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Abstract

Existing solutions to visual simultaneous localization and mapping (V-SLAM)
assume that errors in feature extraction andmatching are independent and identically
distributed (i.i.d), but this assumption is known to not be true – features extracted
from low-contrast regions of images exhibit wider error distributions than features
from sharp corners. Furthermore, V-SLAM algorithms are prone to catastrophic
tracking failures when sensed images include challenging conditions such as
specular reflections, lens flare, or shadows of dynamic objects. To address such
failures, previous work has focused on building more robust visual frontends,
to filter out challenging features. In this paper, we present introspective vision
for SLAM (IV-SLAM), a fundamentally different approach for addressing these
challenges. IV-SLAM explicitly models the noise process of reprojection errors
from visual features to be context-dependent, and hence non-i.i.d. We introduce an
autonomously supervised approach for IV-SLAM to collect training data to learn
such a context-aware noise model. Using this learned noise model, IV-SLAMguides
feature extraction to select more features from parts of the image that are likely
to result in lower noise, and further incorporate the learned noise model into the
joint maximum likelihood estimation, thus making it robust to the aforementioned
types of errors. We present empirical results to demonstrate that IV-SLAM 1) is
able to accurately predict sources of error in input images, 2) reduces tracking
error compared to V-SLAM, and 3) increases the mean distance between tracking
failures by more than 70% on challenging real robot data compared to V-SLAM.

Visual simultaneous localization and mapping (V-SLAM) extracts features from observed images,
and identifies correspondences between features across time-steps. By optimizing the re-projection
error of such features, V-SLAM reconstructs the trajectory of a robot along with a sparse 3D map of
the locations of the features in the world. To accurately track the location of the robot and build a map
of the world, V-SLAM requires selecting features from static objects, and correctly and consistently
identifying correspondences between features. Unfortunately, despite extensive work on filtering out
bad features [1–3] or rejecting unlikely correspondence matches [4–6], V-SLAM solutions still suffer
from errors stemming from incorrect feature matches and features extracted from moving objects.
Furthermore, V-SLAM solutions assume that re-projection errors are independent and identically
distributed (i.i.d), an assumption that we know to be false: features extracted from low-contrast
regions or from regions with repetitive textures exhibit wider error distributions than features from
regions with sharp, locally unique corners. As a consequence of such assumptions, and the reliance
on robust frontends to filter out bad features, even state of the art V-SLAM solutions suffer from
catastrophic failures when encountering challenging scenarios such as specular reflections, lens flare,
and shadows of moving objects encountered by robots in the real world. We present introspective
vision for SLAM (IV-SLAM), a fundamentally different approach for addressing these challenges –
instead of relying on a robust frontend to filter out bad features, IV-SLAM builds a context-aware
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Figure 1: IV-SLAM pipeline during inference.

total noise model [7] that explicitly accounts for heteroscedastic noise, and learns to account for bad
correspondences, moving objects, non-rigid objects and other causes of errors. IV-SLAM is capable
of learning to identify causes of V-SLAM failures in an autonomously supervised manner, and is
subsequently able to leverage the learned model to improve the robustness and accuracy of tracking
during actual deployments.

1 Introspective Vision for SLAM

In visual SLAM, the pose of the camera Tw
t ∈ SE(3) is estimated and a 3D map M ={

pw
k
|pw

k
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}
of the environment is built by finding correspondences in the image

space across frames. For each time-step t, the V-SLAM frontend processes image It to extract features
zt,k ∈ P2 associated with 3D map points pw

k
. The reprojection error of pw

k
onto the image It is defined

as εt,k = zt,k − ẑt,k , where ẑt,k is the prediction of the observation zt,k . The solution to SLAM is
achieved via a nonlinear optimization problem:
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where Σt,k is the covariance matrix associated to the scale at which a feature has been extracted and L
is a robust loss function. IV-SLAM models the observation error distribution to be dependent on
the observations, i.e. z = ẑ(Tw

1:t,M)+ ε̃(z), where ε̃ ∼ φ̃ and φ̃ is a heteroscedastic noise distribution.
Let pφ̃ be the probability density function (PDF) of φ̃, we want pφ̃ ∝ exp(−L), where L ∈ L is a loss
function from the space of robust loss functions. In this paper, we choose L ∈ H ⊂ L, whereH is
the space of Huber loss functions and specifically

Lδ(z)(x) =
{

x if x < δ(z)
2δ(z)(

√
x− δ(z)/2) otherwise

(2)

where x ∈ [0,∞) is the squared error value and δ(z) is an observation-dependent parameter of the
loss function and is correlated with the reliability of the observations. IV-SLAM learns an empirical
estimate of δ(z) such that the corresponding error distribution φ̃ better models the observed error
values. During the training phase, input images and estimated observation error values are used to
learn to predict the reliability of image features at any point on an image. During the inference phase,
a context-aware δ(z) is estimated for each observation using the predicted reliability score, where
a smaller value of δ(z) corresponds to an unreliable observation. The resultant loss function Lδ(z)
is then used in Eq. 1 to solve for Tw

1:t and M. IV-SLAM builds on top of a feature-based V-SLAM
algorithm and is agnostic of the type of image features or the V-SLAM frontend. Fig. 1 illustrates the
IV-SLAM pipeline during inference.

