;ϕ) ≤ d̄F (ϕ′;ϕ,f)/σ.

Intuitively, if the T source tasks differ too much from the new task, then inequality only holds with
small σ. In other words, there is little diversity. Another perspective is that any ϕ′ is overfitted to the
T tasks and is unable to generalize to the new task. Conseqeuntly, combining theorems 2 and 3, we
get the following sample complexity bound:
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Corollary 1 (Learned Representation Transfer Risk Bound.) Let ϕ̂ be the ERM of R̂train defined
in equation 1 and let f̂τ be the ERM of R̂test defined in equation 2 by fixing ϕ̂. Suppose the source
tasks are σ-diverse. Under some assumptions, we have that with probability 1− 2δ, the transfer risk
Rtransfer(f̂τ , ϕ̂) is upper bounded by:

O

(
CFCΦ

√
|A|
M

+B

√
log(2/δ)

M
+

1

σ

(
CFRNT (Φ) +B

√
log(2/δ)

NT

))
. (8)

Corollary 1 tells us that so long as we can bound the task-average representation difference, we can
achieve ε-error with sufficiently large number of demonstration data in the target task. Furthermore,
if the source tasks are not diverse, then we will need more samples from them to reduce the error.
Finally, since the log loss is the KL-divergence with deterministic experts, we can use the result from
Xu et al. [2020] to obtain the policy error of the policy induced by the transfer-learning procedure:

Theorem 4 (Policy Error Bound [Xu et al., 2020].) Given any two policies π, π′ with
Es∼νπ [DKL(π(s)∥π′(s))] < ε, we have that ∥vπ − vπ

′∥∞ ≤ 2
√
2

(1−γ)2
√
ε.

Thus, by theorem 1, for specific representation class, we can upper bound their Rademacher com-
plexities and retrieve a concrete sample complexity bound to achieve ε-optimal policies with high
probability.

C Detailed Proofs

In this section we provide the proofs for the theorems in appendix B. We first list out our assumptions
(appendix C.1), then a few known lemmas and definitions used (appendix C.2), and finally the proofs
of our theorems (appendices C.3–C.6).

C.1 Assumptions

In the analysis, we offload the softmax function to the loss, then we can define a new loss function
that can be used for analysis. That is, let x ∈ RD, then we define the log-softmax loss to be

ℓ(x, a) = − log (softmaxa(x)) , (9)

where softmaxa(x) corresponds to the a’th component of softmax(x). We further make the follow-
ing assumptions for the analysis.

Assumption 1 (Bounded Representation.) The representation ϕ ∈ Φ is bounded in ℓ2-norm: Φ ⊆
{ϕ : S → RD|∥ϕ(s)∥2 ≤ CΦ,∀s ∈ S}.

Assumption 2 (Linear Task-specific Mapping and Bounded Parameters.) The task-specific mapping
is linear and is bounded: F = {f : RD → R|A||f = Wx,W ∈ R|A|×D, ∥W∥F ≤ CF , x ∈ RD},
where ∥·∥F is the Frobenius norm

Assumption 3 (Deterministic Expert Policies.) The expert policy π∗
τ for each task τ is deterministic

and can be written as π∗
τ (s) = 1a=argmaxa′∈A(f∗

τ ◦ϕ∗)(s) for all s ∈ S.

Assumption 4 (Shared Representation.) There is a representation ϕ∗ such that for every task τ ,
there exists a task-specific mapping f∗

τ such that the discounted state-action stationary distribution is
µπ∗

τ
(s, a).

Assumption 5 (Realizability.) The true shared representation ϕ∗ is contained in Φ. Additionally, for
some fixed ζ < 1/2, we have that for all tasks τ , there exists a task-specific mapping fτ ∈ F such
that for all s ∈ S,

πfτ ,ϕ
∗
(a∗|s) ≥ 1− ζ,

where a∗ = argmaxa∈A π∗
τ (s).

