
Infrastructure-based End-to-End Learning and
Prevention of Driver Failure

Noam Buckman∗

MIT CSAIL
nbuckman@mit.edu

Shiva Sreeram∗

Caltech
sasreera@caltech.edu

Mathias Lechner
MIT CSAIL

mlechner@mit.edu

Yutong Ban
MIT CSAIL

yban@mit.edu

Ramin Hasani
MIT CSAIL

rhasani@mit.edu

Sertac Karaman
MIT LIDS

sertac@mit.edu

Daniela Rus
MIT CSAIL

rus@mit.edu

Abstract

Intelligent intersection managers can improve safety by detecting dangerous drivers
or failure modes in autonomous vehicles, warning oncoming vehicles as they ap-
proach an intersection. In this work, we present FailureNet, a recurrent neural
network trained end-to-end on trajectories of both nominal and reckless drivers in a
scaled miniature city. FailureNet observes the poses of vehicles as they approach an
intersection and detects whether a failure is present in the autonomy stack, warning
cross-traffic of potentially dangerous drivers. FailureNet can accurately identify
control failures, upstream perception errors, and speeding drivers, distinguishing
them from nominal driving. The network is trained and deployed with autonomous
vehicles in a scaled miniature city. Compared to speed or frequency-based predic-
tors, FailureNet’s recurrent neural network structure provides improved predictive
power, yielding upwards of 84% accuracy when deployed on hardware.

1 Introduction

Safety is critical for the adoption of autonomous vehicles (AVs) on roads, especially as an increasing
number of vehicles are deployed on the road. Given that failures and errors will always exist,
methods must be developed for identifying issues with autonomous vehicles and alerting vehicles
with enough time to take action. Infrastructure-based methods, such as intelligent intersection
managers, can observe drivers for longer duration for improved failure detection. In addition, control
of the intersection provides an extra level of safety, especially for cross-traffic collisions.

In this work, we consider an intelligent traffic light that monitors vehicles for failures and warns
oncoming traffic to prevent collisions. Existing approaches such as driver monitoring systems require
in-cabin sensor placement for driver monitoring which can capture more information but requires
access to the vehicle itself, whereas an external monitor does not require access to the vehicle.
Furthermore, current approaches are typically limited to vehicles observed within the field-of-view of
the vehicle, whereas external monitoring from an intersection manager can monitor vehicles as they
approach an intersection. For a more detailed related works, see Appendix A.

In our approach, an intersection manager observes a vehicle’s trajectory as it drives near an intersection
and uses FailureNet, a recurrent neural network (RNN), to detect whether a driver’s behavior is
caused by a planning or actuator failure (Fig. 1). Our learning-based approach is trained to detect
failures from generated data within a 1/10th-scaled miniature city testbed where multiple autonomous
vehicles are deployed simultaneously. We induce vehicle failures in the scaled hardware, ranging

∗equal contribution

NeurIPS 2022 Workshop on Robot Learning: Trustworthy Robotics, Virtual, Virtual

observation

AV

AV

(a) Nominal driver (b) Reckless driver (c) Hardware Testbed (d) Preventing Collisions

Figure 1: FailureNet observes nominal drivers (a) or reckless drivers (b) and warns oncoming traffic.
We train and deploy on a scaled testbed (c) to prevent AV collisions (d).

from control failures (injecting noise to speed and steering) to perception failure, and train FailureNet
on this novel dataset. We demonstrate the accuracy of FailureNet and our ability to warn oncoming
traffic by deploying in a novel hardware testbed with multiple vehicles and compare to multiple
baseline approaches.

2 Problem Statement

The goal of this work is to successfully identify vehicles with planning or sensor failures before the
vehicles arrive at an intersection. Specifically, we consider an intersection and the surrounding roads
flowing into the intersection that is monitored by an intelligent intersection observer and manager. We
assume that under normal operation (nominal driving), each vehicle j navigates to various locations
in the city autonomously, with a high-level route planning, low-level path planning, and motion
control. A vehicle failure is defined as a significant degradation of one or more sub-components of
the autonomous vehicle, for example, decision-making, perception, or low-level control. We assume
that a vehicle’s failure persists through the duration of driving and is represented by a latent failure
variable, z j ∈ {0,1} where 1 =Unsa f e, 0 = Sa f e.