Introspection Function. In order to apply a per-observation loss function Lδ(z), IV-SLAM learns
an introspection function I : I×R2→ R that given an input image It and a location (i, j) ∈ R2 on the
image, predicts a cost value ct i, j ∈ [0,1] that represents a measure of reliability for image features
extracted at It (i, j). Higher values of ct i, j indicate a less reliable feature. I is implemented as a fully
convolutional neural network such that given an input image It , outputs an image of the same size Ict ,
which we refer to as the image feature costmap and ct i, j = Ict (i, j). We use the same architecture as
that used by Zhou et al. [8] for the task of image segmentation.

Self-Supervised Training. IV-SLAM requires a set of pairs of input images and their corresponding
target image feature costmaps {(It, Ict )} to train the introspection function. The training is performed
offline and loose supervision is provided in the form of estimates of the reference pose of the camera
{Tw

t } by a 3D lidar-based SLAM solution [9]. {Tw
t } is only used to flag the frames, at which the

tracking accuracy of V-SLAM is low, so they are not used for training data generation. To collect
the training data, the V-SLAM algorithm is run on the images and at each frame Kt that has been
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recognized as reliable for training data labeling, reprojection error values εt,k are calculated for all
matched image features. A normalized cost value ct,k = εTt,kΣ

−1
t,k
εt,k is then computed for each image

feature, where Σt,k denotes the diagonal covariance matrix associated with the scale at which the
feature has been extracted. The set of sparse cost values calculated for each frame is then converted to
a costmap Ict the same size as the input image. This is achieved using a Gaussian Process regressor
(GP). The generated costmaps along with the input images are then used to train the introspection
function using a stochastic gradient descent (SGD) optimizer and a mean squared error loss (MSE)
that is only applied to the regions of the image where the uncertainty of the output of the GP is lower
than a threshold.

Robust Estimation in IV-SLAM. During inference, input images are run through the introspection
function I, which outputs estimated costmaps Îct . IV-SLAM uses Îct to 1) guide the feature extraction
process and 2) adjust the contribution of extracted features when solving for Tw

1:t and M. First, each
input image is divided into equally sized cells and the maximum number of image features to be
extracted from each cell Ck is determined to be inversely proportional to

∑
(i, j)∈Ck

Îct (i, j), i.e. the
sum of the corresponding costmap image pixels within that cell. Then, extracted features from the
input image are matched with map points, and for each matched image feature zt,k extracted at pixel
location (i, j), a specific loss function Lδ(zt,k ) is generated as defined in Eq. 2. The loss function
parameter δ(zt,k) ∈ [0, δmax] is approximated as 1−ĉt,k

1+ĉt,k δmax, where ĉt,k = Îct (i, j) ∈ [0,1] and δmax is a
positive constant and a hyperparameter that defines the range at which δ(zt,k) can be adjusted. We
pick δmax to be the chi-square distribution’s 95th percentile. Lastly, the tracked features along with
their loss functions are plugged into Eq. 1 and the solution to the bundle adjustment problem are
estimated using a nonlinear optimizer.

2 Experimental Results

In this section we evaluate IV-SLAM in terms of its tracking accuracy and the frequency of its tracking
failures. We implement it on top of the stereo version of ORB-SLAM [10]. We pick ORB-SLAM as
the baseline because it has various levels of feature matching pruning and outlier rejection in place,
which indicates that the remaining failure cases that we address with introspective vision cannot be
resolved with meticulously engineered outlier rejection methods.

Experimental Setup. State-of-the-art vision-based SLAM algorithms have shown great perfor-
mance on popular benchmark datasets such as KITTI and EuROC [11]. These datasets, however, do
not perfectly reflect the many difficult situations that can happen when the robots are deployed in the
wild and over extended periods of time. In order to assess the effectiveness of IV-SLAM on improving
visual SLAM performance, in addition to evaluation on the public EuRoC and KITTI datasets, we
also put IV-SLAM to test on simulated and real-world datasets that we have collected to expose the
algorithm to challenging situations such as reflections, glare, shadows, and dynamic objects. The
real-world dataset consists of more than 7 km worth of trajectories traversed by a Clearpath Jackal
robot equipped with a stereo pair of RGB cameras as well as a Velodyne VLP-16 3D Lidar. The
simulation data is collected in the photo-realistic AirSim simulator and encompasses more than 60 km
traversed by a car in different weather conditions.

Evaluation Metrics. We compare our introspection-enabled version of ORB-SLAM with the
original algorithm in terms of their camera pose tracking accuracy and the mean distance between
tracking failures (MDBF). Both algorithms are run on the test data and their estimated poses of the
camera are recorded. If the algorithms loose track due to lack of sufficient feature matches across
frames, tracking is reinitialized and continued from after the point of failure along the trajectory and
the event is logged as an instance of tracking failure for the corresponding SLAM algorithm. The
relative pose error (RPE) is then calculated for both algorithms at consecutive pairs of frames that are
d meters apart as defined in [12].

