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Abstract
We present a framework for improving on Model-Predictive Control (MPC) with
model-free reinforcement learning (RL). The key insight is to view MPC as constructing
a series of local Q-function approximations using an approximate dynamics model. We
show that by using a parameter λ, similar to the trace decay parameter in TD(λ), we can
systematically trade-off learned value estimates against the local Q-function approxima-
tions. We present a theoretical analysis that shows how errors from the two sources can
be balanced and validate our approach on challenging high-dimensional manipulation
tasks with biased models in simulation. Project website: https://bit.ly/33K2CK6

1 Introduction
Model-free RL is increasingly used in challenging sequential decision-making problems including
high-dimensional robotics control tasks [4, 12] as well as games [9, 14, 15]. While these approaches
can theoretically solve complex problems with little prior knowledge, they also typically require a large
quantity of training data to succeed. In robotics and engineering domains, data may be collected from
real-world interaction, a process that can be dangerous, time-consuming, and expensive.

MPC offers a more practical alternative. While RL typically uses data to learn a global model offline,
which is then deployed at test time, MPC solves for a policy online by optimizing an approximate model
for a finite horizon at a given state. This policy is then executed for a single timestep and the process
repeats. MPC is one of the most popular approaches for control of complex, safety-critical systems [1, 16],
owing to its ability to use approximate models to optimize complex cost functions and constraints [8, 7].

However, model bias in MPC may result in persistent errors that eventually compound and become
catastrophic. For example, in non-prehensile manipulation, practitioners often use a simple quasi-static
model that assumes an object does not roll or slide away when pushed. For more dynamic objects, this can
lead to aggressive pushing policies that perpetually over-correct, eventually driving the object off the surface.

Recently, there have been several approaches to combine MPC with model-free RL by learning a terminal
cost function via RL, thereby increasing the effective horizon of MPC [18, 6, 2]. However, the learned
value function is only applied at the end and model errors would still persist in the horizon. In this paper,
we focus on a broader question: can machine learning be used to both increase the effective horizon of
MPC, while also correcting for model bias?

One straightforward approach is to try to learn (or correct) the model from real data. However,
hand-constructed models are often crude-approximations of reality and lack the expressivity to represent
encountered dynamics. Moreover, increasing the complexity of such models leads to computationally
expensive updates that can harm MPC’s online performance. Model-based RL approaches [3, 10, 13]
aim to learn general neural network models directly from data. However, learning globally consistent
models suffers from covariate shift issues [11].

We propose a framework, MPQ(λ), for weaving together MPC with learned value estimates to trade-off
errors in the MPC model and approximation error in a learned value function. Our key insight is to
view MPC as tracing out a series of local Q-function approximations. We can then blend each of these
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Q-functions with value estimates from reinforcement learning. We show that by using a blending parameter
λ, similar to the trace decay parameter in TD(λ), we can systematically trade-off errors between these two
sources. Moreover, by smoothly decaying λ over time we can achieve the best of both worlds - a policy
can depend on a prior model before it has encountered any data and then gradually become more reliant
on learned value estimates with experience. We present theoretical analysis of finite-horizon planning
with approximate models and value functions and empirically evaluate our approach on challenging
manipulation problems with varying degrees of model-bias.

2 Preliminaries
2.1 Reinforcement Learning
We consider an infinite-horizon discounted Markov Decision Process (MDP) defined by a tuple
M=(S,A,c,P,γ,µ) where S is the state space,A is the action space, c(s,a) is the per-step cost function,
st+1∼P(·|st,at) is the stochastic transition dynamics and γ is the discount factor. µ(s0) is a distribution
over initial states and policy π(·|s) is a distribution over actions given state. Let µπM be the distribution
over state-action trajectories obtained by running policy π onM. The value function for a given policy
π, is defined as V πM(s) = EµπM

[∑∞
t=0γ

tc(st,at) |s0=s
]

and the action-value function as QπM(s,a) =

EµπM
[∑∞

t=0γ
tc(st,at) |s0=s,a0=a

]
. The objective is to find an optimal policy π∗=argmin

π
Es0∼µ[V πM(s0)].