The goal of the intersection manager is to observe the vehicles and (1) detect whether a vehicle is
failing and if so, (2) mitigate intersection collisions by warning oncoming traffic. The intersection
manager only has access to information observable externally. Specifically, the intersection manager
observes pose of each of agent p j,t = [xt ,yt ,θt] and the goal of traffic light is to provide an estimate
ẑ j,t of whether vehicle j is experiencing a failure, and if so, communicate to incoming vehicles.

2.1 Failure Modes

On-road collisions can occur due to various types of vehicle failures. We focus on identifying failure
modes that manifest in the driving behavior of the vehicle before point of collision at an intersection.
We consider four types of vehicle failures motivated by reckless human driving and AV failures.

Random Periodic Control Failure The first type of failure is a random additive noise applied to the
control output of the vehicle, steering, and acceleration. This failure mode is chosen to demonstrate a
persistent random vehicle failure or poor driver abilities. Specifically, a random steering and speed
noise is added to the desired steering and speed outputted by the autonomy stack.

Lane Detection Offset Failure Upstream failures in the perception of the vehicle, such as a failing
lane detector, can lead to observable and dangerous scenarios. We consider a failing lane detector
that outputs an incorrect lane line. Similar to the other failure modes, we consider a non-catastrophic
failure such as a biased lateral shift of the outer lines. For each outer lane line detected, the line is
shifted laterally by a distance s̄.

Speeding Driver Speeding drivers were a contributing factor in 29% of all deaths on the road
totaling 11,258 fatalities (1). We simulate a speeding driver by increasing the desired speed of the
driver from 0.3m/s to 0.5m/s. The steering of the vehicle is unaffected; however, the vehicle attempts
to maintain a desired speed of 0.5m/s. The high speed of the vehicle leads to increased steering
oscillations due to dynamic instabilities and overshooting tight radius turns.

2

(a) Periodic Noise (b) Speeding Driver (c) Lane Offset (d) Manual Driver (e) Nominal Driver

Figure 2: Failure modes deployed on the scaled cars and vehicle poses deployed in testbed.

Manual Reckless Driver Finally, to capture a wide breadth of driving styles, we consider a hybrid
failure mode generate by allowing a human driver to command the vehicle in a reckless manner.

3 Training and Deploying in a 1/10th Scale Autonomous City

Hardware Testbed We utilize the MiniCity (2), a novel 1/10th scale experimentation platform, for
testing and evaluating FailureNet. Scaled houses, roads, grass, and traffic lights make up a realistic
aesthetic of the miniature city, with intersections and roundabouts for simulating dangerous and
interactive driving scenarios. Each vehicle in the platform consists of state-of-the-art sensors, such as
a Velodyne Lidar and Zed camera, and runs a full autonomy stack from high-level mission planning to
low-level control. This allows us to deactivate various components of the autonomy stack to simulate
catastrophic failure and measure the impact on vehicle driving. An external motion capture provides
ground truth position for each vehicle and simulates GPS for onboard state estimation. Individual
vehicles fuse multiple sensor modalities, including simulated GPS, to localize in the city, while we
utilize the high-rate motion capture for collecting training data and evaluating the performance of
FailureNet.

Training on Reckless Drivers Each miniature vehicle runs a full autonomy stack, implemented in
ROS, to navigate within the city setting. Reckless driving is simulated by injecting various failure
modes in the AV stack, as described in Sec. 2. For high-level failure modes such as lane detection
and speeding, we modify the upstream planning nodes, whereas for low-level failures such as noisy
controls, we create a noisy driver ROS node that injects random noise at the output. Each intersection
contains a signalized traffic light that communicates with vehicles over ROS. Figure 1d shows
an example failing AV colliding with a cross-traffic driver. During FailureNet’s training, a single
vehicle navigates in the city autonomously, with human monitoring and handovers in case of on
or off-road collisions. Figure 2 shows the training poses captured for four failure modes: periodic
noise, lane shift, speeding, and nominal driving. In addition, a manual joystick and first-person-view
steering setup can be used to collect manual reckless driving. The ability to deploy autonomously
with multiple vehicles enables large-scale collection of driving, for a total of over 3 hours of driving
data. Additionally, we augment the dataset of collected trajectories by applying a sliding window to
generates additional sequences for training.

