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Abstract

Capturing both aleatoric and epistemic uncertainty in models of robotic systems is
crucial to designing safe controllers. Most existing approaches for synthesizing cer-
tifiably safe controllers exclusively consider aleatoric but not epistemic uncertainty,
thus requiring that model parameters and disturbances are known precisely. Our
contribution to overcoming this restriction is a novel abstraction-based controller
synthesis method for continuous-state models with stochastic noise, uncertain
parameters, and external disturbances. By sampling techniques and robust analysis,
we capture both aleatoric and epistemic uncertainty, with a user-specified confi-
dence level, in the transition probability intervals of a so-called interval Markov
decision process (iMDP). We then synthesize an optimal policy on this abstract
iMDP, which translates (with the specified confidence level) to a feedback con-
troller for the continuous model, with the same performance guarantees. Our
experimental benchmarks confirm that accounting for epistemic uncertainty leads
to controllers that are more robust against variations in parameter values.

1 Introduction

Reach-avoid problems. Reach-avoid problems are omnipresent in robotic motion planning [6].
Consider, for example, an unmanned aerial vehicle (UAV) that must navigate to a desirable region
within a given time horizon, while avoiding certain unsafe regions. The problem is to synthesize a
controller, which guarantees that the UAV will reach its goal while avoiding the unsafe regions. A
powerful approach to synthesizing such certifiably safe controllers leverages probabilistic verification
to provide formal guarantees over reach-avoid specifications. Most robotic systems are, however,
characterized by continuous state and action spaces, while formal verification is generally limited to
discrete models. Thus, finite abstractions are used to make formal verification feasible for continuous-
state models [1]]. Being formal, verification guarantees on the finite abstraction carry over to the
continuous model. In this paper, we adopt such an abstraction-based approach to controller synthesis.

Probabilities are not enough. To account for uncertainty, robotic systems are often modelled using
stochastic dynamical models. Recently, the notion of uncertainty has often been distinguished in
aleatoric (statistical) and epistemic (systematic) uncertainty [[7,[12]]. Aleatoric uncertainty captures
natural randomness (i.e., stochasticity) in the outcome of transitions, while epistemic uncertainty is in
particular modelled by parameters that are not precisely known [[11]]. A general premise is that purely
probabilistic approaches fail to capture epistemic uncertainty [10]. In this work, we aim to reason
under both aleatoric and epistemic uncertainty, in order to synthesize provably-correct controllers
for safety-critical applications. Existing abstraction methods fail to achieve this novel, general goal.
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Figure 1: Aleatoric (stochastic) uncertainty in

the wind (33) causes probability distributions Figure 2: Our overall approach to solve the problem
over the outcomes of controls; epistemic un- consists of an offline planning phase in which we cre-
certainty in the UAV’s mass (‘) causes transi- ate an iMDP abstraction, and an online control phase
tions to be nondeterministic. to derive a provably-correct feedback controller.

Models with epistemic uncertainty. We consider reach-avoid problems for stochastic dynamical
models with continuous state and action spaces, under epistemic uncertainty due to uncertain parame-
ters and external disturbances. These parameters and disturbances lie within a convex uncertainty
set (in the simplest case, intervals), such as a drone whose mass is only known to lie between 0.75—
1.25kg. As shown in Fig.[I] the dynamics depend on uncertain factors, e.g., the wind and the drone’s
mass. For the wind, we may derive a probabilistic model from, e.g., weather data, to reason over the
likelihood of state dynamics. For the mass (epistemic uncertainty), however, no information allows
us to reason probabilistically, yielding nondeterministic state dynamics. Concretely, we consider a
dynamical model whose state x;, € R™ at time k € N evolves as

Tpy1 = A(a)zy + Bla)ur + g + 0, )]

where u; € U is the (constrained) control input, and 7y is a stochastic process noise, defined on a
probability space (€2, F, P), where P is assumed to be unknown. The matrices A(a) = >0 | o A;
and B(a) = Z;zl «; B; are a convex combination of a finite set of matrices Aq,..., A, and
By, ..., B,, where a € T belongs to the unit simplex I'. Moreover, the disturbance ¢ € Q is only
known to lie in a given convex uncertainty set Q. Thus, the model in Eq. (I)) captures epistemic
uncertainty in g, as well as in A(«) and B(«) through model parameter .