9



Note that for any infinite-horizon MDPs, there always exists a deterministic optimal policy, thus
assumption 3 is often reasonable to obtain. With the recent successes in foundation models in various
applications [Bommasani et al., 2021, Wei et al., 2021, Ouyang et al., 2022], both assumptions 4 and
5 may be reasonable. We note that our results also apply when replacing assumptions 3 and 5 with
the standard realizability assumption on stochastic expert policies. Finally, assumptions 1 and 2 are
standard regularity conditions in statistical learning theory—we further note that consequently the
composed mapping f ◦ ϕ is bounded: sup(s,a)∈S×A|(f ◦ ϕ)(s)| ≤ CS , for any f ∈ F and ϕ ∈ Φ.

C.2 Useful Definitions and Results

Definition 4 (Rademacher Complexity.) For a vector-valued function F = {f : X → RK}, and N
data points X = (x1, . . . , xN ), where xn ∈ X for n ∈ [N ], the empirical Rademacher complexity of
F is defined as

R̂X(F) = Eε

[
sup
f∈F

1

N

N∑
n=1

K∑
k=1

εn,kfk(xn)

]
,

where εn,k are sampled i.i.d. from the Rademacher random variable and fk(·) is the k’th component
of f(·). Fix a data distribution DX over X . The corresponding Rademacher complexity of F is

defined as RM (F) = EX

[
R̂X(F)

]
, where the expectation is taken over the distribution DX . In the

case of K = 1, we recover the scalar Rademacher complexity.

Intuitively, the Rademacher complexity of F measures the expressiveness of F over all datasets X.

Proposition 1 With assumptions 1 and 2, the log-softmax loss, defined in equation 9, is bounded and
Lipschitz (continuous) in its first argument.

Proof: For the first claim, we first fix (s, a) ∈ S ×A. Let ϕs = ϕ(s) ∈ RD and xs = Wϕs. Then,
we have that

− log (softmaxa(xs)) = − (Wϕs) (a) + log
∑
a′∈A

exp [(Wϕs) (a
′)] .

Let a∗ = argmaxa∈A Wϕs and overload the notation (Wϕs)(a) = ϕ⊤
s W

⊤a, where a is a one-hot
vector with non-zero at the a’th entry. Then, the second term can be upper bounded:

log
∑
a′∈A

exp
[
ϕ⊤
s W

⊤a′
]
≤ log

∑
a′∈A

exp
[
ϕ⊤
s W

⊤a∗
]

= log|A|+ ϕ⊤
s W

⊤a∗.

Thus,

− log (softmaxa(xs)) ≤ −ϕ⊤
s W

⊤a+ log|A|+ ϕ⊤
s W

⊤a∗

≤ log|A|+ 2ϕ⊤
s W

⊤a∗.

Taking the supremum norm over S ×A, we have that

sup
(s,a)∈S×A

∣∣∣− log (softmaxa(xs))
∣∣∣ ≤ sup

(s,a)∈S×A

∣∣∣ log|A|+ 2ϕ⊤
s W

⊤a∗s

∣∣∣
≤ log|A|+ 2 sup

(s,a)∈S×A

∣∣∣ϕ⊤
s W

⊤a∗
∣∣∣

≤ log|A|+ 2CΦCF ,

where the last inequality follows upper bounding the second term through Hölder’s inequality, setting
both norms to be the 2-norm. This verifies the boundedness of the log-softmax loss.

