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Abstract

We introduce the first work to explore web-scale diffusion models for robotics.
DALL-E-Bot enables a robot to rearrange objects in a scene, by first inferring a text
description of those objects, then generating an image representing a human-like
arrangement of those objects, and finally physically arranging the objects according
to that image. Our implementation achieves this zero-shot using DALL-E, without
any further data collection or training. Strong real-world results with human studies
show that this is an exciting direction for future generations of robot learning
algorithms. We propose a list of recommendations to the community for further
developments in this direction. Videos: https://www.robot-learning.uk/dall-e-bot.
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Figure 1: The robot prompts DALL-E with the list of objects it detects, which generates an image with
a human-like arrangement of those objects. The robot then rearranges the scene via pick-and-place.

1 Introduction

Diffusion models such as DALL-E [1] have recently shown an astonishing ability to generate high-
quality images from text prompts, through unsupervised training on millions of captioned images
from the web [2]–[4]. Previous breakthroughs in web-scale foundation models have been applied
successfully to robotics [5]–[7]. In this work, we explore the following question: How can web-scale
image diffusion models such as DALL-E be used for robotics?

Since these models can generate realistic images of everyday scenes such as kitchens and offices, our
insight is that they are proficient at imagining arrangements of everyday objects which are human-like:
semantically correct, aesthetically pleasing, physically plausible, and convenient to use. Therefore,
we consider that they could be used to generate goal images for generic object rearrangement tasks
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[8], such as setting a table, loading a dishwasher, tidying a room, stacking a shelf, and assembling
furniture. Most prior methods for predicting the goal state (i.e. a set of goal poses for each object)
require manually collecting a dataset of examples for how a scene should be arranged [9]–[19]. Our
proposed framework predicts how to arrange a given scene without requiring this data collection,
which restricts most existing methods to a specific set of objects and scenes. Further analysis of prior
work can be found in Appendix A.

In this paper, we propose DALL-E-Bot, the first method to use web-scale image diffusion models for
robotics. We design a framework which takes an image of the initial, unorganised scene, uses DALL-E
to imagine a human-like goal image for that scene, and creates the corresponding object arrangement
with a real robot (Fig. 1). Experiments show that this can be applied to several everyday rearrangement
tasks to create arrangements which are satisfactory to humans. Additionally, we find that DALL-E’s
inpainting feature can precisely predict the poses of missing objects in a scene, conditioned on the pre-
placed objects. Furthermore, we present a discussion of the method’s limitations in Appendix K, and
in Appendix L we propose ideas for future web-scale diffusion models to maximise their usefulness
for robotics.

Using web-scale image diffusion models for predicting rearrangement goal states has several strengths.
First, this is a zero-shot transfer of the DALL-E model to the object rearrangement task, because it
uses the publicly available DALL-E without any additional data collection or training. Second, this is
an open-set method: it is not restricted to a specific set of objects, because of the web-scale training
of DALL-E. Third, this rearrangement pipeline is autonomous: the robot does not require human
supervision at any stage, such as to provide a goal image or language-based instruction.

There are also benefits on the metrics of inclusivity and trustworthiness. First, DALL-E’s web-scale
training covers images from many different cultures and arrangement preferences. In our experiments,
we evaluate on participants who identify culturally with 18 different nationalities across 6 continents.
Results show that DALL-E-Bot can accurately auto-complete arrangements made by users with
varying preferences. Second, this is a safe robotic rearrangement approach because the models are
pre-trained offline, avoiding potentially unsafe environment interaction which could damage people,
objects, or the robot. Third, the DALL-E-Bot method is a modular, interpretable pipeline. The target
poses of the objects can be displayed (as shown in Fig. 2), and then this arrangement can be checked
for safety programmatically or by a human supervisor, before the robot begins physical execution.

2 Method

We address the problem of predicting the goal state of a rearrangement task, i.e. a goal pose for each
object, such that the objects are arranged in a natural and human-like way. The method must predict
this goal state from a single RGB image II of the initial scene. We achieve this through a modular
approach shown in Fig. 2. At the heart of our method is a web-scale image diffusion model DALL-E
2 [1], which generates high-quality variations of images IG with human-like object arrangements
using a language description of the scene y extracted from the initial observation.
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Figure 2: An overview of our method’s pipeline.
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First, we need to convert an initial RGB observation into a more relevant object-level representation to
reason about the objects in the scene and their arrangement. We do so by constructing a representation
that consists of text captions of crops of individual objects ci in the scene together with their
segmentation masks Mi and visual-semantic feature vector vi acquired using the CLIP model [20].