We can also define the (dis)-advantage functionAπM(s,a)=QπM(s,a)−V πM(s) , which measures how good
an action is compared to the action taken by the policy in expectation. It can be equivalently expressed
in terms of the Bellman error asAπM(s,a)=c(s,a)+γEs′∼P,a′∼π[QπM(s′,a′)]−Ea∼π[QπM(s,a)] .

2.2 Model-Predictive Control
Instead of trying to solve for a single, globally optimal policy, MPC optimizes simple, local policies online.
At every encountered state, MPC uses an approximate dynamics model to search for a parameterized
policy that minimizes cost over a finite horizon. An action is sampled from the policy and executed on
the system. The process is repeated from the next state, often by warm-starting the optimization from
the previous solution.

We formalize this process as solving a simpler surrogate MDP M̂= (S,A,ĉ,P̂ ,γ,µ̂,H) online, which
differs fromM by using an approximate cost function ĉ, transition dynamics P̂ and limiting horizon to
H. Due to finite H, a terminal state-action value function Q̂ that estimates the cost-to-go is used. The
start state distribution µ̂ is a dirac-delta function centered on the current state s0=st. MPC can be viewed
as iteratively constructing an estimate of the Q-function of the original MDPM, given policy πφ at state s:

QφH(s,a)=E
µ
πφ
M

[
H−1∑
i=0

γiĉ(si,ai)+γ
HQ̂(sH,aH) |s0=s,a0=a

]
(1)

MPC then iteratively optimizes it (at system state st) to update the policy parameters
φ∗t =argmin

φ
QφH(st,πφ(st)). Alternatively, we can view the above from the perspective of disadvantage

minimization. Let A(si,ai)=c(si,ai)+γQ̂(si+1,ai+1)−Q̂(si,ai) be an estimator for the 1-step disad-
vantage with respect to Q̂. We can equivalently write the above optimization as minimizing the discounted
sum of disadvantages via the telescoping sum trick as argmin

π∈Π
E
µ
πφ
M

[
Q̂(s0,a0)+λ

∑H−1
i=0 γ

iA(si,ai) |s0=st
]
.

Although this queries the Q̂ at every timestep, it is still exactly equivalent to (1) and hence, does not
mitigate the effects of model-bias. Next, we build a concrete method to address this by formulating a
way to blend Q-estimates from MPC and a learned value function that can balance their respective errors.

3 Mitigating Bias in MPC via Reinforcement Learning

The performance of MPC algorithms critically depends on the quality of the estimatorQφH(s,a). There
are three major sources of approximation error - (1) Model-bias causes compounding errors in predicted
state trajectories, (2) the error in the terminal value gets propagated back to the Q-estimate at the start,
and (3) a small H makes the algorithm myopic.We provide a formal bound on the performance of the
policy with approximate models and approximate learned value functions in Theorem A.2 in Appendix
A.1, where we see that the model error increases with horizonH while the learned value error decreases
withH indicating that there is an optimal planning horizonH∗ that minimizes the bound (derivation in
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Appendix A.1.3). In practice, model and value function errors are unknown making it impossible to setH
toH∗. Instead, we propose a strategy to blend the Q-estimates from MPC and the learned value function
at every timestep along the horizon, such that we can properly balance the different sources of error.

3.1 Blending Model Predictive Control and Value Functions
A naive way to blend MPC Q-estimates with learned Q-estimates would be a convex combination of the two

(1−λ)Q̂(s,a)︸ ︷︷ ︸
model-free

+λQφH(s,a)︸ ︷︷ ︸
model-based

(2)

where λ∈ [0,1]. Here, the value function contributes to a residual added to the MPC output [5]. However,
this is solution is rather ad hoc. Why invoke the value function at only at the first and last timestep?
As the value function gets better, it should be useful to invoke it at all timesteps. Instead, consider the
following recursive formulation for the Q-estimate. Given (si,ai), the state-action encountered at horizon
i, the blended estimateQλ(si,ai) is expressed as

Qλ(si,ai)︸ ︷︷ ︸
current blended estimate

=(1−λ)Q̂(si,ai)︸ ︷︷ ︸
model-free

+λ(ĉ(si,ai)︸ ︷︷ ︸
model-based

+γQλ(si+1,ai+1)︸ ︷︷ ︸
future blended estimate

) (3)