Problem statement. Our goal is to synthesize a feedback controller for Eq. (1) that is robust against
nondeterminism due to parameter uncertainty and disturbances, and that reasons over probabilities
derived from stochastic noise. We wish to synthesize a controller with a probably approximately
correct (PAC)-style guarantee to satisfy a reach-avoid task. Thus, we solve the following problem:

Problem. Given a reach-avoid specification for the dynamical model in Eq. (), compute a feedback
controller and a lower bound A € [0, 1] on the probability that, under any admissible value of the
parameters (i.e., under any o € T, g, € Q Vk € N), the specification is probabilistically satisfied
with this lower bound and with at least a user-specified confidence probability 8 € (0,1).

We solve this problem via a discrete-state abstraction of the continuous model in the form of a
so-called interval Markov decision process (iMDP), which is an extension of an MDP with intervals
of transition probabilities [9]. We generate this abstraction by partitioning the continuous state space
and defining actions that induce potential transitions between elements of this partition.

Robustness to capture nondeterminism. The main contribution that allows us to capture nondeter-
minism, is that we reason over sets of potential transitions (as shown by the boxes in Fig.[I)), rather
than precise transitions, e.g., as in [2]]. Intuitively, for a given action, the aleatoric uncertainty creates
a probability distribution over sets of possible outcomes. To ensure robustness against epistemic
uncertainty, we consider all possible outcomes within these sets. We show that, for our class of
models, computing these sets of all possible outcomes is computationally tractable. Building upon
this reasoning, we provide the following guarantees related to the aforementioned problem.

1) PAC guarantees on abstractions. We show that both probabilities and nondeterminism can be cap-
tured in the probability intervals of an iMDP. We use sampling methods from scenario optimization [§]]
and concentration inequalities [4] to compute PAC bounds on these intervals. With a predefined
confidence probability, the iMDP correctly captures both aleatoric and epistemic uncertainty.

2) Correct-by-construction control. For the iMDP, we compute a robust optimal policy that
maximizes the worst-case probability of satisfying the reach-avoid specification. The iMDP policy is



automatically translated to a provably-correct feedback controller for the original, continuous model
‘on the fly’. This means that, by construction, the PAC guarantees on the iMDP carry over to the
satisfaction of the specification for the continuous model, thus solving the problem stated above.

Contributions. We develop the first abstraction-based, formal controller synthesis method that
simultaneously captures epistemic and aleatoric uncertainty for continuous-state/action models.
We provide results on the PAC-correctness of obtained iMDP abstractions, and guarantees on the
synthesized controllers for a reach-avoid specification. In the remainder of this paper, we highlight the
key elements of our approach and show with a benchmark that accounting for epistemic uncertainty
yields controllers that are more robust against deviations in parameter values and disturbances.

2 Abstraction-Based Controller Synthesis

Our overall approach is shown in Fig. 2]and consists of an offline planning phase in which we create
the iMDP and compute a robust optimal policy, and an online control phase in which we automatically
derive a provably-correct controller for the continuous model. We briefly discuss both phases.

1) Create abstraction. Given a model as in Eq. (I)), we create an abstract iMDP by partitioning the
state space into a set of convex polytopic regions, each of which corresponds with a state of the iMDP.
We then define the iMDP actions via backward reachability computations under a so-called nominal
model that neglects both the aleatoric and epistemic uncertainty in Eq. (I, and is thus deterministic.
We compensate for the error caused by this simplification in the iMDP’s transition probability
intervals. Intuitively, the upper/lower bounds of the intervals correspond to the best/worst possible
outcome of the epistemic uncertainty, respectively. Using principled sampling methods from scenario
optimization [§] and concentration inequalities [4], we compute PAC bounds on these intervals,
yielding an iMDP that is PAC-correct. That is, for a user-specified confidence 8 € (0, 1), it holds, for

every iMDP state-action pair (s, a) and successor state s, that PV {p < P(s,a)(s) < ]3} >1-5.

2) Compute robust optimal policy. Using tools from probabilistic model checking [3]], we compute
a robust optimal policy for the resulting iMDP. This robust optimal policy maximizes (over the
available action) the worst-case (over the probability intervals) probability of satisfying the reach-
avoid specification. Recall that the overall problem is to find a controller with a reach-avoid probability
of at least . If this condition holds for the obtained policy, we output the policy and proceed to step
3; otherwise, we attempt to improve the abstraction in one of the following ways. First, we can refine
the partition at the cost of a larger iMDP. Second, using more samples N yields an improved iMDP
through tighter intervals (see, e.g., [2] for such trade-offs). Finally, the uncertainty in o € I' may be
too large, meaning we need to reduce set I" using learning techniques (see Sect. [d work).