For the second claim, we can bound the gradient of the log-softmax loss with respect to the first
argument and apply mean-value theorem. Let us first consider the partial derivatives of ℓ(x, a). Let
xi be the i’th component of x. For any x ∈ RD, we have that

∂

∂xi
ℓ(x, a)

∣∣∣
i=a

= −
∑

a′ ̸=i expx
⊤a′∑

a′∈A expx⊤a′
∂

∂xi
ℓ(x, a)

∣∣∣
i ̸=a

=
expx⊤i∑

a′∈A expx⊤a′
,
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where we overload the notation and represent a′ ∈ A as a one-hot vector. Then, consider the ℓ2-norm
of the gradient, we have that:

∥∇xℓ(x, a)∥22 =

(
−
∑

a′ ̸=a expx
⊤a′∑

a′∈A expx⊤a′

)2

+

∑
a′ ̸=a

(
expx⊤a′

)2(∑
a′∈A expx⊤a′

)2
≤ 2

(∑
a′ ̸=a expx

⊤a′∑
a′∈A expx⊤a′

)2

= 2,

where the first inequality follows from Jensen’s inequality. Consequently, by mean-value theorem,
we have that |ℓ(x, a)− ℓ(y, a)| ≤

√
2∥x− y∥2, for any x, y ∈ RD, verifying the Lipschitzness of

the log-softmax loss in its first argument. □

Proposition 2 Let ℓ be the log-softmax loss defined in equation 9 and f ∈ F . Under assumptions 1
and 2, the function ha(ϕ(s)) = ℓ(f(ϕ(s)), a) is Lipschitz in ϕ(s), for any s ∈ S.

Proof: We first note that ha(ϕs) can be written as log
∑

b∈A exp
(
b⊤Wϕs

)
− a⊤Wϕs, where

ϕs = ϕ(s) ∈ RD, and we overload the notation and write a, b as the one-hot vectors.

For the first term, the ℓ2-norm of its gradient with respect to ϕs can be upper bounded by CF :∥∥∥∥∥∇ϕs
log
∑
b∈A

exp
(
b⊤Wϕs

) ∥∥∥∥∥
2

=

∥∥∥∥∥
∑

b exp
(
b⊤Wϕs

)
W⊤b∑

b exp (b
⊤Wϕs)

∥∥∥∥∥
2

= ∥W⊤softmax(Wϕs)∥2
≤ ∥W∥F ∥softmax(Wϕs)∥2
≤ CF .

For the second term, the ℓ2-norm of its gradient with respect to ϕs can be upper bounded by CF :

∥∇ϕs
a⊤Wϕs∥2 = ∥W⊤a∥2 ≤ ∥W∥F ∥a∥2 ≤ CF .

Since the first term is convex and the second term is linear, ha(ϕs) is 2CF -Lipschitz. □

Definition 5 (Bounded Difference Property.) The function f : RN → R satisfies the bounded
difference inequality with positive constants (L1, . . . , LN ) if, for each n ∈ [N ],

sup
x1,...,xN ,x′

n∈R
|f(x1, . . . , xn, . . . , xN )− f(x1, . . . , x

′
n, . . . , xN )| ≤ Ln. (10)

Lemma 1 (McDiarmid’s Inequality/Bounded Difference Inequality.) Fix a data distribution DX .
Suppose f satisfies the bounded difference property defined in equation 10, with positive constants
L1, . . . , LN and that X = (X1, . . . , XN ) is drawn independently from DX . Then

P [|f(X)− Ef(X)| ≥ t] ≤ 2 exp

(
−2t2∑N
n=1 L

2
n

)
,∀t ≥ 0.

Proof: We refer the readers to corollary 2.21 of Wainwright [2019] for the proof. □

Theorem 5 (Rademacher Complexity Bound.) Fix a data distribution DX and parameter δ ∈ (0, 1).
Suppose F ⊆ {f : X → [0, B]} and X = (X1, . . . , XN ) is drawn i.i.d. from DX . Then with
probability at least 1− δ over the draw of X , for any function f ∈ F ,∣∣∣∣∣Ex∼DX [f(x)]− 1

n

N∑
n=1

f(Xn)

∣∣∣∣∣ ≤ 2RN (F) +B

√
log(2/δ)

2n
. (11)
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Proof: This result follows closely to the proof of Theorem 10 in Koltchinskii and Panchenko [2002],
where the only modifications come from applying B-boundedness of f when applying McDiarmid’s
inequality (i.e. Ln ≤ B