The recursion ends atQλ(sH,aH)=Q̂(sH,aH). In other words, the current blended estimate is a convex
combination of the model-free value function and the one-step model-based return, which in turn uses
the future blended estimate. Note unlike (2), the model-free estimate is invoked at every timestep. We
can unroll (3) in time to show QλH(s,a), the blended H−horizon estimate, is simply an exponentially
weighted average of all horizon estimates

QλH(s,a)=(1−λ)
H−1∑
i=0

λiQφi (s,a)+λ
HQφH(s,a) (4)

where Qφk(s,a)=E
µ
πφ
M

[∑k−1
i=0 γ

iĉ(si,ai)+γ
kQ̂(sk,ak) |s0=s,a0=a

]
is a k-horizon estimate. When

λ=0, the estimator reduces to the just using Q̂ and when λ=1 we recover the original MPC estimate
QH in (1). For intermediate values of λ, we interpolate smoothly between the two by interpolating all
H estimates. (4) can be implemented efficiently by switching to the disadvantage formulation by applying
a similar telescoping trick

QλH(s,a)=E
µ
πφ
M

[
Q̂(s0,a0)+

H−1∑
i=0

(γλ)iA(si,ai)

]
(5)

This estimator has a similar form as the TD(λ) estimator for the value function used for bias-variance
trade-off. However, our blended estimator aims trade-off bias in dynamics model with bias in learned
value function. We derive a critical λ∗ that minimizes performance bound in Appendix A.1.4.

Why use blending λwhen one can simply tune horizonH? First,H limits the resolution we can tune since
it’s an integer – asH gets smaller the resolution becomes worse. Second, the blended estimatorQλH(s,a)
uses far more samples. Even if both QλH and QφH∗ had the same bias, the latter uses a strict subset of
samples as the former. Hence the variance of the blended estimator will be lower, with high probability.

4 The MPQ(λ)Algorithm
We develop a simple variant of Q-Learning, called Model-Predictive Q-Learning with λ Weights
(MPQ(λ)) that learns a parameterized Q-function estimate Q̂θ. Our algorithm, presented in Alg. 1 in
Appendix A.2, modifies Q-learning to use blended Q-estimates as described in (5), for both action selection
and generating value targets. At timestep t, MPQ(λ) uses H-horizon MPC from the current state st to
optimize parameters of a greedy policy πφ w.r.t blended Q-estimator in (5)

φ∗t =argmin
φ

E
µ
πφ
M

[
Q̂θ(s0,a0)+

H−1∑
i=0

(γλ)iA(si,ai) |s0=st

]
(6)

An action sampled from the resulting policy is then executed on the system. Periodically, the parameters
θ are updated via stochastic gradient descent using mini-batches of experience tuples sampled from the
replay buffer and the H-horizon MPC with blended Q-estimator from (6) is again invoked to calculate
the targets. Refer to Appendix A.2 for full details.

MPC with the blended Q-estimator and an appropriate λ generates more stable Q-targets than usingQθ or
MPC with a terminal Q-function alone. We also slowly decay λ over time. Intuitively, in the early stages of
learning, the bias in Q̂θ dominates and hence we want to rely more on the model. A larger λ is appropriate
as it up-weights longer horizon estimates. Conversely, as Q̂θ improves, a smaller λ is favorable.
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(a) Fixed λ
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(b) Fixed v/s Decaying λ

0 5 10 15 20 25
Validation Iteration

1000

900

800

700

600

500

400

300

200

Av
er

ag
e R

ew
ar

d

Validation rewards

MPPIH64(true),
MPPIH64(biased)

F = 0.5
F = 0.55
F = 0.6
F = 0.65
F = 0.7
F = 0.75
F = 0.8
F = 0.85
F = 0.9
F = 0.95

PPO
PPO (asymptotic)

(c) λ decay withH=64
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(d) λ decay withH=32

Figure 1: CARTPOLESWINGUP experiments. Curves show rewards averaged over 30 validation episodes and 3 seeds. Training steps=100k, Validation
freq=4k. When decaying λ, it is frozen during validation. λF is the λ at the end of training. Shaded region is standard deviation of MPPI reward.
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(a) CARTPOLESWINGUP