(a) Nominal Driving (b) Lane Detector Failure

Figure 3: FailureNet distinguishes between nominal drivers and reckless drivers. Sequence of poses
(green line) input into the network and outputs a prediction of vehicle failure (red/green sphere).

3

Table 1: FailureNet Accuracy on Validation Data

learnable Accuracy in %
Method parameters All Periodic Lane Shift Manual Speeding Nominal

Speed Threshold 0 70.68 83.59 7.22 0.33 100.00 99.37
Speed + MLP 5,569 74.86 97.95 37.91 32.67 100.00 88.10
Kalman Filter 0 60.29 92.30 75.86 81.48 100.00 36.79
FFT Threshold 0 55.40 0.0 0.00 5.67 4.73 99.19
FFT + MLP 6,209 93.00 95.38 92.06 73.67 100.00 97.11
MLP 8,129 97.44 96.41 97.11 93.67 100.00 98.38

FailureNet-LSTM 26,049 98.42 97.44 98.19 96.33 99.32 99.10
FailureNet-GRU 21,633 97.78 94.36 95.67 95.00 98.65 99.55
FailureNet-CfC 1,936 97.78 92.82 100.00 92.33 98.65 99.46

Detecting Failures and Warning Cross Traffic The intelligent traffic lights in the city monitor the
oncoming traffic positions and warn incoming traffic if anomalies are detected. The traffic manager
accesses the pose information published from the motion capture, and FailureNet receives each
vehicle’s pose at 2Hz and inputs a sequence of L previous poses into the RNN. Further details on
the network architecture can be found in Appendix B. If FailureNet’s output is above a detection
threshold Z̄, then a warning is sent to AVs approaching the intersection.

4 Results

Model Accuracy on Validation Data In Table 1, we report the detection accuracy for each method
on both the entire validation dataset (failure modes and nominal drivers), as well as accuracy in
detecting each individual failure mode. The RNN architectures (LSTM, GRU, CfC) provide the
highest accuracy rates over the baselines. For baseline details, see Appendix C. FailureNet-LSTM is
overall the best performing, with highest accuracy on the most difficult failure mode (manual driver).
FailureNet-GRU and FailureNet-CfC provide the highest true negative rate on the nominal driver
validation data. One advantage of FailureNet-CfC is its relatively small size compared to the other
RNNs and MLP (which require 10× and 4× the parameters, respectively).

Safety Evaluation in the Miniature City Finally, we deploy FailureNet in the hardware testbed
with two vehicles, one that drives nominally and one that drives with one of the failure mode activated.
Figure 3 shows the detector deployed in the testbed, with the input sequence and prediction visualized.
We deploy each method and failure mode for 3 minutes each and evaluate the accuracy of the detector,
running at 1Hz. In Table 2, we report the accuracy for various baselines and RNNs, in various failure
settings. We find that FailureNet-LSTM and Failurenet-CfC perform best deployed, with an accuracy
of 84%. The speed threshold performs well on the failure modes with speed components, however,
fails to identify the lane shift failure mode since speed is unaffected. In contrast, our approach
performs well across all failure modes and outperforms the MLP when evaluated online.

Table 2: FailureNet Accuracy Deployed in Hardware Testbed
Method All Periodic Lane Shift Manual Speeding Nominal

Speed Threshold 73 100 8 98 100 100
FFT Threshold 21 13 1 7 2 98
Kalman Filter 71 75 78 92 94 21
MLP 74 65 75 79 64 88

FailureNet-LSTM 84 79 90 95 69 84
FailureNet-GRU 79 56 88 86 64 95
FailureNet-CfC 84 79 87 78 85 87

References
[1] National Center for Statistics and Analysis, “Speeding: 2020 data, Tech. Rep. June, 2022.