N ,∀n ∈ [N ].) □

Theorem 6 (Vector-contraction Inequality [Maurer, 2016].) Let x1, . . . , xN ∈ X , F ⊆ {f : X →
RD} be a class of functions, and hn : RD → R to be L-Lipschitz, for all n ∈ [N ]. Then

E

[
sup
f∈F

N∑
n=1

εnhn(f(xn))

]
≤

√
2LE

[
sup
f∈F

D∑
d=1

N∑
n=1

εd,nfd(xn)

]
,

where εn, εd,n are i.i.d. sequences of Rademacher variables, and fd(xn) is the d’th component of
f(xn).

Proof: We refer the readers to theorem 3 and corollary 4 of Maurer [2016] for the proof. □

C.3 Proof of Theorem 2

Theorem 2 states the following:

Let ϕ̂ be the ERM of R̂train defined in equation 1. Let ϕ∗ be the true representation and f∗ =
(f∗

1 , . . . , f
∗
T ) ∈ F⊗T be the T true task-specific mappings. If the assumptions 1 to 5 hold, then with

probability 1− δ,

d̄F (ϕ̂;ϕ
∗,f∗) ≤ 8

√
2CFRNT (Φ) + 2B

√
log(2/δ)

2NT
.

Proof: The proof follows closely from the analysis of Tripuraneni et al. [2020]. First, recall that
ϕ̂, f̂ are respectively the ERMs of equation 1 and equation 2. For any T task-specific mappings
f ′ = (f ′

1, . . . , f
′
T ) and a representation ϕ′. Let f∗ = (f∗

1 , . . . , f
∗
T ) be the true task-specific mappings

and ϕ∗ be the true shared representation. We define the centered training risk and its empirical
counterpart respectively as:

L(f ′, ϕ′,f∗, ϕ∗) =
1

T

T∑
t=1

E(st,at)

[
ℓ(πf ′

t,ϕ
′
(st), at)− ℓ(πf∗

t ,ϕ
∗
(st), at)

]
,

L̂(f ′, ϕ′,f∗, ϕ∗) =
1

T

T∑
t=1

N∑
n=1

(
ℓ(πf ′

t,ϕ
′
(st,n), at,n)− E(st,at)

[
ℓ(πf∗

t ,ϕ
∗
(st), at)

])
.

Define f̃ = 1
T

∑T
t=1 arg infft∈F Est,at

[
ℓ(πft,ϕ̂(st), at)− ℓ(πf∗

t ,ϕ
∗
(st), at)

]
to be the minimizer

of the centered training risk by fixing ϕ̂. Then, we have that L(f̃ , ϕ̂,f∗, ϕ∗) = d̄F (ϕ̂;ϕ∗,f∗). Now,
we aim to upper bound d̄F (ϕ̂;ϕ∗,f∗) through the difference in the centered training risk:

d̄F (ϕ̂;ϕ
∗,f∗) = L(f̃ , ϕ̂,f∗, ϕ∗)− L(f∗, ϕ∗,f∗, ϕ∗)

= L(f̃ , ϕ̂,f∗, ϕ∗)− L(f̂ , ϕ̂,f∗, ϕ∗)︸ ︷︷ ︸
≤0

+L(f̂ , ϕ̂,f∗, ϕ∗)− L(f∗, ϕ∗,f∗, ϕ∗),

where the first difference is non-positive by definition of f̃ . Thus, it remains to bound the second
difference, which can be done via standard risk decomposition. First, recall that:

R̂train(f , ϕ) =
1

NT

T∑
t=1

N∑
n=1

ℓ(πft,ϕ(st,n), at,n),

Rtrain(f , ϕ) = E
[
R̂train(f , ϕ)