We use text captions ci to automatically construct a text prompt containing a list of the objects in
the scene. We also append the term "top-down" so that DALL-E generates images from the same
perspective as the initial image captured by a camera mounted on a robot’s wrist pointing downwards
better. In addition, we generate an image mask IM that prevents DALL-E from altering the pixels
corresponding to the contours of stationary objects (i.e. an object that the robot is not allowed to
move) and tabletop edges to avoid objects being generated on the edge of the image.

We generate several images with the goal arrangement by sampling a conditional distribution
pθ(IG|y, IM ) represented by a web-scale text-to-image diffusion model DALL-E 2 [1]. We convert
generated images into object-level representations and filter out the ones that do not contain the same
number of objects as the initial scene. From the remaining images, we select the one that minimises
the cost of the linear sum assignment problem (Hungarian matching) between the visual-semantic
feature vectors in the initial and generated images.

Using Iterative Closest Point (ICP) [21], we then register corresponding segmentation masks to obtain
transformations that need to be applied to the objects to achieve the goal arrangement. To account for
possible size differences for the same object in initial and generated images, we move objects closer
together or further apart, but do not allow them to collide. Finally, we convert these transformations
from image to Cartesian space using a depth camera observation and deploy a real Franka Emika
Panda robot equipped with a suction gripper to arrange the objects. More detailed explanations of
each component in our method can be found in Appendices B-E.

3 Experiments

3.1 Zero-Shot Autonomous Rearrangement

In our experiments, we evaluate the ability of our method to create human-like arrangements using
both subjective (Section 3.1) and objective (Section 3.2) metrics. First, we explore the following
question: can DALL-E-Bot arrange a set of objects in a human-preferred way?
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Figure 3: Examples of scenes arranged by the robot via different methods. Columns for the methods
that use DALL-E include an image of the generated image (left) and the final arrangement (right).

We evaluate on 3 everyday tabletop rearrangement tasks: dining, office, and fruit (Fig. 3). The robot
should arrange the objects in a human-like way while considering the poses of fixed objects (the
iPad and the fruit basket). Further setup details are in Appendix G. Since DALL-E-Bot is the first
method to predict goal states for rearrangement zero-shot, we need to design baselines which are also
zero-shot for a fair comparison. We use heuristic baselines and variants of DALL-E-Bot, detailed in
Appendix H.
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Method Dining Scene Office Scene Fruit Scene Mean
Rand-No-Coll 2.03±1.34 3.56±2.01 2.94±2.01 2.84
Geometric 4.08±2.27 3.36±2.01 3.13±1.82 3.52
DALL-E-Bot-NF 3.87±2.78 6.54±2.34 7.45±3.19 5.95
DALL-E-Bot-AR 4.88±2.61 7.37±2.05 9.59±0.90 7.28
DALL-E-Bot 8.01±2.03 7.56±2.02 9.81±0.52 8.46

Table 1: User ratings for the arrangements made by each
method. Each figure represents the mean and standard
deviation across all users and scene initialisations.

As we aim to create human-preferred
arrangements, we evaluated by show-
ing human participants images of the
final scene created by the robot. Partic-
ipants were asked: “If the robot made
this arrangement for you at home, how
happy would you be?”, with ratings on
a Likert Scale from 1 (very unhappy) to
10 (very happy). We recruited 40 par-
ticipants representing 18 nationalities,
both male and female, with ages ranging from 22 to 71. Each rated the results of 5 methods on 5
random initialisations of 3 scenes, for a total of 3000 ratings. Results are in Table 1. DALL-E-Bot
beats the heuristic baselines, showing that people value semantic correctness over simple geometric
alignment. DALL-E-Bot also consistently beats its variants in all of the evaluation scenes, justifying
our design decisions. For a detailed analysis, please see Appendix J.