Evaluation on KITTI and EuRoC datasets. We perform leave-one-out cross-validation separately
on the KITTI and EuRoC datasets, i.e. to test IV-SLAM on each sequence, we train it on all other
sequences in the same dataset. Tables 1 and 2 compare the per trajectory root-mean-square error
(RMSE) of the rotation and translation parts of the RPE for IV-SLAM and ORB-SLAM in the
KITTI and EuRoC datasets, respectively. The baseline ORB-SLAM does a good job of tracking
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Table 1: Tracking Accuracy in the KITTI
Dataset

IV-SLAM ORB-SLAM

Sequence
Trans. Err.

%
Rot. Err.

(deg/100m)
Trans. Err.

%
Rot. Err.

(deg/100m)
00 0.69 0.25 0.69 0.25
01 1.43 0.22 1.47 0.22
02 0.79 0.22 0.76 0.24
03 0.74 0.19 0.70 0.23
04 0.49 0.13 0.55 0.13
05 0.40 0.16 0.38 0.16
06 0.49 0.14 0.56 0.19
07 0.49 0.27 0.49 0.29
08 1.02 0.31 1.05 0.31
09 0.85 0.25 0.82 0.25
10 0.61 0.26 0.62 0.29
Average 0.77 0.24 0.77 0.25

Table 2: Tracking Accuracy in the EuRoC
Dataset

IV-SLAM ORB-SLAM

Sequence
Trans. Err.

%
Rot. Err.
(deg/m)

Trans. Err.
%

Rot. Err.
(deg/m)

MH1 2.26 0.19 2.42 0.21
MH2 1.78 0.18 1.49 0.16
MH3 3.27 0.18 3.27 0.17
MH4 3.85 0.16 3.49 0.15
MH5 2.98 0.16 3.32 0.18
V1_1 8.93 1.05 8.85 1.06
V1_2 4.38 0.41 4.46 0.39
V1_3 7.85 1.24 14.86 2.35
V2_1 2.92 0.76 4.37 1.39
V2_2 2.89 0.62 2.76 0.59
V2_3 11.00 2.49 12.73 2.39
Average 4.74 0.68 5.64 0.82

Table 3: Aggregate Results for Simulation and Real-world Experiments
Real-World Simulation

Method Trans. Err. % Rot. Err. (deg/m) MDBF (m) Trans. Err. % Rot. Err. (deg/m) MDBF (m)
IV-SLAM 5.85 0.511 621.1 12.25 0.172 450.4
ORB-SLAM 9.20 0.555 357.1 18.20 0.197 312.7

in the KITTI dataset. There exists no tracking failures and the overall relative translational error is
less than 1%. Given the lack of challenging scenes in this dataset, IV-SLAM performs similar to
ORB-SLAM with only marginal improvement in the overall rotational error. While EuRoC is more
challenging than the KITTI given the higher mean angular velocity of the robot, the only tracking
failure happens in the V2_3 sequence and similarly for both ORB-SLAM and IV-SLAM due to
severe motion blur. IV-SLAM performs similar to ORB-SLAM on the easier trajectories, however, it
significantly reduces the tracking error on the more challenging trajectories such as V1_3. Over all
the sequences, IV-SLAM improves both the translational and rotational tracking accuracy.

Figure 2: Example deployment ses-
sion of the robot. IV-SLAM suc-
cessfully follows the reference cam-
era trajectory while ORB-SLAM
leads to severe tracking errors caused
by image features extracted on the
shadow of the robot.

Evaluation on Challenging datasets. We also evaluate IV-
SLAMon our simulation and real-world datasets, which include
scenes that are representative of the challenging scenarios that
can happen in the real-world applications of V-SLAM. Table 3
summarizes the results and shows the RMSE values calculated
over all trajectories. The results show that IV-SLAM leads to
more than 70% increase in theMDBF and a 35% decrease in the
translation error in the real-world dataset. IV-SLAM similarly
outperforms the original ORB-SLAM in the simulation dataset
by both reducing the tracking error and increasing MDBF.
As it can be seen numerous tracking failures happen in both
environments and the overall error rates are larger than those
corresponding to the KITTI and EuRoC datasets due to the
more difficult nature of these datasets. It is noteworthy that the
benefit gained from using IV-SLAM is also more pronounced
on these datasets with challenging visual settings. Figure 2
demonstrates an example deployment session of the robot from
the real-world dataset.

3 Conclusion

In this paper, we introduced IV-SLAM: a self-supervised approach for learning to predict sources of
failure for V-SLAM and to estimate a context-aware noise model for image correspondences. We
empirically demonstrated that IV-SLAM improves the accuracy and robustness of a state-of-the-art
V-SLAM solution with extensive simulated and real-world data.
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