]
.
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Then, we have that

L(f̂ , ϕ̂,f∗, ϕ∗)− L(f∗, ϕ∗,f∗, ϕ∗) =L(f̂ , ϕ̂,f∗, ϕ∗)− L̂(f̂ , ϕ̂,f∗, ϕ∗)

+ L̂(f̂ , ϕ̂,f∗, ϕ∗)− L̂(f∗, ϕ∗,f∗, ϕ∗)

+ L̂(f∗, ϕ∗,f∗, ϕ∗)− L(f∗, ϕ∗,f∗, ϕ∗)
(i)

≤L(f̂ , ϕ̂,f∗, ϕ∗)− L̂(f̂ , ϕ̂,f∗, ϕ∗)

+ L̂(f∗, ϕ∗,f∗, ϕ∗)− L(f∗, ϕ∗,f∗, ϕ∗)

≤2 sup
f∈F⊗T ,ϕ∈Φ

|Rtrain(f , ϕ)−Rtrain(f
∗, ϕ∗)|

(ii)

≤2

(
2RNT (ℓ ◦ F ◦ Φ) +B

√
log(2/δ)

2NT

)
w.p. 1− δ,

where in (i) the second difference is non-positive due to assumptions 3 and 5; (ii) is a result of theorem
5, where we used proposition 1.

We now bound the Rademacher complexity term RNT (ℓ ◦ F ◦ Φ) Note that ℓ ◦ F is 2CF -Lipschitz
by proposition 2, thus by theorem 6, we have that RNT (ℓ ◦ F ◦Φ) ≤ 2

√
2CFRNT (Φ). Substituting

this upper bound into the above, we get that with probability at least 1− δ,

d̄F (ϕ̂;ϕ
∗,f∗) ≤ 8

√
2CFRNT (Φ) + 2B

√
log(2/δ)

2NT
.

□

C.4 Proof of Theorem 3

Theorem 3 states the following:

let f̂τ be the ERM of R̂test defined in equation 2 with some fixed ϕ̂ ∈ Φ. If the assumptions 1 to 5
hold, then with probability 1− δ,

Rtransfer(f̂τ , ϕ̂) ≤ 8CFCΦ

√
|A|
M

+ 2B

√
log(2/δ)

2M
+ dτ,F (ϕ̂;ϕ

∗).

Proof: The proof follows closely from the analysis of Tripuraneni et al. [2020]. First recall that:

Rtransfer(f̂τ , ϕ̂) = Rtest(f̂τ , ϕ̂)−Rtest(f
∗
τ , ϕ

∗),

Rtest(f, ϕ) = E
[
R̂test(f, ϕ)

]
,

R̂test(f, ϕ) =
1

M

M∑
m=1

ℓ((f ◦ ϕ)(sm), am),

f̂ = argmin
f∈F

R̂test(f, ϕ̂).

Consider the minimizer of the test risk given the estimated representation ϕ̂: f̂∗ =

argminf∈F Rtest(f, ϕ̂). Then, we have that

Rtest(f̂τ , ϕ̂)−Rtest(f
∗
τ , ϕ

∗)

=Rtest(f̂τ , ϕ̂)−Rtest(f̂
∗
τ , ϕ̂)︸ ︷︷ ︸

(a)

+Rtest(f̂
∗
τ , ϕ̂)−Rtest(f

∗
τ , ϕ

∗)︸ ︷︷ ︸
(b)

.
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We bound the term (a) via standard risk decomposition:

Rtest(f̂τ , ϕ̂)−Rtest(f̂
∗
τ , ϕ̂)

=Rtest(f̂τ , ϕ̂)− R̂test(f̂τ , ϕ̂) + R̂test(f̂τ , ϕ̂)− R̂test(f̂
∗
τ , ϕ̂) + R̂test(f̂

∗
τ , ϕ̂)−Rtest(f̂

∗
τ , ϕ̂)

(i)

≤Rtest(f̂τ , ϕ̂)− R̂test(f̂τ , ϕ̂) + R̂test(f̂
∗
τ , ϕ̂)−Rtest(f̂

∗
τ , ϕ̂)

≤2 sup
f∈F

|Rtest(f, ϕ̂)− R̂test(f, ϕ̂)|

(ii)

≤2

(
2RM (ℓ ◦ F) +B

√
log(2/δ)

2M

)
w.p. 1− δ,

where (i) follows from the fact that f̂ is the empirical test risk minimizer by definition—clearly
R̂test(f̂τ , ϕ̂)− R̂test(f̂

∗
τ , ϕ̂) ≤ 0; (ii) is a result of theorem 5.