3.2 Placing Missing Objects with Inpainting

In the next experiment, we use objective metrics to answer the question: can DALL-E-Bot precisely
complete an arrangement which was partially made by a human? For this, we ask DALL-E-Bot
to find a suitable pose for an object that has been masked out from a user-made scene. We use the
dining scene because it has the most rigid structure for semantic correctness and thus is most suitable
for quantitative, objective evaluation. To create these scenes initially, we recruited ten participants
(both left and right-handed) and asked them the following: “Imagine you are sitting down here for
dinner. Can you please arrange these objects so that you are happy with the arrangement?”. As there
can be multiple suitable poses for any single object in the scene, we asked the users to provide any
alternative poses of each object individually that they would still be happy with while keeping other
objects fixed. We show example arrangements in Appendix I.

Fork Plate Spoon Knife
Method cm / deg cm / deg cm / deg cm / deg
DALL-E-Bot 4.95 / 1.26 1.28 / - 2.13 / 2.72 2.1 / 3.27
Geometric 15.59 / 40.57 2.29 / - 23.83 / 86.11 11.58 / 1.47
Rand-No-Coll 25.85 / 70.32 10.78 / - 27.47 / 42.56 23.51 / 99.32

Table 2: Position and orientation errors between pre-
dicted and user-made object poses. Median is pre-
sented across all users.

We start with the image of the arrangement
made by a user, and mask out everything ex-
cept the fixed objects. The method must
then predict the pose of the missing ob-
ject. DALL-E-Bot does this by inpainting
the missing object somewhere in the image.
For a given user, the predicted pose for the
missing object is compared against the ac-
tual pose in their arrangement. This is done
by aligning two segmentation masks of the
missing object, one from the actual scene and one at a predicted pose. Since this is for two poses of
exactly the same object instance, we find the alignment is highly accurate and can be used to estimate
the error between the actual and predicted pose. From this transformation, we take the orientation
and distance errors projected into the workspace as our metrics. This is repeated for every object
as the missing object, and across all the users. We compare our method to two heuristic baselines,
detailed in Appendix H. In Table 2, we report the medians of translation and rotation errors to the
closest placement of each object from the ones each separate user provided as being acceptable.
DALL-E-Bot outperforms the heuristic baselines, and is able to accurately place the missing objects
with a small error across the different users. This implies that it is successfully conditioning on the
placement of the other objects in the scene using inpainting, and that the human and robot can create
an arrangement collaboratively.

3.3 Conclusions

We have introduced the first method to use web-scale diffusion models for robotics. DALL-E-Bot
enables interpretable, zero-shot object rearrangement in everyday scenes. This is an exciting direction
for web-scale robot learning algorithms, and in Appendix L, we make several recommendations to the
community for how to further develop text-to-image models when targetting robotics applications.
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A Related Work

A.1 Predicting Goal Arrangements

We now highlight prior approaches to predicting goal poses for rearrangement tasks. Some methods
view the prediction of goal poses as a classification problem, by choosing from a set of discrete options
for an object’s placement. For house-scale rearrangement, a pre-trained language model can be used
to predict goal receptacles such as tables [22], and out-of-place objects can be detected automatically
[17]. At a room level, the correct drawer or shelf can be classified [10], taking preferences into
account [11]. Lower-level prediction from a dense set of goal poses can be achieved with a graph
neural network [13] or a preference-aware transformer [14]. Our framework generates high-resolution
images of how objects should be placed, thus not requiring a set of discrete options to be pre-defined,
and providing more precise guidance than with language-based methods.

Learning to predict continuous object poses can be done using example arrangements by encoding
spatial preferences with a graph VAE [12], or using an autoregressive language-conditioned trans-
former [15], or by learning gradient fields [23]. Other methods use full demonstrations [5], [16], or
leverage priors such as human pose context [9]. When the goal image is given, rearrangement is
possible even with unknown objects [24]. However, unlike these works, our proposed framework
does not require collecting and training on a dataset of rearrangement examples, which often restricts
these methods to a specific set of objects and scenes. It also does not require a human user to complete
the rearrangement task themselves in order to provide a goal image. Instead, exploiting existing
web-scale image diffusion models enables zero-shot, autonomous rearrangement.

