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Abstract

Visual imitation learning provides a framework for learning complex manipulation
behaviors by leveraging human demonstrations. However, current interfaces for im-
itation such as kinesthetic teaching or teleoperation restrict our ability to efficiently
collect large-scale data in the wild. Obtaining such diverse demonstration data is
paramount for the generalization of learned skills to novel scenarios. In this work,
we present an alternate interface for imitation that simplifies the data collection
process while allowing for easy transfer to robots. We use commercially available
reacher-grabber tools both as a data collection device and as the robot’s end-effector.
To extract actions from these visual demonstrations, we use off-the-shelf Structure
from Motion (SfM) techniques in addition to training a finger detection network.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and
prehensile stacking, with 1000 diverse demonstrations for each task. For both
tasks, we use standard behavior cloning coupled with data augmentations to learn
executable policies from the previously collected offline demonstrations. Finally,
we demonstrate the utility of our interface by evaluating on real robotic scenarios
with previously unseen objects and achieve a 87% success rate on pushing and a
62% success rate on stacking. Robot videos are available at our project website.

1 Introduction

A powerful technique to learn complex robotic skills is to imitate them from humans [1, 2, 3, 4].
Recently, there has been a growing interest in learning such skills from visual demonstrations,
since it allows for generalization to novel scenarios [5, 6]. Prominent works in Visual Imitation
Learning (VIL) have demonstrated utility in intricate manipulation skills such as pushing, grasping,
and stacking [5, 7]. However, a key bottleneck in current imitation learning techniques is the use
of interfaces such as kinesthetic teaching or teleoperation, which makes it harder to collect large-
scale manipulation data. But more importantly, the use of such interfaces leads to datasets that are
constrained to be in restrictive lab settings. This severely limits the generalizability of the learned
skills in novel, previously unseen situations [8].

It is thus important to find a way to simplify data collection for imitation learning to allow both data
collection at scale and real world diversity. One of the cheapest ‘robots’ that is highly prevalent, easy
to control, and requires little to no human training is the reacher-grabber depicted in Fig. 1. This
assistive tool is commonly used for grasping trash among other activities of daily living and has
recently been shown to be a scalable interface for collecting grasping data in the wild by Song et al.
[9]. However, unlike teleoperation [5] or kinesthetic [10] interfaces where the demonstrations are
collected on the same platform as the robot, assistive tools are significantly different from robotic
manipulators. Song et al. [9] bridges this gap by first extracting grasp points from demonstrations
and then transferring them to robot in order to achieve closed-loop grasping of novel objects. A
key problem, however, still lies in scaling this to enable imitation of general robotics tasks. One
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Figure 1: We present a framework for visual imitation learning, where demonstrations are collected
using commercially available reacher-grabber tools (a). This tool is also instrumented as an end-
effector and attached to the robot (b). This setup allows us to collect and learn from demonstration
data across diverse environments (c), while allowing for easy transfer to our robot.

possible solution is to extract full tool configuration and learn a mapping between grabber and the
robot hardware. An alternative is to run domain adaptation based techniques for transfer. Instead,
why not simply use the assistive tool as an end-effector?

In this work, we propose an alternate paradigm for providing and learning from demonstrations. As
seen in Fig. 1 (a,c), the user collects Demonstrations using Assistive Tools (DemoAT) to solve a task.
During the collection of this data, visual RGB observations are collected from a camera mounted on
the DemoAT tool. Given these visual demonstrations, we extract tool trajectories using off-the-shelf
Structure from Motion (SfM) methods and the gripper configuration using a trained finger detector.
Once we have extracted tool trajectories, corresponding skills can be learned using standard imitation
learning techniques. Finally, these skills can be transferred to a robot that has the same tool setup as
the end-effector. Having the same end-effector as the demonstration tool coupled with a 6D robotic
control (Fig. 1 (b)) allows for a direct transfer of learning from human demonstrations to the robot.

To study the effectiveness of this tool, we focus on two challenging tasks: (a) non-prehensile
pushing [11, 12], and (b) prehensile stacking [13, 14]. For both tasks, we collect 1000 demonstrations
in multiple home and office environments with various different objects. This diversity in objects and
environments allows our learned policies to generalize and be effective across novel objects.

