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Abstract

Modern robots require accurate forecasts to make optimal decisions in the real
world. For example, self-driving cars need an accurate forecast of other agents’
future actions to plan safe trajectories. Current methods rely heavily on historical
time series to accurately predict the future. However, relying entirely on the ob-
served history is problematic since it could be corrupted by noise, have outliers, or
not completely represent all possible outcomes. We propose a novel framework
for generating robust forecasts for robotic control to solve this problem. To model
real-world factors affecting future forecasts, we introduce the notion of an adver-
sary, which perturbs observed historical time series to increase a robot’s ultimate
control cost. Specifically, we model this interaction as a zero-sum two-player game
between a robot’s forecaster and this hypothetical adversary. We show that our
proposed game may be solved to a local Nash equilibrium using gradient-based op-
timization techniques. Furthermore, a forecaster trained with our method performs
30.14% better on out-of-distribution real-world lane change data than baselines.

1 Introduction

Robots deployed in the real world rely on accurate forecasts of the future to make reliable decisions
amidst uncertainty. For example, an autonomous vehicle must forecast the trajectory of cars in an
adjacent lane in order to decide when and how to change lanes. Current methods such as [1]–[3] rely
heavily on historical time series to accurately predict the future. However, completely relying on
the observed history is problematic since it could be corrupted by sensor noise, have outliers, or not
completely represent all possible outcomes. Current practices, such as collecting more targeted data
or adding random noise to existing data, are expensive or not reflective of important outliers.

We propose a novel framework for generating robust forecasts for optimal decision-making in robotics.
In our system, the forecaster observes historical time series data and makes a prediction which a
controller uses to determine optimal future actions. To model real-world factors affecting future
forecasts, we introduce a notion of an adversary, which perturbs the historical time series, leading
to inaccurate forecasts. As such, the forecaster and adversary play a game where the adversary
tries to maximize its reward by perturbing the forecaster’s input, while the forecaster minimizes its
cost by performing well on the adversarially perturbed inputs. Motivated by this observation, our
contributions are as follows. Contributions: First, we formulate the problem of robust forecasting
for optimal control as a two-player, zero-sum game and show it reaches local Nash equilibrium (LNE).
Second, we show that our robustly-trained forecaster achieves a 30.14% better performance on
out-of-distribution real-world lane change data than baseline forecasters.
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Figure 1: Motivating Example: The ego vehicle
(white) needs to plan its future trajectory given histori-
cal observations of the other vehicle (bold yellow line).
Other highlighted yellow lines show several possible tra-
jectories for the blue car, some resulting in faster or even
unsuccessful lane changes. Even though the ego vehicle
forecaster observes only a single scenario (bold yellow
line), it needs to be robust to other possible outcomes.

Related works can be categorized into two main
sub-categories. 1) Forecasting Models: [4]–[13].
These works either do not account for outliers
in the data or consider robustness to adversarial
distribution shifts. 2) Robust Optimization and
adversarial training: [14]–[20]. Most of these
works focus on robust control or vision models;
however, they do not consider the downstream
implications on control performance for robotic
decision problems. We discuss related works in
detail in Section 4.1.

2 Problem and Approach

Forecaster: The forecaster, f : Rp×H →
Rp×F , maps the time series of past H measure-
ments, denoted by sH , to a time series of future
F measurements, denoted by ŝF . The hat nota-
tion, ŝ, denotes predicted values of the forecaster, and sF denotes the ground-truth time series. The
forecaster is a learned module parameterized by θf ∈ Θf . To simplify notation, we use bold variables
to define the full-time series, i.e., the time series of past H measurements as sH.

Controller: The control policy π : Rn × Rp×F → Rm maps the state of system, xt ∈ Rn,
and time series of future F measurements, sF, to an optimal control ut ∈ Rm. We denote the
state and control constraint sets by X and U , respectively. The robot dynamics, g, are given by:
xt+1 = g(xt, ut),∀t ∈ {0, . . . , T − 1}. In practice, given a possibly perturbed forecast ŝF, it will
enact a control denoted by ût = π(xt, ŝF; θc), which depends on the forecaster parameters θf via the
forecast ŝF. The main objective is to minimize the control cost JC , which depends on initial state
x0 and controls û0:T−1. The control cost JC is a sum of stage costs c(xt, st, ût) and terminal cost
cT (xT , sT ), i.e., JC(û;x0, s) =

∑T−1
t=0 c(xt, st, ût) + cT (xT , sT ).