We now bound the Rademacher complexity term RM (ℓ ◦ F). Note that ℓ is
√
2-Lipschitz in its first

argument for every a ∈ A from proposition 1. By theorem 6, we have that RM (ℓ ◦ F) ≤ 2RM (F).
Thus, substituting this upper bound into the above, we get that with probability at least 1− δ,

Rtest(f̂τ , ϕ̂)−Rtest(f̂
∗
τ , ϕ̂) ≤ 8RM (F) + 2B

√
log(2/δ)

2M
.

Now, by assumption 2, F is the class of linear functions with bounded Frobenius norm. Consider the
empirical Rademacher complexity R̂S(F):

R̂S(F) =
1

M
E

sup
f∈F

|A|∑
a=1

M∑
m=1

εamfa(ϕm)


(i)

≤ 1

M
CF

√√√√|A|
M∑

m=1

∥ϕm∥22

(ii)

≤ 1

M
CF

√
|A|C2

Φ

M

≤ CFCΦ

√
|A|
M

,

where (i) follows from section 4.2 of Maurer [2016] and applying the Frobenius norm to the in-
equality; (ii) follows from the fact that ϕm = ϕ(sm), sm ∼ νπ , thus ∥ϕm∥2 ≤ CΦ by assumption 1.
Consequently, taking the expectation over X we get RM (F) ≤ CFCΦ

√
|A|/M .

We can bound the term (b) as follows:

Rtest(f̂
∗
τ , ϕ̂)−Rtest(f

∗
τ , ϕ

∗)

= inf
f∈F

Rtest(f, ϕ̂)− inf
f ′∈F

Rtest(f
′, ϕ∗)

≤ sup
f ′∈F

inf
f∈F

Rtest(f̂
∗
τ , ϕ̂)−Rtest(f

′, ϕ∗)

=dF (ϕ̂;ϕ
∗).

Finally, by comining both (a) and (b) terms, we conclude that with probability at least 1− δ,

Rtransfer(f̂τ , ϕ̂) ≤ 8CFCΦ

√
|A|
M

+ 2B

√
log(2/δ)

2M
+ dτ,F (ϕ̂;ϕ

∗).

□
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C.5 Proof of Corollary 1

Corollary 1 states the following:

Let ϕ̂ be the ERM of R̂train defined in equation 1 and let f̂τ be the ERM of R̂test defined in
equation 2 by fixing ϕ̂. Suppose the source tasks are σ-diverse. If the assumptions 1 to 5 hold, then
with probability 1− 2δ, Rtransfer(f̂τ , ϕ̂) is upper bounded by:

O

(
CFCΦ

√
|A|
M

+B

√
log(2/δ)

M
+

1

σ

(
CFRNT (Φ) +B

√
log(2/δ)

NT

))
.

Proof: Set the probability of bad events of theorems 2 and 3 to be δ each. We obtain the desired
results by taking complment of the union bound over the bad events and merging the terms. □

C.6 Proof of Theorem 1

Theorem 1 states the following:

Let ϕ̂ be the ERM of R̂train defined in equation 1 and let f̂τ be the ERM of R̂test defined in equation 2
by fixing ϕ̂. Suppose the source tasks are σ-diverse. Under assumptions 1 to 5, we have that with
probability 1− 2δ,

∥vπ
∗
τ − vsoftmax(f̂τ◦ϕ̂)∥∞ ≤ 2

√
2

(1− γ)2

√
εgen + 2ζ, (12)

where εgen is the RHS of equation 8.