A.2 Web-Scale Diffusion Models

Generating images with web-scale diffusion models such as DALL-E is at the heart of our method.
Diffusion models [25] are trained to reverse a single step of added noise to a data sample. By starting
from random noise and iteratively running many of these small, learned denoising steps, this can
generate a sample from the learned distribution of data. These models have been used to generate
images [26]–[28], text-conditioned images [1]–[4], robot trajectories [29], and audio waves [30].
We use DALL-E 2 [1] in this work, although our framework could be used with other text-to-image
models.

B Object-Level Representation

To reason about the poses of individual objects in the observed scene, we need to convert the initial
RGB observation into a more functional, object-level representation. We use the Mask R-CNN
model [31] from the Detectron2 library [32] to detect objects in an image and generate segmentation
masks {Mi}ni . This model was pre-trained on the LVIS dataset [33], which has 1200 object classes,
being more than sufficient for many rearrangement tasks. The Mask R-CNN model provides us with
object bounding boxes, their segmentation masks and class labels. However, while bounding box and
segmentation mask predictions are usually high-quality (regardless of the predicted class), and can be
used for pose estimation (described in Section E), the assigned class labels are often incorrect due to
the large number of classes in the training dataset.

As we are using text labels of objects in the scene (described in Section C) to construct a prompt
for an image diffusion model, it is crucial for these labels to be accurate and descriptive. Instead of
directly using predicted object class labels, we pass RGB crops of each object individually through
the OFA image-to-text captioning model [34] and acquire a text description of the objects in the initial
scene observation {ci}ni . Generally, this approach allows us to more accurately predict object class
labels and go beyond the objects in the training distribution and even obtain their visual characteristics
such as colour, material and shape.

Finally, we also pass each object crop through a CLIP visual model [20], giving each object a
512-dimensional visual-semantic feature vector vi. These features will be used later for matching
objects between the initial scene image and the generated image. Thus we have converted an initial
scene RGB observation II into an object-level representation of the scene {Mi, ci, vi}ni , with a
segmentation mask, a text caption, and a semantic feature vector for each object.
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C Goal Image Generation

Our method relies on the ability to generate images of natural and human-friendly arrangements
given their language descriptions. To this end, we heavily utilise the recent advances in text-to-image
generation using web-scale diffusion models. Specifically, we use the DALL-E 2 [1] model from
OpenAI. It was trained on a vast number of image-caption pairs from the Web, and represents the
conditional distribution pθ(IG|y, IM ). Here, IG is an image generated by the model, y is a text
prompt, and IM is an image mask that can be used to prevent the model from changing the values of
certain pixels in the image. A large portion of distribution pθ represents images with scenes arranged
by humans in a friendly and usable way. Therefore, by sampling this distribution, we can generate
images representing our desired scenes and realise the object arrangements by matching the object
poses in them. Additionally, the ability to condition this distribution on image mask IM allows us to
tackle scenarios where not all objects in the scene need to or can be moved by the robot.

We first need to construct a text prompt y describing the desired scene. To this end, we use object
captions from our object-level representation. Although full captions, including their visual character-
istics, could be used to generate images with identical objects in the scene, in this work, we only use
the nouns describing the object’s class and leave including visual characteristics for future work. We
extract the class of each object from the caption of its object crop, i.e. we extract “apple” from “a
red apple on a wooden table”. We do this by passing the object captions through the Part-of-Speech
tagging model [35] from the Flair NLP library [36], which tags each word as a noun, a verb, etc.
From this list of classes, we construct a prompt that makes minimal assumptions about the scene
to allow DALL-E to arrange it in the most natural way. This work deals with tabletop scenes with
initial observations captured by a camera mounted on a robot’s wrist pointing downwards. Therefore,
we added a “top-down” phrase to the prompt to better align the initial and generated images. We
have also found that it reduces the frequency of generated images with unusual, artistic camera
perspectives. An example prompt we use would be “A fork, a knife, a plate, and a spoon, top-down”.

We use the ability to condition distribution pθ on image masks in three ways. First, if there are
objects in the scene that a robot is not allowed to move, we add their contours to IM . This prevents
DALL-E from generating these objects in different poses while still allowing for other objects to be
placed on top or in them (e.g. a basket can not be moved, but other objects can be placed inside it).
Secondly, we add a mask of the tabletop’s edges in our scene to IM to visually ground the generated
images. This prevents objects from being placed on the edge of the generated image and incentivises
DALL-E to create objects of appropriate sizes. Finally, we subtract enlarged segmentation masks of
all the movable objects from IM to avoid any shadows. The latter is essential, as if DALL-E sees
any shadows of objects in their original poses, it will generate objects in the same poses to match the
shadows, hindering the method’s performance.