Adversary: To account for the measurement noise in the inputs of the forecaster and improve
generalization to out-of-distribution data, we introduce an adversary. The adversary is defined as
the map a : Rp×H → Rp×H , which takes as input the time series of past H measurements, sH,
and outputs an adversarially perturbed version of the past H measurements denoted as sadv

H . The
adversary is parameterized by θa ∈ Θa. To restrict the adversary’s power, we penalize the adversary
quadratically for large perturbations: ∥sH − sadv

H ∥22.

Overall Cost: First, the adversary (with parameters θa) perturbs the historical time series, sadv
H , given

the actual history of time series sH, sadv
H = a(sH; θa). Then, the forecaster observes the adversary’s

perturbed history, sadv
H , and predicts the system’s future state: ŝF = f(sadv

H ; θf ). Finally, given the
predicted forecast ŝF we calculate the corresponding optimal controls: û = π (x0, ŝF; θc). Similarly,
we calculate the optimal controls: u = π (x0, sF; θc), for the ground-truth forecast sF.

Thus equipped, we calculate the overall cost (1). The first term calculates the additional cost incurred
by using predicted forecasts ŝF instead of true forecast sF. This term models the change in states x and
controls u given the errors in predicting the future time series. The second term ∥sF− ŝF∥22 penalizes
deviations of the forecaster’s future time series predictions and the ground-truth forecast. The third
term ∥sH − sadv

H ∥22 controls the adversary’s power by penalizing it for making large perturbations.
The hyper-parameters λf and λa control the relative importance of the respective costs:

J (·) = JC (û;x0, sF)− JC (u;x0, sF) + λf∥sF − ŝF∥22 − λa∥sH − sadv
H ∥22. (1)

For clarity, we introduce the following compact notation for this cost—J (θf , θa) is the final overall
cost J (u, û, sF, ŝF;x0) with fixed parameters θf and θa. The total cost depends on the controller
and forecaster parameters via controls u and û and the forecast sF. We now formalize the problem.

Problem 1 (Adversarially-Robust Control). Given a forecaster f and an adversary a, we aim to find
a saddle point (min and max order does not matter) of the following problem:
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min
θf

max
θa

J (θf , θa) (2a)

subject to : sadv
H = a(sH; θa), ŝF = f(sadv

H ; θf ), (2b)
û = π (x0, ŝF; θc) , u = π (x0, sF; θc) . (2c)

In Problem 1, the adversary is trying to maximize the overall control cost (2a) by perturbing the
original past H measurements, sH (2b). In contrast, the forecaster is trying to minimize the overall
cost, (2a), by forecasting the future F measurements, ŝF (2b). Intuitively, this problem captures
how to find a forecaster that is robust to adversarial perturbations for the purposes of reliable robotic
decision-making. All components operate in discrete time steps t for a horizon of T steps.

2.1 Robust Forecasting Game Characterization

We observe that Problem 1 is a two-player, zero-sum game, and seek both forecaster and adversary
parameters that are in equilibrium. We characterize the Robust Forecasting Game as follows: Player 1
(Forecaster): The forecaster’s goal is to predict relevant future system states, despite perturbations of
the history by the adversary. In the lane changing example of Fig. 1, this future state is the upcoming
trajectory of the blue car. As such, the forecaster seeks parameters θ∗f which minimize the overall
cost in Problem 1 despite worst-case adversarial parameter selection, θ∗a. Player 2 (Adversary): The
adversary’s goal is to provide a perturbed history to the forecaster such that the predicted future time
series by the forecaster incurs a higher overall cost. In particular, for any fixed choice of forecaster
parameter θf , it seeks parameters θa which maximize the overall cost in Problem 1, J (·, θf ).
A global Nash equilibrium (GNE) [14, Def. 2.1] is a point in the space of game strategies where both
players cannot change their strategies without achieving a less favorable outcome. A LNE [21, Def.
1] is a point in the space of strategies where this property need only hold within a small neighborhood.
LNEs are characterized by first- (Prop. 1) and second-order (Prop. 2) optimality conditions.