In summary, we present three key contributions in this work. First, we propose a new interface for
visual imitation learning that uses assistive tools to gather diverse data for robotic manipulation,
including an approach for collecting grabber 3-D trajectories and gripper transitions. Second, we
demonstrate the utility of this framework on pushing and stacking previously unseen objects, with
a success rate of 87.5% and 62.5% respectively. Finally, we present a detailed study on the effects
of data augmentations in learning robotic skills, and demonstrate how the combination of random
‘crops’, ‘rotations’ and ‘jitters’ significantly improve our policies over other augmentations.

2 Method

Demonstration tool: Our DemoAT setup is built around a plastic 19-inch RMS assistive tool [15]
and a RGB camera [16] to collect visual data. We attach a 3D printed mount above the stick to hold
the camera in place. To collect demonstrations, a human user uses the setup shown in Fig. 1 (a),
which allows the user to easily push, grab, and interact with everyday objects in an intuitive manner.
Examples of demonstrations can be seen in Fig. 1 (c) and Fig. 5. Since a demonstration collected
with DemoAT is visual, it can be represented as a sequence of images {It}Tt=0.

Robot end-effector: The tool is attached on a 7DoF robot arm with a matching camera and mount
setup (Fig. 1 (b)). However, to actuate the fingers, we will need to create an actuating mechanism.
Through a compact, lightweight and novel mechanism, we replace the lever from the original reacher
grabber tool with a controllable interface. Details on this mechanism are presented in Appendix C.

Extracting actions from visual demonstrations Although our framework provides a robust and reli-
able interface to collect visual demonstrations, it does not have explicit sensors to collect information
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Table 1: Real robot evaluation results (average success rate) for pushing and stacking on different
amounts of data.

Naive BC
100%

BC with augment
100%

BC with augment
50%

BC with augment
10%

Push reach goal 0.625 0.875 0.750 0

Stack grasp object 0.750 0.833 0.792 0
stack object 0.291 0.625 0.416 0
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Figure 2: We visualize trajectories executed on the robot using our learned pushing policies trained
with augmented data.

about actions such as the end-effector’s motion or finger locations. To address this, we recover 6DoF
poses of the tool using Structure-from-Motion (SfM) reconstruction and finger configurations via a
gripper prediction model. More details on extracting visual information are presented in Appendix D.

Visual behavior cloning: We learn a policy using straightforward behavioral cloning [17, 18]. With
the DAT imitation framework, we collect observation-action pairs D = {(ot, at)}, where ot is an
image and at is the action to get from ot to ot+1. Additional details on training are presented in
Appendix F.

3 Experiments

We aim to answer the following key questions: (a) Can DemoAT be used to solve difficult manipula-
tion tasks? (b) How important is the scale and diversity of data for imitation learning in the wild? (c)
How important is data augmentation for visual imitation?

We evaluate our learned policy on the two tasks (see Appendix E for task details) using two metrics.
First, mean squared error (BC-MSE) between predicted actions and ground truth actions on a set of
held-out demonstrations that contain novel objects in novel scenes. This offline measure allows for
benchmarking different learning methods. Second, we evaluate on real robot executions on previously
unseen objects and measure the fraction of successful executions. This captures the ability of our
models to generalize on real scenarios.

3.1 Can DemoAT be used for solving difficult manipulation tasks?

To study the utility of our DemoAT framework, we look at both measures of performance, the offline
BC-MSE and the real robot success rate. Unless otherwise noted, we train our policies with 100% of
training data and using the ‘crop’+‘jitter’ augmentation for pushing and ‘rotate’+‘jitter’ for stacking
(Fig. 3). On the BC-MSE metric, we achieve an error of 0.028 on the pushing task and an error of
0.056 on the stacking task. We note that this is more than two orders of magnitude better than random
actions, which has error of 0.67 and 0.69 on pushing and stacking respectively. This demonstrates that
our policies have effectively learned to generalize to previously unseen demonstrations. Visualizations
of how close predicted actions are to ground truth actions are presented in Appendix G.
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Results on stacking
Rotation Crop Color 