Using the prompt y and the conditional mask IM , we sample a batch of images from the conditional
distribution pθ(IG|y, IM ), represented by the text-to-image model. We do so using an automated
script and OpenAI’s web API.

D Image Selection & Object Matching

In the batch of generated images, not all will be desirable for the rearrangement task: some may have
artefacts which make object detection difficult, others may contain the wrong number of objects, etc.
We need to select the generated image IG which best matches the real-world initial image II .

For each generated image, we obtain segmentation masks and a CLIP semantic feature vector for
each object using the same procedure as in Section B. We filter out generated images with the wrong
number of objects, compared to the initial scene. Then, we match the objects in the generated image
to the objects in the initial image. This is non-trivial since the generated objects are different instances
to the real objects, with a very different appearance. Inspired by [37], a similarity score between any
two objects (one from II , and one from IG) is computed using the cosine similarity between their
CLIP feature vectors. Since greedy matching is not guaranteed to yield optimal results in general, we
use the Hungarian Matching algorithm to compute an assignment of each object in the live image to
an object in the generated image, such that the total similarity score is maximised. Then we select the
generated image IG which has the best overall score with the initial image II . This image contains

9



the most similar set of objects to the real scene, and so that arrangement is most likely to transfer
well to the real objects.

E Object Pose Estimation

For each object in the initial image, we now know its segmentation mask in the initial image and
the corresponding segmentation mask in the generated image. By aligning these masks, we can
estimate a transformation from the initial pose (in the initial image) to the goal pose (in the generated
image). We rescale each initial segmentation mask, such that the dimensions of its bounding box
equal those in the generated image, and then use the Iterative Closest Point algorithm [21] to align
the two masks, taking each pixel to be a point. This gives us a 3-DoF (x, y, θ) transformation T in
pixel space between the initial and goal pose. We run ICP from many random initial poses, to handle
local optima. For symmetric objects such as knives, aligning binary masks with ICP leads to two
candidate solutions, differing by 180-degrees. To select the correct solution (handle aligned with
handle, blade aligned with blade), we pass the generated object image oG and the transformed real
object image T (oI) through a semantic feature map extractor fS (an ImageNet-trained ResNet [38],
[39]). We select the ICP solution T which minimises the photometric loss between the semantic
feature maps: LS = (fS(oG)− fS(T (oI)))

2.

The scale of the objects in the generated image can be significantly different to the initial image,
leading to the predicted arrangement resulting in collisions, or being unnaturally spaced out. There-
fore, we adjust the poses of the objects in the scene based on the size difference of objects between
the initial and generated images. We move all the objects closer to or further from the one with the
minimum cumulative distance to all the other ones. Additionally, if collisions occur in the found
arrangement, we move objects away from the central one until there are no more collisions.

Next, we use a wrist-mounted depth camera to project the pixel-space poses into 3D space on the
tabletop, to obtain a transformation for each object which would move it from the initial real-world
pose to the goal real-world pose. Finally, the robot executes these transformations by performing a
sequence of pick-and-place operations using a suction gripper.

F Robot Execution

Although the core of our contribution is predicting target poses for objects, we also construct a
pick-and-place robot pipeline to evaluate our framework in the real world. For each object, the robot
arm grasps the object in its initial pose, and moves it to its target pose, performing a rotation of θ in
between, to achieve the target orientation. The robot’s motion is calculated using Inverse Kinematics
and interpolating Cartesian end-effector poses between a series of waypoints that move the robot
to pre − grasp, grasp, pre − place, and place poses. We define pre − grasp and pre − place
poses as being 15 centimetres higher than the grasp and place poses, respectively. If end-effector
motion in a linear Cartesian path is not possible due to kinematic or collision constraints, we use the
RRT-Connect [40] motion planner to find a collision-free path between the waypoints.