Training the Models: In this work, we use feedforward neural networks to represent the forecaster
and adversary models. Due to the nonconvexities in overall cost J , we can at best guarantee that
our proposed game will reach a LNE. More precisely, [22] demonstrates that stochastic gradient
descent methods do not necessarily converge to LNE in zero-sum games, but [23] proposes a new
second-order gradient update rule that does guarantee convergence to a LNE if one exists. However,
due to the complexities and speed limitations of the second-order gradient update method, we follow
standard practices in high-dimensional optimization and resort to an adaptive first-order method
such as ADAM [24]. Since we do not use the theoretically-motivated second-order method of [23],
we check the first- and second-order conditions of Propositions 1 and 2 to ensure that we have
found a LNE. The forecaster and adversary are trained via alternating gradient steps using the whole
training dataset. We repeat this process until convergence, and subsequently, check the necessary and
sufficient conditions of LNE to check if the converged parameters θ∗f and θ∗a constitute a LNE.

3 Experiments

We now evaluate our method on lane-change data from an autonomous driving scenario with human
participants [5]. The experiment aims to demonstrate the forecaster trained using our proposed method
will be robust to Out-of-Distribution (OoD) data. Models: Both the forecaster and adversary are
NN models with two fully connected layers and ReLU activations. Differentiable Model Predictive
Control (MPC): In our experiment, the control policy π is the solution map of a differentiable MPC
problem with quadratic costs and linear constraints, discussed in detail in Section 4.3.1.

Datasets and Benchmark Algorithms: We compare various forecasters trained on the following
datasets, which we call training schemes: 1) ORIGINAL: The forecaster is only trained on Dtrain

orig . 2)
DATA ADDED: We add more training examples from the same distribution as the original training
dataset, denoted by Dtrain

add . This tests whether more examples can improve performance. 3) RANDOM:
We apply zero-mean Gaussian noise with unit variance at each time step to the original training data.
The perturbed dataset is denoted by Dtrain

rand , and we re-train the task model on Dtrain
rand ∪ Dtrain

orig . 4)
ROBUST (Ours): We use our proposed method to train the forecaster. For a fair comparison, the
DATA ADDED, RANDOM, and ROBUST schemes add the same number of new training examples to
the original training dataset. The datasets are further defined in detail in Section 4.3.2.
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Figure 2: Benefits of game-based training

Lane-Change Forecasting: In our experiment Fig. 2, the forecaster’s (a NN) goal was to predict the
ego vehicle’s (white car) future trajectory to complete a successful lane change, given the history of
states of both cars (blue and white). To model the measurement noise and uncertainty around the other
car’s decision-making, we restricted the adversary (a NN) to only be able to perturb the other car’s
(blue) observed historical time series. Exact implementation details are described in Section 4.3.3.
The training dataset for all schemes contained low-speed lane change scenarios (≤ 35m s−1). In
order to evaluate the generalization capabilities of the training schemes, we compared the training
schemes on a OoD test dataset consisting of high-speed lane change scenarios (≥ 35m s−1). The
OoD dataset represents scenarios not seen in the training but which are still possible in the real world,
and therefore our forecaster should be robust to them.

Results: Figure 2 shows the overall cost for all schemes on test datasets. The key takeaways from
our experiments are as follows: 1) All forecasters perform similarly on the original test data. The
DATA ADDED (orange )scheme’s best performance is expected because it is trained on more original
data than the other schemes. 2) Our trained adversary generates challenging scenarios. We run
the final trained adversary with final parameters θ∗a on the held-out original test dataset to generate
unseen adversarial scenarios, which form the synthetic adversarial test dataset. The poor performance
of all training schemes on the synthetic adversarial test dataset confirms that the adversary has learned
perturbations that are hard for the forecaster, leading to higher control costs. However, our ROBUST
scheme (red) performs significantly better since it was trained to anticipate such unseen perturbations.
3) Our ROBUST scheme performs 30.14% better compares to RANDOM on naturally occurring
OoD test dataset. The results show that our ROBUST training scheme can learn robustness to
adversarial and OoD scenarios. The RANDOM scheme can generalize better to OoD data but cannot
match our ROBUST scheme’s performance since the random perturbations are relatively benign
compared to the targeted scenarios generated by our algorithm.