Jitter Reflection Cutout-
color

None 0.0381

Rotation 0.0352 0.0340 0.0342 0.0368 0.0334

Crop 0.0340 0.0356 0.0315 0.0365 0.0346

Color 
Jitter 0.0342 0.0315 0.0355 0.0350 0.0348

Reflection 0.0368 0.0365 0.0350 0.0376 0.0341

Cutout-
color 0.0334 0.0346 0.0348 0.0341 0.0398

Rotation Crop Color 
Jitter Reflection Cutout-

color

None 0.0695

Rotation 0.0636 0.0700 0.0599 0.0646 0.0672

Crop 0.0700 0.0684 0.0721 0.0712 0.0696

Color 
Jitter 0.0599 0.0721 0.0711 0.0614 0.0648

Reflection 0.0646 0.0712 0.0614 0.0670 0.0733

Cutout-
color 0.0672 0.0696 0.0648 0.0733 0.0749

Results on pushing

Original Reflection Crop

Jitter Cutout Rotation

Data augmentations

Figure 3: On the left, we show the five data augmentations used in this work. The tables show an
analysis of MSE error of different combinations of data augmentations for pushing and stacking.

3.2 How important is data for imitation learning in the wild?

A key promise of the DemoAT setup is the ability to collect large-scale, diverse demonstrations.
But how important is this diversity of data? To study this, we train policies on different fractions
of sequential and random splits of training data - 1, 5, 10, 25, 50, 75, 100% and evaluate their
performance. We present details of BC-MSE in Appendix I and real robot evaluation below.

Real Robot Evaluation: In Table 1, we report the performance of robotic execution on models
trained on 10%, 50%, and 100% of the collected data for each task on an unseen test set of 24
different objects. In both tasks, we see that with only 10% of the data (100 trajectories), the robot is
unable to even reach the first object. When we increase to 50% of the data, we see a huge improvement
and the robot starts to learn to reach the objects and complete the tasks. Particularly, with just 50% of
the data, the robot can successfully reach the object 100% of the time in the non-prehensile pushing
task. When we evaluate with all our data, we still see considerable performance improvements
in completing the tasks, with 12.5% in pushing and 20.9% in stacking. This improvement is
significantly higher than what we see with the BC-MSE metric.

Data Diversity vs Size: To further understand the effects of diversity and size, we compare perfor-
mance on the same fractional split, but different amounts of diversity in the data. Given a quota of
100 demonstrations, we train on two splits of data: (A) many observations of the same objects and
scenes (B) sparse observations across a diverse set of objects and scenes. We find that the test error
for dataset (A) [0.081] is on average 1.4% higher than that of dataset (B) [0.067]. More detailed
analysis is presented in Appendix I.2.

3.3 Does augmented data help?

To improve the performance of our learned policies, we employ data augmentations in training.
But, how important are these augmentations in imitation learning? We discuss results on real robot
experiments in Appendix H.1 and more details about augmentations in Appendix H.

Behavioral Cloning Evaluation: We compare the application of different augmentations: crop,
color jitter, rotate, horizontal reflection, random cutout, and all permutations of two augmentations.
We find that data augmentations allow for better generalization to unseen objects and scenes on
the BC-MSE metric. As shown in Fig. 3, the best augmentation performs 0.7% better than naive
behavioral cloning in pushing and 0.9% better in stacking.

4 Conclusion

We present Demonstrations using Assistive Tools (DemoAT). In contrast to traditional imitation
methods that rely on domain adaptation techniques or kinesthetic demonstrations, our proposed
method allows for both easy large-scale data collection and direct visual imitation learning. We
have shown that using a universal reacher-grabber tool that can act as an end-effector for virtually
any robot, smarter data collection methods coupled with simple behavior cloning methods and data
augmentations can lead to better out of distribution performance. We hope that this interface is a step
towards more efficient robot learning, since it opens up directions for wide scale data collection and
re-use.
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A Related Work

In this section, we briefly discuss prior research in the context of our work. For a more comprehensive review of
imitation learning, we point the readers to Argall et al. [19].