We sample many possible pick and place orientations for the gripper, and select one which satisfies
kinematic and motion planning constraints. A grasping primitive is used for objects, to allow
rearrangement with our suction gripper set-up. Most objects are grasped by their centre of mass,
but if the eccentricity of their masks exceeds a threshold (i.e. they are elongated like cutlery), then
they are grasped by the handle instead. The handle part of an object is determined from the principal
axis of its mask, by choosing the object’s “tail” using the skew of the mask. Grasping is not a
core contribution of this paper, so for more difficult objects or cluttered environments the grasping
primitive can be replaced with more complex methods [41]–[43]. If these transforms were executed
naively, then an object being placed into its goal pose may collide with another object still in its initial
pose. Therefore, we check for collisions before performing the pick-and-place actions, and move
objects out of the way first if required to intermediate slots on the side of the table, outside the image.
After the other objects have been placed, the robot also places the objects still in the intermediate
slots into their target poses, thus completing the rearrangement and realising the generated image in
the physical world.
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G Evaluation Setup

The dining scene involves four objects (a knife, a fork, a spoon, and a plate), and a robot should be
able to arrange them so that a user would be happy seeing said arrangement when sitting down for a
meal. The office scene includes a stationary object (a display) and three movable objects (a keyboard,
a mouse and a mug). The arrangement of movable objects should be natural and useable with respect
to the stationary object that a robot cannot move. Finally, the fruit basket scene contains two apples
and an orange, as well as a stationary basket. This scene is challenging because it requires reasoning
about the spatial relations between the fruits and the basket, and because the fruit in the generated
images is often densely packed partially occluding the basket. The rearrangements are executed on a
Franka Emika robot equipped with a compliant suction gripper. We record the outcome as an RGB
image of a tabletop captured by RealSense D435i mounted on the wrist of the robot.

H Baselines

H.1 Zero-Shot Autonomous Rearrangement

Since DALL-E-Bot is the first method to predict arrangements zero-shot, we devised additional
training-free methods as baselines, which can create arrangements that are natural to humans in
our evaluation scenes. The Rand-No-Coll arrangement strategy arbitrarily places objects in the
environment while ensuring they do not overlap. The Geometric baseline puts all the objects in a
horizontal line such that they are not colliding, and the longer side of the object-oriented bounding
box is aligned with the y-axis. In addition, we compare our method DALL-E-Bot to two different
variants. DALL-E-Bot-NF (no filtering) does not filter generated images and always uses the first
DALL-E generated image. If the image has fewer objects than the live scene, unmatched objects
are placed randomly, ensuring there are no collisions. DALL-E-Bot-AR creates an arrangement in
an auto-regressive way by moving one object at a time (from biggest to smallest) and treating it as
a fixed object in the next iteration. The arrangement is created progressively around real objects.
Therefore, it does not adjust the poses of the objects based on the size mismatch and does not reject
generated images with a wrong number of objects. Examples of DALL-E generated images and
achieved arrangements during autoregressive steps in our evaluation scenes can be seen in Fig. 4-6.
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Figure 4: An example of DALL-E-Bot-AR execution in the Dinning Scene.
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Figure 5: An example of DALL-E-Bot-AR execution in the Office Scene.
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Figure 6: An example of DALL-E-Bot-AR execution in the Fruit Scene.

H.2 Placing Missing Objects with Inpainting

Hand-designed baselines (Rand-No-Coll and Geometric) aim to place the missing object in a geomet-
rically pleasing way based on the poses of other objects in the scene.

The Rand-No-Coll approach places the missing object arbitrarily in the workspace, ensuring it does
not collide with the fixed objects. The Geometric baseline places the object on a line defined by
centroids of segmentation maps of two fixed objects while also matching the alignment of the closest
object.
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The distribution of acceptable poses is multimodal, which can cause significant errors if a method
finds a mode not selected by the user. Therefore, we present the median across all users, which is less
dominated by outliers than the mean, so it is a better representation of the aggregate performance.

I User-Provided Arrangements for Inpainting

Figure 7: Example arrangements made by users for the inpainting experiment.

In the inpainting experiment, we ask users to create example arrangements so that methods can
predict the poses of masked-out objects. In Fig. 7, we visualise several of the example arrangements
provided by users. Even for a scene with as much semantic structure as a dining table, there is still
significant variation in how users arrange this scene, due to their national cultural background or
personal preferences. This shows that the methods benefit from conditioning on the placement of
the pre-placed objects in order to place the missing object correctly. It also justifies our evaluation
methodology for handling this multi-modal distribution, where we ask the users to provide several
example placements for an object if they consider them all acceptable, and methods should predict
any of these to achieve a low error.