Qualitative Results: In Fig. 2 (right), we demonstrate our method’s performance on two OoD lane
change scenarios. Specifically, we show trajectories that are forecasted by models trained using
the ORIGINAL (blue), RANDOM (green), and ROBUST (red) training schemes given the historical
time series. None of the training schemes were exposed to this OoD scenarios at train time. The
ground-truth trajectories are shown as dotted lines. All the forecasters were given the same historical
time series (time series before the car locations) of both cars to predict the future time series of the
ego vehicle. The control cost JC of each forecasted trajectory is shown in the legend. While the
ORIGINAL and RANDOM training schemes cannot correctly predict the ego-vehicle future trajectory,
our ROBUST training scheme can correctly predict the ego-vehicle future trajectory and has the
lowest control cost. The performance of our ROBUST training scheme highlights how our game
formulation helps the forecaster generalize better to OoD scenarios.

Future Work: In our experiments, we considered a simpler case where we did open-loop planning for
both agents in the lane-change scenarios. In future work, we will model each agent’s outputs as a
distribution in order to explicitly account for multiple possible outcomes and formulate the problem
as a stochastic partial information dynamic game [14, Sec. 6.4].
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4 Appendix

4.1 Related Works

Forecasting: Forecasting ego-vehicle trajectories is primarily studied via data-driven and probabilistic
techniques. Data-driven trajectory forecasting approaches, such as [4], [6]–[9], treat both single and
multi-trajectory forecasting problems within a framework of temporal regression, using models such
as Long-Short Term Memories (LSTMs) [25] and Transformers [26]. These methods typically do not
account for outliers in the dataset or OoD scenarios. In contrast, probabilistic forecasting models
such as [5], [10]–[13] output a distribution of possible future trajectories, and can thus account for
outliers and multimodality. Still, these techniques have difficulty generalizing to OoD scenarios
since the distributions they learn are based only upon fixed training data. In particular, none of these
approaches consider robustness to adversarial distribution shifts.

Adversarial Machine Learning for Control: Adversarial modeling is widely studied in the context
of robust control and decision making [14]–[17]. For example, the introduction of an adversary to
improve a machine learning model’s robustness and generalization capabilities is commonly studied
in vision and classification tasks such as [18]–[20]. However, existing works in robust machine
learning do not consider the downstream implications on control performance for robotic decision
problems. Works which do study adversarial attacks in control systems consider settings in which
control decisions are directly perturbed by adversarial inputs [27], [28]. They do not consider a
more general setting in which inputs are provided to a forecaster which then invokes an internal
model-based controller, as we consider in this work. Additionally, [29] design adversarial attacks
which increase a cost metric as well as violate state and control constraints. However, they did not
study how to exploit these adversarial attacks to design an improved, robust decision process for
robotic applications with a forecaster and a model-based controller.

Game Theory: Learning in noncooperative settings such as games exposes significant challenges
regarding convergence, stability of desired solutions, etc. For example, these problems are well
known in the context of generative adversarial networks [30], which are notoriously difficult to train
[31]. However, recent advances in numerical game theory [22], [23], [32]–[36] provide important
steps forward on several of these fronts. In particular, these algorithmic advances ensure that local
equilibrium solutions to the games considered in this work can be found reliably.

4.2 Preliminaries

Proposition 1 (First-order Necessary Condition). [21] Assuming J is differentiable, any local Nash
equilibrium satisfies ∇θfJ (θf , θa) = 0 and ∇θaJ (θf , θa) = 0.

Proposition 2 (Second-order Sufficient Condition). [21] Assuming J is twice-differentiable, any
local Nash equilibrium satisfies ∇2

θfθf
J (θf , θa) ⪰ 0, and ∇2

θaθa
J (θf , θa) ⪯ 0.

4.3 Experiments

4.3.1 Differentiable Model Predictive Control (MPC)

In our experiment, the control policy π is the solution map of an MPC problem with quadratic
costs and linear constraints. The forecaster provides the MPC controller with a future time series
forecast ŝF to track and the current state, x0. We use linear dynamics, g, in our MPC formulation.
Specifically, we used second-order linear dynamics for the lane-change experiment. The stage
cost c(xt, st, ût) and terminal cost cT (xT , sT ) in the control cost JC are quadratic in the state xT

and controls ûT . Specifically, the terminal cost is cT (xT , sT ) = (xT − sT )
⊤
Q (xT − sT ) and

the stage cost is c(xt, st, ût) = (xt − st)
⊤
Q (xt − st) + ût

⊤Rût, where Q and R are positive
definite matrices. The robot actuator constraints which are described by intervals along each axis, i.e.
umin ≤ ut ≤ umax. Likewise, we presume that states are also constrained to lie within an axis-aligned
box: xmin ≤ xt ≤ xmax. While training the forecaster and the adversary, we require gradients of
the control policy with respect to the forecaster and the adversary parameters. To do so, we use
the CVXPYLAYERS Pytorch library [37], which allows us to backpropagate derivative information
through convex optimization problems and thereby train both the forecaster and adversary end-to-end.
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4.3.2 Dataset