[2] N. Buckman, A. Hansen, S. Karaman, and D. Rus, “Evaluating Autonomous Urban Perception
and Planning in a 1/10th Scale MiniCity,” Sensors, vol. 22, no. 18, p. 6793, sep 2022. [Online].
Available: https://www.mdpi.com/1424-8220/22/18/6793

4

https://www.mdpi.com/1424-8220/22/18/6793

[3] S. Hecker, D. Dai, and L. Van Gool, “Failure Prediction for Autonomous Driving,” IEEE
Intelligent Vehicles Symposium, Proceedings, vol. 2018-June, no. Iv, pp. 1792–1799, 2018.

[4] J. Svegliato, K. H. Wray, S. J. Witwicki, J. Biswas, and S. Zilberstein, “Belief Space
Metareasoning for Exception Recovery,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, nov 2019, pp. 1224–1229. [Online]. Available:
https://ieeexplore.ieee.org/document/8967676/

[5] M. Zhang, C. Chen, T. Wo, T. Xie, M. Z. A. Bhuiyan, and X. Lin, “SafeDrive: Online
Driving Anomaly Detection From Large-Scale Vehicle Data,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 4, pp. 2087–2096, 2017.

[6] D. A. Johnson and M. M. Trivedi, “Driving style recognition using a smartphone as a sensor
platform,” IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp.
1609–1615, 2011.

[7] I. Vasconcelos, R. O. Vasconcelos, B. Olivieri, M. Roriz, M. Endler, and M. C. Junior,
“Smartphone-based outlier detection: a complex event processing approach for driving be-
havior detection,” Journal of Internet Services and Applications, vol. 8, no. 1, 2017.

[8] G. C. M. Quintero, J. A. O. Lopez, and J. M. P. Rua, “Intelligent erratic driving diagnosis based
on artificial neural networks,” in 2010 IEEE ANDESCON. IEEE, sep 2010, pp. 1–6. [Online].
Available: https://ieeexplore.ieee.org/document/5631576/

[9] A. Siddiqui, A. Fern, T. G. Dietterich, and S. Das, “Finite Sample Complexity of Rare Pattern
Anomaly Detection,” in UAI’16: Proceedings of the Thirty-Second Conference on Uncertainty
in Artificial Intelligence, 2016, pp. 686–695.

[10] T. Wu and J. Ortiz, “RLAD: Time Series Anomaly Detection through Reinforcement Learning
and Active Learning,” mar 2021. [Online]. Available: http://arxiv.org/abs/2104.00543

[11] C. Ryan, F. Murphy, and M. Mullins, “End-to-End Autonomous Driving Risk Analysis: A
Behavioural Anomaly Detection Approach,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 3, pp. 1650–1662, 2021.

[12] H. Kawashima, F. Oba, S. Control, D. Group, and A. Shinko, “A Multi-Model Based Fault
Detection and Diagnosis of,” no. October, pp. 1–6, 2003.

[13] Z. H. Duan, Z. X. Cai, and J. X. Yu, “Fault diagnosis and fault tolerant control for wheeled
mobile robots under unknown environments: A survey,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2005, no. April, pp. 3428–3433, 2005.

[14] Y. Takei and Y. Furukawa, “Estimate of driver’s fatigue through steering motion,” Conference
Proceedings - IEEE International Conference on Systems, Man and Cybernetics, vol. 2, no. 1,
pp. 1765–1770, 2005.

[15] G. Di Biase, H. Blum, R. Siegwart, and C. Cadena, “Pixel-wise Anomaly Detection in Complex
Driving Scenes,” Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 16 913–16 922, 2021.

[16] A. Doshi and M. M. Trivedi, “On the roles of eye gaze and head dynamics in predicting driver’s
intent to change lanes,” IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 3,
pp. 453–462, 2009.

[17] L. Fletcher and A. Zelinsky, “Driver Inattention Detection based on Eye Gaze–Road Event
Correlation,” International Journal of Robotics Research, vol. 28, no. 6, pp. 774–801, 2009.

[18] J. Morton, T. A. Wheeler, and M. J. Kochenderfer, “Analysis of Recurrent Neural Networks for
Probabilistic Modeling of Driver Behavior,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 5, pp. 1289–1298, 2017.