Proof: Our goal is to apply theorem 4. Let π = π∗ and π′ = softmax(f̂τ ◦ ϕ̂), we need to bound
their expected Kullback–Leibler (KL) divergence. To accomplish this, note that theorem 3 essentially
means that we can bound the test risk:

Rtest(f̂τ , ϕ̂) ≤ εgen + εbest, (13)

where εgen is the RHS of equation 8 and εbest = Rtest(f
∗
τ , ϕ

∗). Indeed, Rtest(f̂τ , ϕ̂) is the expected
KL divergence between π∗

τ (s) and softmax(f̂τ ◦ ϕ̂)(s):

Rtest(f̂τ , ϕ̂) = E(s,a)∼µπ∗
τ

[
− log softmaxa(f̂τ ◦ ϕ̂)(s)

]
= Es∼νπ∗

[
DKL(π

∗
τ (s)∥softmax(f̂τ ◦ ϕ̂)(s))

]
.

Finally, note that assumptions 3 and 5 imply that we can assume f∗ ∈ F , thus we have that:

εbest = Rtest(f
∗, ϕ∗)

≤ min
f∈F

Rtest(f, ϕ
∗)

≤ E(s,a)∼µπ∗
τ
[− log(1− ζ)]

≤ 2ζ,

where the third lines come from assumption 5 and last inequality comes from − log(1− x) ≤ 2x for
x ≤ 1/2. Finally, we upper bound εgen using corollary 1 and get the desired result. □

D Algorithm Details

In this section we provide details on the implementation of the multitask behaviour cloning (MTBC)
algorithm used to obtain the results highlighted in section 4. Recall that in the training phase we aim
to obtain a shared representation ϕ̂ by minimizing R̂train, as described in equation 1. As proposed
by [Arora et al., 2020], this can be done by solving the following bi-level optimization objective:

ϕ̂ = argmin
ϕ

1

T

T∑
t=1

min
π∈Πϕ

1

N

N∑
n=1

ℓ(π(st,n), at,n), (14)
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Algorithm 1 Multitask Behavioural Cloning (MTBC): Training Phase

1: input: Number of epochs K, T expert datasets {Dt}Tt=1, where |Dt| = N , and learning rates ηϕ
and ηW .

2: Initialize parameters for each of the T task-specific mappings: {W (0)
t }

T

t=1.
3: Initialize shared representation parameters ϕ(0).
4: for k = 1, . . . ,K do
5: Compute loss:

L
(
ϕ(k), {W (k)

t }
T

t=1

)
=

1

NT

T∑
t=1

N∑
n=1

ℓ
(
πW

(k−1)
t ,ϕ(k−1)

(st,n), at,n

)
. (15)

6: Update parameters:

ϕ(k) = ϕ(k−1) − ηϕ∇ϕL
(
ϕ(k), {W (k)

t }Tt=1

)
,

W
(k)
t = W

(k−1)
t − ηW∇Wt

L
(
ϕ(k), {W (k)

t }Tt=1

)
,∀t ∈ [T ].

7: return ϕ.

Algorithm 2 Multitask Behavioural Cloning (MTBC): Transfer Phase
1: input: Representation ϕ, number of epochs K, expert dataset D, where |D| = M , and learning

rate ηW .
2: Initialize parameters of the task-specific mapping: W (0)

τ .
3: for k = 1, . . . ,K do
4: Compute loss: L

(
ϕ,W

(k)
τ

)
= 1

M

∑M
m=1 ℓ

(
πW (k−1)

τ ,ϕ(sm), am

)
5: Update parameters: W (k)

τ = W
(k−1)
τ − ηW∇WL

(
ϕ,W

(k)
τ

)
.