0 5 10 15 20
Validation Iteration

0

500

1000

1500

2000

2500

3000

Av
er

ag
e R

ew
ar

d

Validation rewards

MPPIH32(true),
MPPIH32(b = 0.6)
MPPIH32(b = 0.8)
MPPIH32(b = 1.0)
b = 0.6
b = 0.8
b = 1.0
PPO
PPO (asymptotic)

(b) INHANDMANIPULATION
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(c) SAWYERPEGINSERTION

Figure 2: Robustness and sample efficiency of MPQ(λ). (a) Varying bias over mass of cart and pole. (b) Varying bias over mass, inertia and friction
of pen (c) Peg insertion with noisy perception. Same factor b is used for all altered properties. Results averaged over 30 validation episodes. In (a) λ
is decayed in [1.0,0.75] and [1.0,0.85] in (b), (c)

5 Experiments
We evaluate MPQ(λ) on simulated robot control tasks (Appendix Fig.1) with a biased version of
simulation used as the dynamics model for MPC. (1) CARTPOLESWINGUP: masses are set lower than
the true values to make MPC persistently input smaller controls than desired, (2) SAWYERPEGINSERTION:
Effects of inaccurate perception are tested by simulating a noisy position sensor at the target with MPC
using a deterministic model, (3) INHANDMANIPULATION: mass, inertia and friction coefficients of the
pen are set larger causing MPC policies to be overly aggressive. (Refer Appendix A.3 for details). Model
Predictive Path Integral Control (MPPI) [17] is used as the MPC algorithm and simulation parameters
are biased using m=(1+b)mtrue, where b is a bias-factor. We consider model-based and model-free
baselines - (1) MPPI + true dynamics and no value function, (2) MPPI + biased dynamics and no value
function (3) Proximal Policy Optimization (PPO) [12].

5.1 Analysis of Overall Performance
O 1. MPQ(λ) is able to overcome model-bias in MPC for a wide range of λ values.
Fig. 1(a) shows a comparison of MPQ(λ) with MPPI using true and biased dynamics with b=−0.5 and
H=64 for various settings of λ. There exists a wide range of λ values for which MPQ(λ) can efficiently
trade-off the model and learned Q-function bias and out-perform MPPI with biased dynamics while
achieving performance comparable to PPO in the limit. However, setting λ to a high value of 1.0 and
0.95, which weighs longer horizons heavily leads to poor performance as compounding effects of model
bias are not being compensated for byQθ.
O 2. Faster convergence can be achieved by decaying λ over time.
As more data is collected on the system, we expect the bias inQθ to decrease, whereas model-bias remains
constant. We decay λ in [1.0,λF ] using a fixed schedule (refer Appendix A.3) to reduce the dependence
on MPC over time. This accelerates convergence than a fixed λ as shown in Fig. 1(b). Figures 1(c) and
1(d) show robustness of MPQ(λ) to a wide range of decay rates withH=64 and 32 respectively. With
true dynamics, MPPI with H=32 outperforms H=64 due to optimization issues with long horizons,
while MPQ(λ) performs comparable with MPPI H=32 and PPO upon convergence.
O 3. MPQ(λ) is robust to large degree of model misspecification.
Fig. 2(a) shows the effects of varying the bias on the mass of the cart and pole. MPQ(λ) outperforms
MPPI (H=64), both with biased and true dynamics, for a wide range of b, and convergence is generally
faster for smaller bias. For large b, MPQ(λ) fails to improve. Similarly, in Fig. 2(b) MPQ(λ) achieves
performance comparable to MPPI with true dynamics for different degrees of bias in properties of the
pen. We conclude that while MPQ(λ) is robust to large amount of model-bias, if the model is extremely
un-informative, relying on MPC can degrade performance making model-free RL the favorable option.
O 4. MPQ(λ) is much more sample efficient compared to model-free RL on high-dimensional continuous
control tasks, even with approximate models
Figures 2(b) and 2(c) show comparison of MPQ(λ) with PPO on the INHANDMANIPULATION and
SAWYERPEGINSERTION tasks respectively. In both cases, MPQ(λ) rapidly improves and achieves
average reward comparable to MPPI with true dynamics, whereas PPO barely improves.
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