[19] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-
Feasible Trajectory Forecasting With Heterogeneous Data,” 2020. [Online]. Available:
http://arxiv.org/abs/2001.03093

5

https://ieeexplore.ieee.org/document/8967676/
https://ieeexplore.ieee.org/document/5631576/
http://arxiv.org/abs/2104.00543
http://arxiv.org/abs/2001.03093

[20] M. S. Shirazi and B. T. Morris, “Looking at Intersections: A Survey of Intersection Moni-
toring, Behavior and Safety Analysis of Recent Studies,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 1, pp. 4–24, 2017.

[21] G. M. Björklund and L. Åberg, “Driver behaviour in intersections: Formal and informal traffic
rules,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 8, no. 3, pp.
239–253, 2005.

[22] J. Sun, S. Kousik, D. Fridovich-Keil, and M. Schwager, “Self-Supervised Traffic Advisors:
Distributed, Multi-view Traffic Prediction for Smart Cities,” arXiv preprint, 2022.

[23] D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, “Generalizable intention prediction of
human drivers at intersections,” IEEE Intelligent Vehicles Symposium, Proceedings, no. Iv, pp.
1665–1670, 2017.

[24] S. Lefèvre, C. Laugier, and J. Ibañez-Guzmán, “Risk assessment at road intersections: Compar-
ing intention and expectation,” IEEE Intelligent Vehicles Symposium, Proceedings, pp. 165–171,
2012.

[25] F. D. Salim, S. W. Loke, A. Rakotonirainy, B. Srinivasan, and S. Krishnaswamy, “Collision
pattern modeling and Real-Time collision detection at road intersections,” IEEE Conference on
Intelligent Transportation Systems, Proceedings, ITSC, pp. 161–166, 2007.

[26] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide safety in intelligent intersec-
tions,” IEEE Transactions on Vehicular Technology, vol. 60, no. 3, pp. 804–818, 2011.

[27] K. Dresner and P. Stone, “Mitigating catastrophic failure at intersections of autonomous vehicles,”
Proceedings of the International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS, vol. 3, pp. 1361–1364, 2008.

[28] B. Yu, S. Bao, F. Feng, and J. Sayer, “Examination and prediction of drivers’ reaction when
provided with V2I communication-based intersection maneuver strategies,” Transportation
Research Part C: Emerging Technologies, vol. 106, no. November 2018, pp. 17–28, 2019.

[29] Y. Feng, C. Yu, S. Xu, H. X. Liu, and H. Peng, “An Augmented Reality Environment for Con-
nected and Automated Vehicle Testing and Evaluation,” IEEE Intelligent Vehicles Symposium,
Proceedings, vol. 2018-June, no. Iv, pp. 1549–1554, 2018.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[31] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling,” pp. 1–9, 2014. [Online]. Available:
http://arxiv.org/abs/1412.3555

[32] M. Lechner, R. Hasani, M. Zimmer, T. A. Henzinger, and R. Grosu, “Designing worm-inspired
neural networks for interpretable robotic control,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 87–94.

[33] M. Lechner, R. Hasani, A. Amini, T. A. Henzinger, D. Rus, and R. Grosu, “Neural circuit
policies enabling auditable autonomy,” Nature Machine Intelligence, vol. 2, no. 10, pp. 642–652,
2020.

[34] C. Vorbach, R. Hasani, A. Amini, M. Lechner, and D. Rus, “Causal navigation by continuous-
time neural networks,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[35] R. Hasani, M. Lechner, A. Amini, D. Rus, and R. Grosu, “Liquid time-constant networks,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, pp. 7657–7666,
May 2021.

[36] A. Gu, K. Goel, and C. Re, “Efficiently modeling long sequences with structured state
spaces,” in International Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=uYLFoz1vlAC

6

http://arxiv.org/abs/1412.3555
https://openreview.net/forum?id=uYLFoz1vlAC

[37] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential
equations,” in Advances in neural information processing systems, 2018, pp. 6571–6583.

[38] R. Hasani, M. Lechner, A. Amini, L. Liebenwein, M. Tschaikowski, G. Teschl, and D. Rus,
“Closed-form continuous-depth models,” arXiv preprint arXiv:2106.13898, 2021.

[39] K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” Neuroimage, vol. 19,
no. 4, pp. 1273–1302, 2003.