In the experiment, the time series forecasts are a tensor instead of a vector. For example, the historical
time series is sH ∈ RN×p×H , where N is the number of individual time series, p is the dimension,
and H is the horizon of the time series. We collect several examples of these time series tensors in a
dataset, which we use to train the forecaster and the adversary. A dataset contains N tuples of inputs
x and labels y denoted by D = {(x, y)}Ni=1. In each tuple, x = {sH, x0} and y = (sF). From these,
the forecaster predicts a future time series ŷ ≡ ŝF. The subscript b in the dataset Da

b indicates the
type of dataset, such as whether it is original or adversarially generated. Likewise, the superscript a
indicates if the dataset is from the train or test distribution.

4.3.3 Lane Change Forecaster

Now, we demonstrate our method’s real-world applicability on a challenging lane change dataset [38]
used to train self-driving policies. This dataset contains 1105 human-human interactive lane change
trials from over 19 volunteer drivers in a driving simulator. The drivers had to swap lanes with each
other within 135m of a straight road. The state of each vehicle is xt = [px, py, vx, vy] ∈ R4, where
px and py are the 2-D position of the car in meters and vx and vy are the 2-D velocity of the car in
ms−1. The control variable is ut = [ax, ay] ∈ R2, where ax and ay are the 2-D acceleration of the
car in ms−2. Each scenario begins with initial conditions drawn randomly. Our training dataset is of
size N = 500, and the test dataset is of size N = 100.

The forecaster’s goal was to predict the ego vehicle’s future trajectory to complete a successful lane
change, given the history of states of both cars. The historical time series is of horizon H = 20
and the future time series of horizon F = 20. As such, the forecaster’s history time series tensor is
sH ∈ R500×8×20, since it contains the history of the time series of both cars. The forecaster’s future
time series tensor is sF ∈ R500×4×20. To model the measurement noise and uncertainty around
the other car’s decision-making, we restricted the adversary to only be able to perturb the other
car’s observed historical time series. Therefore, the adversary took the other car’s historical state
trajectory as input and generated an adversarially perturbed history for that car. The adversary’s
historical time series tensor is sH ∈ R500×4×20, since it contains the historical time series of only
the other car. For the train and test datasets, we used state trajectories with vx, vy ≤ 35m s−1.
The control policy π tracks the predicted future trajectory from the forecaster with a quadratic cost
function. Additionally, A ∈ Rn×n, B ∈ Rn×m matrices in g follow second-order linear dynamics
and Q ∈ Rn×n, R ∈ Rm×m matrices in the state cost are identity matrices. For the OoD dataset
Dtest

ood , we used real state trajectories with vx, vy > 35m s−1. The OoD dataset represents scenarios
not seen in the training distribution but is still possible in the real world, and therefore our forecaster
should be robust to them. Both hyperparameters λf and λa were set to 10.0 and were chosen
experimentally to balance forecaster performance with control performance while also allowing
significant adversarial perturbations.

Experiment Procedure In our experiment, the forecaster is initialized with pre-trained parameters
on the original train dataset using the mean-squared error loss between the predicted forecasts, ŝF,
and the ground-truth forecasts, sF. In both experiments, the forecaster and adversary are trained via
alternating gradient steps, using the whole training dataset. As such, first, the forecaster makes a
prediction from the perturbed history generated from the adversary and updates its parameters θf .
Then, the adversary predicts the new perturbed history, uses the updated forecaster parameters to
calculate the overall cost J and updates its parameters θa. We repeat this process until convergence,
and subsequently check the necessary and sufficient conditions of LNE given in Propositions 1 and 2
to check if the converged parameters θ∗f and θ∗a constitute a LNE.
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