6: return W (K).

where (st,n, at,n) is the n’th state-action pair in the t’th expert dataset and ℓ : ∆A × A → [0,∞)
is the loss function. MTBC optimizes equation 14 through a gradient-based approach on a joint
objective equation 15 (see algorithm 1). During the transfer phase, MTBC fixes the representation ϕ̂

and minimizes R̂test(f, ϕ̂), as described in equation 2—this can be done via BC where we set the loss
function ℓ to be the cross-entropy loss for discrete action space and mean-squared loss for continuous
action space. In practice, since f is a linear function parameterized by W , MTBC propagates the
gradient to update W (see algorithm 2).

E Implementation Details

In this section, we describe in detail the implementation of our experimental analysis.

E.1 Environments

We perform our experiments on four tasks: frozen lake, pendulum, cheetah run, and walker walk. The
first two environments are based on Gymnasium [Towers et al., 2023] and the latter two are based
on Deepmind control suite [Tunyasuvunakool et al., 2020]. To bridge the theory and practice, we
provide a discrete action space variant for the continuous environments to validate our hypotheses.
While in general discretizing action space may exclude the true optimal policy [Dadashi et al., 2022,
Seyde et al., 2021, 2022], our goal is to demonstrate that MTBC can obtain the expert policy with
less target data when compared with BC. Thus, we argue that not having the true optimal policy still
validates our goal so long as the expert policy is non-trivial. To generate multiple source tasks with
shared state and action spaces, we modify phyiscal properties of the environment. All environmental
parameters are sampled from uniform distributions of bounded ranges.
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Figure 3: The set of environments used for the experiments. From left to right: frozen lake, pendulum,
cheetah, and walker.

Frozen Lake The frozen lake task requires an agent the navigate through a 8× 8 grid with non-
deterministic transitions. The action space is the set {LEFT,DOWN,RIGHT,UP,STAY}. To vary
the tasks, we modify the initial state, the goal state, and the transition function.

Pendulum The pendulum task requires an agent to swing and keep the link upright. The default
action space is the torque of the revolute joint between [−2, 2]. The discretized action space is the set
{0,±2−3, . . . , ,±21} (i.e. 11 actions.) This allows the agent to perform large-magnitude action for
swinging the link up and to perform low-magnitude action for keeping the link upright. To vary the
tasks, we modify the maximum torque applied to the joint.

Locomotion Both the cheetah-run and walker-walk tasks require an agent to move above a specified
velocity. The latter task further scales the velocity based on the height of the agent. The default action
space is the torque applied to each of the joint, all bounded between [−1, 1]. The discretized action
space is the set {−1, 1} per joint (i.e. Bang-Bang control [Seyde et al., 2021],) thus we have 2dim(A)

actions after discretizing the action space—we emphasize that we use softmax policies as opposed to
per-dimension Bernoulli policies. To vary the source tasks, we modify the links’ size and the joint
parameters.

E.2 Generating the Experts and Demonstrations

In this section we describe how we generate the experts for all environments. We first obtain the
expert policy πdefault for each environment using the default environmental parameters. Then, to
obtain the expert policy πnew for each environmental variant, we initialize πnew using πdefault and
resume training. This pretraining strategy speeds up training on new envrionment variant, as opposed
to training a new policy from scratch. We use Proximal Policy Optimization (PPO) [Schulman et al.,
2017] to train the expert policies for all environments. In general, all PPO policies are trained using
Adam optimizer [Kingma and Ba, 2015]. We further use observation normalization and advantage
normalization, as commonly done in practice [Engstrom et al., 2020, Hsu et al., 2020].

To gather the demonstrations, we execute the expert policies and deterministically select the action
with highest logits. In practice, there is a time-out H for all environments even though in theory they
are infinite-horizon MDPs. We gather a total of ⌈N/H⌉ length H time-out episodes and trim the
extra N mod H samples, which is more practical and time efficient, and similar to how practitioners
leverage data in real-life applications.
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