7

A Related Works

Monitoring Ego Driver The ability to detect failures in AV stacks or anomalies in human drivers
is crucial for trust in AVs. Recent work (3; 4) has explored methods for introspective monitoring of
the AV stack for faults and anomalies by observing the state of the vehicle. For human drivers, neural
networks learn from on-board vehicle diagnostics to identify driver anomalies (5) and (6; 7) use
onboard cellphone data to train a network to identify different driving styles. (8) use a simulator to
generate erratic driving and detect anomalies with a neural network. Other learning-based approaches
use supervised learning (9) or reinforcement learning (10) to detect rare events in time-series data.
In (11), a Gaussian Processes models nominal human driver based on pre-recorded human driver
trajectories, and identify anomalies in an AV if observed steering is outside a 95% confidence interval.
Non-learning approaches include identifying faults with a Kalman filter (12; 13) and analyzing the
frequencies in driver steering (14) to identify driver fatigue in a simulation. In all these methods,
the network requires access to the vehicle’s internal state, from driver inputs to software outputs, to
accurately identify driver anomalies which limits monitoring.

Monitoring Surrounding Traffic For autonomous perception and planning, many systems monitor
surrounding vehicles to predict the driver’s state or agent’s future motion. In (15), a dataset of
anomalies is generated, and a detector is trained on images to identify anomalous scenes. In (16),
the eyesight of other drivers is used to predict lane change intent. (17) use eye-gaze observations to
predict inattention for collision avoidance.

Instead of predicting the driver’s state or driving behavior, trajectory predictors predict future
trajectories directly. (18) use an LSTM to predict acceleration profiles and compare to classic driver
models such as the intelligent driver model (IDM). They evaluate on the NGSIM Highway dataset
comparing predicting vehicle position and actual position. (19) uses a graph-based LSTM to predict
dynamically feasible trajectories for robots navigating around multiple agents. In both examples,
robots and agents act nominally without failures present. In addition, predicting entire trajectories
during rare failures may not be necessary or possible, especially without explicitly modeling whether
a failure is occurring.

Infrastructure-based Systems Intelligent intersection managers can be used to both observe
traffic participants and direct drivers to prevent collisions. (20; 21) discuss various approaches for
monitoring intersections. In (22), multi-camera views are fused to predict incoming traffic for an
intersection. (23) uses an LSTM to predict driver intention at intersections. In both, datasets that
typically only experience nominal driving behavior are used, and rarely capture dangerous driving
behaviors. In (24), a deep Bayesian network is used to predict driver intentions at intersections and
validated with field experiments.

Once a dangerous driver is detected, an intelligent intersection manager should actively warn oncom-
ing traffic of dangers. (25) use a simulator to validate a collision detection algorithm for cross traffic
at intersections. For preventing collisions, (26) propose a hybrid scheduler-controller to provide
provably safe intersections and in (27), a supervised intelligent reservation manager modifies existing
reservations in the presence of catastrophic failures. In (28; 29), full-scale cars are deployed on
closed courses to evaluate human driver acceptance of V2I recommendations. However, given the
inherent dangers with full-scale testing of failure modes at intersections, previous work have been
deployed either purely in simulation (27) or deployed with nominal driving behaviors (28). In this
work, we deploy on real hardware in a miniaturized city (Fig. 1c) with multiple autonomous vehicles
of various driving behaviors. This allows us to train and deploy reckless drivers using a physical
platform without similar safety concerns.

B FailureNet

We propose a learning-based approach, FailureNet, which relies purely on external pose information
of each vehicle for detecting vehicle failures.

Model Architecture Our goal is to learn a function approximator

ẑt = f (Xt ;θ) (1)

8

Figure 4: FailureNet Model Architecture

where ẑt is the predicted state of the vehicle and Xt is the sequence of poses starting from pt to pt−L.
In general, individual approximators may be deployed for each vehicle j, ẑ j,t however, for the purpose
of this work, we consider estimating the status of a single vehicle and drop j for simplicity.

An end-to-end autoregressive modeling framework (Fig. 4) can be deployed to learn a proper
representation from spatio-temporal input observations. To do this, we parameterize a recurrent
neural network (RNN) with the following states update rule:

ht = gRNN(pt ,ht−1) (2)

where ht ∈ Rnh is the hidden state of dimension nh, and gRNN is the non-linearity of the model.