Interfaces for Imitation: In imitation learning, a robot tries to learn skills from demonstrations provided by
the expert. There are various interfaces through which these demonstration can be recorded. One option is
teleoperation, in which the human controls the robot using a control interface. This method has been successfully
applied to a large range of robotic tasks including flying a robotic helicopter [20], grasping objects [21, 22],
navigating robots through cluttered environments [23, 24, 25], and even driving cars [26]. Teleoperation has
been successful in solving a wide variety of tasks because of the availability of control interfaces through which
human operators can perform high-quality maneuvers. However, it is challenging to devise such interfaces for
robotic manipulation [27]. Kinesthetic demonstrations, in which the expert actively controls the robot arm by
exerting force on it, is an effective method [28, 10] of collecting robot manipulation demonstrations for playing
ping pong [29] and cutting vegetables [30]. However, for visuomotor policies, which map from pixels to actions,
these demonstrations are inappropriate due to the undesirable appearance of human arms. One way to overcome
this problem is by mounting an assistive tool on the robot end effector that is being used to record demonstration
in isolation [9]. We take this idea a step further by using it as an end-effector on the robot as well. This eliminates
the domain gap between the human-collected demonstrations and the robot executions, which enables easier
imitation.

Behavior Cloning in Imitation: Behavior cloning is the simplest form of imitation learning, where the agent
learns to map observations to actions through supervised learning. It has been successfully applied in solving a
wide range of tasks including playing games [18], self-driving [26], and navigating drones through cluttered
environments [25]. However, it has not been widely applicable to learning visuomotor policies for robotic
manipulation tasks due to unwanted visual artifacts collected in kinesthetic demonstrations. To overcome this
problem, Zhang et al. [5] propose a Virtual Reality (VR) setup to collect robot manipulation data. They showed
that behavior cloning can be used to learn complex manipulation tasks, such as grasping and placing various
objects. There have also been recent efforts to imitate from visual demonstrations collected from a different
space e.g. from a different viewpoint or an agent with a different embodiment [6, 31] from the robot. This is a
promising direction as it allows for data collection outside the lab. However, learning from such demonstrations
is still an active research problem, as there is a significant domain gap between training and testing. In our setup,
we use behavior cloning to learn challenging tasks such as pushing and stacking. But instead of relying on a
costly VR setup which can only be deployed in constrained lab environments, we rely on cheap assistive tools to
collect diverse data in the wild. Further, we eliminate the domain gap present in previously mentioned lines of
work by attaching the same tool on the robot to match the demonstration and imitation space.

Data Augmentation in Learning: Data augmentation is widely used in machine learning to inject additional
knowledge in order to overcome the challenges of overfitting. This technique has been shown to greatly benefit
deep learning systems for computer vision. Its use can be found as early as LeNet-5 [32], which was used to
classify hand written digits. In AlexNet [33], data augmentations such as random flip and crop were used to
improve the classification accuracy. More recently, learning augmentation strategies from data has emerged as
a new paradigm to automate the design of augmentation [34, 35, 36]. For unsupervised and semi-supervised
learning, several unsupervised data augmentation techniques have been proposed [37, 38]. It has also been
extensively used in context of RL, where domain randomization is proposed to transfer learning from simulation
to real world [39, 40, 41]. Although the effects of augmentations have been extensively studied in image-based
RL [42, 43], to the best of our knowledge, we are the first to study the effects of data augmentations in real-robot
applications.

B Details on DemoAT Demonstration Tool

The DemoAT steup consists of the following parts:

• 19-inch RMS Handi Grip Reacher

• GoPro HERO7 Silver camera

• 3D printed mount

Our simple setup makes it easy to start collecting demonstrations. We directly attach the angled 3D mount on
the tool as shown in Fig. 4 (a) and insert the camera. This can easily be replaced by a different GoPro camera or
even a phone with a modified mount. To close the fingers on the tool, the human user simply needs to press the
lever. Although our tasks do not require rotating the fingers, this tool is capable of doing so.
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(a) (b)

3D printed mount

GoPro

3D printed mount 
and actuator 

GoPro

Figure 4: In part (a), we show the setup for collecting human demonstrations. This includes a 3D
printed mount, a camera, and the reacher-grabber stick. Part (b) displays the corresponding setup on
the robot.