3) Online control. We use the extracted policy on the abstract iMDP to derive a provably-correct
feedback controller for the dynamical system ‘on the fly’. At each time step k, we determine to which
polytopic region the current state x belongs, and we obtain the corresponding optimal action from
the iMDP policy. We then compute the actual control input uy, for the dynamical model associated
with this iMDP action as the solution of a convex optimization program. Due to the correctness of our
abstraction procedure, the formal guarantees on the iMDP carry over to the satisfaction of the reach-
avoid specification on the dynamical system. As a result, our approach leads to a provably-correct
feedback controller for the dynamical system, thus solving the aforementioned problem.

3 Synthesizing Robust Controllers

We show that our approach yields controllers that are robust against deviations in parameter values
and disturbances. Consider a UAV whose longitudinal position px and velocity vy are modelled as

Pk 1 T it
1 = 10 = o m=0.1r Ty + % Uk + Tk
with 7 the discretization time, and U = [—5, 5]. The mass m € R of the UAV is uncertain, and is only
known to lie in m € [0.75, 1.25]. We fix the nominal value of the mass as 7o = 1. The specification
is to reach a position of py, > 8 before time K = 12, while avoiding speeds of |vg| > 10. We use a
partition of 24 x 20 regions and 20K samples to estimate probability intervals. We compare against a
baseline that builds an iMDP for the nominal model only, thus neglecting parameter uncertainty.
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mance guarantees (i.e., the simulated reach-
ability probability is above the guaranteed = Figure 4: With our approach, the system safely
reach-avoid probability on the iMDP). Our  reaches the goal (in green), while the baseline ne-
approach that accounts for epistemic uncer-  glecting epistemic uncertainty leaves the safe set
tainty is 100% safe up to the parameter ro-  (gray box), as it underestimates the epistemic uncer-
bustness limit; neglecting uncertainty is not.  tainty (shown as the red boxes).

Neglecting epistemic uncertainty is unsafe. The run time of this benchmark is + 3 s. For initial
state ¢, we define a controller c at a parameter value o € I to be unsafe if the reach-avoid probability
V(xg, a, ¢) (which we estimate using Monte Carlo simulations) is below the guaranteed reach-avoid
probability on the iMDP abstraction. In Fig.[3] we show the deviation of the actual mass m from its
nominal value, versus the average percentage of states with a safe controller (over 10 repetitions).
The parameter robustness limit represents the extreme values of the parameter against which our
approach is guaranteed to be robust (m = 0.75 and 1.25 in this case).

Our approach yields 100% safe controllers for devia-
tions well over the robustness limit of m € [0.75, 1.25].
By contrast, the baseline yields 6% unsafe controllers
at the robustness limit. We show simulated trajectories
under an actual mass m = 0.75 in Fig.[d These tra-
jectories confirm that our approach safely reaches the
goal region, while the baseline does not, as it neglects
epistemic uncertainty. We observe similar results for
models with multiple parameters.

4 Conclusions and Current Research

We presented a novel abstraction-based controller syn- Figure 5: Simulated trajectory for a
thesis method for dynamical models with aleatoric un-  spacecraft reach-avoid problem with only
certainty due to stochastic noise, and epistemic uncer- aleatoric uncertainty. The chaser spacecraft
tainty due to uncertain parameters and external distur- (white) must navigate to the target (green),
bances. The method captures those different types of  while not colliding with the one in red.
uncertainties in order to ensure certifiably safe con-

trollers. Our experiment in this short paper shows that

we derive controllers that are robust against against deviations in the uncertain model parameters.

In the future, we wish to apply our method to larger reach-avoid problems, such as the spacecraft
problem shown in Fig. [5] (which is a result obtained under only aleatoric uncertainty). Moreover, we
wish to integrate the abstractions in a safe learning framework [3l], such that we use our method to
synthesize controllers that are provably safe, while reducing the epistemic uncertainty by interacting
with the system. We also aim to extend our method to nonlinear systems, such as non-holonomic
robots [13]], by capturing linearization errors as external disturbances. The main challenge is to obtain
a set-bounded representation of the linearization error, which depends on the model dynamics.
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