We decode the hidden state through an encoder-decoder architecture, where the hidden state of
the RNN compartment at the end of the input sequence, hT , is decoded to output predictions via a
multi-layer perceptron f (·), as follows:

ŷt = f (hT) (3)

The decoded hidden state is then passed through a sigmoidal output layer:

ẑt = σ(yt) (4)

where σ(·) is a logistic sigmoid function and ẑt ∈ (0,1) corresponding to 0 = Sa f e, 1 =Unsa f e.

During training, we utilize a binary cross-entropy (BCE) loss function constructed as follows:

L (zt , ẑt) = zt log(ẑt)+(1− zt) log(1− ẑt). (5)

where zt are the ground truth labels for whether a planning or actuation failure is occurring.

Choice of the Recurrent Neural Networks To encode input sequences, we can use gated recur-
rent neural networks such as the long short-term memory (LSTMs) (30) or gated recurrent units
(GRUs) (31). Moreover, recent advances in end-to-end sequence modeling frameworks in robotics
environments (32; 33; 34) showed the intriguing representation learning capabilities of a new class
of continuous-time neural networks called liquid time-constant networks (LTCs) (35). LTCs are
nonlinear state-space models (36) that are described by ordinary differential equations (ODEs) (37)
or in closed-form (38) and are reduced to dynamic causal models (39), a framework through which
the system can learn the cause-and-effect of a given task (34).

We use the closed-form representation of liquid neural networks, named a closed-form continuous-
time neural network (CfC), as a baseline in our work to equip FailureNet with the state-of-the-art
sequence modeling pipeline. CfC cells are given by the following representation (38):

ht =σ(− f (ht−1,Xt ;θ f)t)⊙g1(ht−1,Xt ;θg1)+

[1−σ(−[f (ht−1,Xt ;θ f)]t)]⊙g2(ht−1,Xt ;θg2).

Here, f , g1, and g2 are three neural network heads with a shared backbone, parameterized by
θ f ,θg1 ,andθg2 , respectively. Xt is the exogenous input to the network, t stands for input time-stamps,
and ⊙ is the Hadamard product.

9

C Baselines

We implement non-RNN baselines to benchmark the performance of the RNN failure estimators.
The baselines include two thresholds based on filtering the input, a Kalman Filter, and a multi-layer
perceptron (MLP).

Speed Threshold The vehicle speed is computed based on previous L poses and a threshold is
computed based on either the average or max speed. We compute an estimate ẑ = 1

L ∑
L
i st ≥ S̄ or

ẑmax = maxst where st = ||x2
t + y2

t ||1/2. We iterate over possible thresholding values and choice of
maximum or average speed, and choose a threshold that maximizes overall validation accuracy.

Fast Fourier Transform (FFT) Power Threshold For noisy inputs, we first compute the FFT of
the trajectories, to distinguish between noise profiles applied at the steering and speed. We compute
the one-dimensional FFT of the vehicle yaw and select the higher-order modes for thresholding,
ω2 . . .ωL/2. We choose a threshold on the maximum or average spectral power (P(ωk) = |ωk|2) of the
sequence, by searching through possible thresholds P̄ which produces the highest validation accuracy.

Kalman Filter A Kalman filter is also applied to noisy vehicle trajectories to evaluate the failure of
the trajectory. To be specific, the failure is evaluated by setting a threshold δκ to the measurement post-
fit residual of the Kalman filter, which is absolute distance between the observation and filter predicted
position. The Kalman state is in dimension 6, which includes 3-dimensional position/orientation and
corresponding velocities. The optimal threshold δκ is 0.2, which was found by grid search.

Multi-Layer Perceptron (MLP) We explore three different multi-layer perceptrons (MLP) with
varying inputs to classify the failure state. We tune a standard MLP to determine the number of
hidden layers, dimension, and dropout to maximize accuracy with the input being a concatenation
of the poses in the previous L timesteps. We train two additional networks, with the same MLP
architecture, but add a pre-filter at the network input which computes either the speeds st or FFT of
the inputs ωk.

10

	Introduction
	Problem Statement
	Failure Modes

	Training and Deploying in a 1/10th Scale Autonomous City
	Results
	Related Works
	FailureNet
	Baselines