J Experimental Results Discussion

J.1 Zero-Shot Autonomous Rearrangement

Looking at the user studies results presented in Table 1 in the main paper, we can see that DALL-E-
Bot receives higher user scores, showing that it can create satisfactory arrangements even without
task-specific training. Note that DALL-E has likely never seen these specific object instances before.
DALL-E-Bot beats the heuristic baselines, showing that users do care about semantic correctness
for arranging scenes beyond just geometric alignment, and justifying the use of web-scale learning
for capturing these subtle semantic arrangement rules. This is especially evident in the fruit scene,
where DALL-E recognises the semantic connections between fruit and a fruit basket. Since it has
seen many paintings and photographs of fruit in fruit baskets, it successfully predicts that this is a
natural goal state. Examples of generated images used by DALL-E-Bot can be seen in Fig. 8.

Out of the considered DALL-E-Bot variants, DALL-E-Bot-NF performed consistently the worst in
all of the evaluation scenes. This justifies our sample-and-filter approach for using these web-scale
models, rather than blindly using the first generated image. In this way, DALL-E-Bot automatically
selects an arrangement which the robot can feasibly create with the objects in front of it. Examples of
undesirable generations by the DALL-E-Bot-NF variant can be seen in Fig. 9.

The DALL-E-Bot-AR variant performed well in the office and fruit scenes but struggled to create
human-preferable arrangements in the dining scene. The dining scene contains a larger number of thin
movable objects that are more susceptible to pose estimation and execution errors. The autoregressive
approach observes imperfectly placed objects and tries to place the remaining ones in a similar way.
Due to this, the error accumulates in each autoregressive step resulting in an arrangement that is
imprecise and less semantically correct. DALL-E-Bot avoids this issue by jointly predicting all object
poses in advance.
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Figure 8: Examples of generated images used by DALL-E-Bot.
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Figure 9: Examples of DALL-E generated arrangements which the robot cannot easily recreate with
the objects that it has in the real world. Therefore, we adopt a sample-and-filter approach for using
these web-scale generative models. This lets the robot choose an arrangement which is physically
feasible and where the generated objects most resemble those that robot has in the real world.

J.2 Quantitative Evaluation

As we can see from Table 2, the considered baselines struggle with finding correct placements for the
missing object. This shows that it is challenging to design a heuristic method for this task without
overfitting to one specific scene or object, and motivates our approach of learning these semantics
from many images of human-made arrangements. On the other hand, DALL-E-Bot can consistently
infer the preferred pose of the missing object by only observing the fixed objects. Note that each
component in the pipeline will contribute to the end-to-end error, e.g. due to imperfect segmentation
or pose estimation. Since our method is modular, it is easy to swap in another component, e.g. a more
powerful pose estimator if object models are available, and decrease the error in this way. Problems
like instance segmentation are independent and active areas of research: as new state-of-the-art
models are developed, they can easily be integrated into our method to improve its performance.
Additionally, this experiment motivates the use of image generation, instead of simply searching for
existing images of arranged objects. This search approach would not adequately take into account the
poses of the pre-placed objects already in the scene, so is not applicable to this task. On the other
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hand, inpainting with diffusion models can take into account the poses of pre-placed objects, leading
to a more practically useful rearrangement system.

K Limitations & Opportunities for Future Work

Here, we discuss the limitations of this method to help researchers decide whether it is well-suited
for their use-case, and propose a range of intriguing directions for future work.

Personal preferences. If objects placed by the user are visible in the inpainting mask, DALL-E
may infer the user’s implicit preferences (e.g. left/right-handedness) in order to place the remaining
objects to create a coherent arrangement. However, when no objects are pre-placed by the user, then
the arrangement made by the robot will likely resemble those arrangements which are commonly
found in web data, and this may not align with the user’s preferences. Future work could extend to
conditioning on preferences inferred from previous scenes arranged by the user [12], in order to cater
to the user’s preferences without requiring them to begin the rearrangement themselves.

Top-down pick-and-place. Our experiments focus on 3-DoF rearrangement tasks, which is sufficient
for many everyday tasks. However, future work can extend to 6-DoF poses with more complex
interactions, e.g. to stack shelves. This could draw from recent works on collision-aware manipulation
[43] and learning of skills beyond pick-and-place [44].

Object-centric framework. Our method reasons about pose transformations to solve everyday
rearrangement tasks. Thus, as individual components (e.g. segmentation, pose estimation) improve,
overall performance will also improve. However, some tasks, such as folding deformable fabrics or
sweeping small particles, are not within this method’s scope.

Neural network explainability. In our framework, DALL-E is used to generate an image containing
an object arrangement. This is an interpretable goal state, as the user can see what the robot will
try to achieve. However, suppose that the user wants an explanation of why an object is going to be
placed in a certain way. Future work can explore making these web-scale models more explainable
via interactions with users, e.g. using techniques from language modelling.

Overlap between objects. Currently, our method assumes that movable objects cannot overlap, so
the fork cannot go on top of the plate. To handle this, the robot would need to use task planning to
stack objects in the correct order. At the start of the rearrangement, the robot could spread out all the
objects on the table to reduce occlusions as it detects all the objects it needs to arrange.

Robustness of cross-domain object alignment. We use pre-trained semantic features from ImageNet,
inspired by [45], to align real and generated objects using semantic feature maps. However, the
generated images sometimes lack detail: e.g. the generated keyboards lack legible text, making
alignment difficult. As the quality of diffusion-generated images continues to improve, this issue will
be mitigated.

Diffusion model accessibility. We use the public-facing interface for DALL-E from OpenAI.
Although this is a paid API, there are already diffusion models such as Stable Diffusion [4] which
are freely available and can be used for inference in seconds on a consumer-grade GPU. As more
diffusion models become widely available, it will be feasible for any research lab or company to
apply these diffusion models in their robotics setup.

Prompt engineering. Adding terms such as “neat, precise, ordered, geometric” for the dining scene
improved the apparent neatness of the generated image. As found in other works [46], there is
significant scope to explore this further. This could be used to increase the rate of semantically
suitable arrangements being generated, since the desired image is more clearly specified to the
diffusion model.

Language-conditioned generation. One exciting direction for future work is generating arrange-
ments based on language instructions. These can easily be added to the text prompt, e.g. “plates
stacked” vs “plates laid out”. Generating images which match these prompts containing spatial
relations may prove challenging, since prior work [47] has shown that DALL-E finds it difficult
to bind textual relations to objects reliably. However, this may be overcome with future diffusion
models. Note also that our method does not rely on specifying spatial relations through text, so this
does not present a limitation of the current method, but this is nevertheless an important research
problem for future work.
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L Recommendations to the Text-To-Image Community

As this is the first work to explore web-scale diffusion models for robotics, we now provide our
findings on the strengths and limitations of existing diffusion models for robotics, with the aim of
guiding the text-to-image community when targetting applications to robotics.

Everyday scenes in training datasets. We found that Stable Diffusion [4] trained on LAION-
Aesthetics is proficient at generating aesthetically pleasing images, but the DALL-E training approach
may be better suited for robotic applications, because the training dataset includes a significant
amount of “ordinary" images and stock photographs. Taking this further, training only on everyday
scenes could be important for robotics.

Batch sampling and rejection. Many of the generated images are not suitable as goal images (e.g.
wrong number of objects). We found that the best results came from sampling larger batches and
designing an algorithm to reject invalid samples. Diffusion model systems and tools which allow for
automated rejection based on the text prompt could be useful.

Visual conditioning. Rather than just conditioning on language descriptions of objects to be
generated, it would be useful to condition on image features of the real objects, but still allow the
diffusion model to arrange them differently. This would help with aligning objects between the real
and generated images, to estimate the required pose transformation. Textual inversion [48] can likely
be used to make the generated objects better match the real instances.

Outpainting. We found that objects are frequently generated at the image edge and only partially in
view, making pose estimation more difficult. Outpainting, a tool which is already available in some
text-to-image models including DALL-E, can help with this.

Guidance scale. Some interfaces (e.g. Stable Diffusion [4]) allow a trade-off between image realism
and text prompt adherence. This is useful for robotics, since generating images that adhere to the text
prompt is much more important than generating attractive or photorealistic images.
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