C Details on DemoAT Robot End Effector

On the robot’s end, we have a similar setup. We use the same reacher-grabber tool on the robot and attach
it using metal studs to the robot end effector. We modified the 3D printed mount used for collecting human
demonstrations with a similar one that includes an actuator to control the fingers on the tool, shown in Fig. 4 (b).
While we use an xArm7 robot [44] as our robotic arm, we note that this end-effector setup can be attached to any
standard commercial-grade robotic arm.

D Extracting actions from Visual Demonstrations

We recover 6DoF poses of the tool using Structure-from-Motion (SfM) reconstruction. Specifically, we use the
publicly available COLMAP [45, 46] software for SfM. Once we have the end-effector pose pt for every image
It, we extract the relative translation and rotation ∆pt between consecutive frames and use them as the action
for training.

COLMAP gives us the relative change in pose across frames, however, we also need to obtain the finger
configurations for tasks that require moving the fingers. To do this, we use a neural network that extracts the
location of the gripper fingers in our observations. This network is trained on a small human-labeled dataset of
155 frames from the DemoAT setup. Given these gripper finger locations predicted by our gripping model, we
can generate labels for “close" or “open" states gt ∈ {0, 1}. Through this procedure we can now obtain visual
demonstrations with actions at, which is represented as (ot, at = (∆pt, gt+1))Tt=0. Note that the grasping
action at a given timestep is the grasp state at the next timestep. Visualizations of actions can be seen in Fig. 5.
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Figure 5: Extracting labels: (a) COLMAP translation arrows. (b) Gripper finger predictions.

D.1 Accuracy of Extracted Actions

Our method for extracting labels can be noisy. Specifically, COLMAP reconstructions are significantly less
accurate in lightly textured, clean, and high dynamic range scenes. However, since our demonstrations are
collected in cluttered real-world scenarios, our reconstructions are reasonably accurate for the purposes of
learning. Nevertheless, to reduce the effect of noisy action labels, we visually inspect the reconstructions and
discard ∼ 6% of aberrant demonstrations. The model we use to generate grasping actions by detecting finger
achieves ∼ 95% accuracy on held-out testing set, which is empirically sufficient for downstream learning.

E Pushing and Stacking Task Details

Non-prehensile Pushing: This task requires the robot to push an object to a red circle by sliding it across the
table. Such contact-rich manipulation has been extensively studied and known to be challenging to solve [11, 12].
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Push Trajectories
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Stack Trajectories
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Figure 6: We collect 1000 trajectories for each task with diverse objects and scenes. Here we show
examples of the diversity in data.

Particularly in our case, we operate with diverse objects in diverse scenes, which makes accurately manipulating
objects difficult. For robotic experiments, we evaluate robotic success rate as #trajectories where object reaches goal

#total trajectories on a
set of 24 different objects unseen in training.

Prehensile Stacking: In this task, the goal is to grasp an object and stack it on top of an equally sized or larger
object. We set it up such that the smaller object is always in front of the larger object to reduce ambiguity
in learning (Fig. 6). We evaluate robotic success rate as #trajectories where object is grasped and stacked

#total trajectories on a set of 24
configurations unseen in training.

F Training Details

Let Ck denote convolutional layers with k filters and Fk denote fully connected layers of size k.

Our architecture is a set of convolutional layers followed by fully connected layers. The first part of our network
takes in an image It ∈ R3x224x224 and outputs the latent representation of the observation. It consists of the
first five layers of the AlexNet followed by C256 layer. We feed the latent representation into an additional
net of size F512-F256 to output a relative translation vector. To get the relative rotation, we concatenate the
latent representation and the translation vector and feed the result into a F256 layer before projecting to a 6D
vector. For tasks that require using the gripper, we train an additional classification model that takes in an image
It ∈ R3x224x224 and outputs a gripper open/close label gt+1 ∈ {1, 0}. This architecture is illustrated in Fig. 7.

We train on a 6D rotation representation [47] because it is continuous in the real Euclidean space and thus more
suitable for learning as opposed to more commonly used axis-angle and quaternion based representations.

To train our model, we use a combination of L1, L2, and a direction loss. We care more about the direction
between the prediction and ground truth actions than the magnitude, so we add the following loss to encourage
this directional alignment [5].

Ld = arccos(
∆xTt πθ(∆xt|ot)
||∆xt||||πθ(∆xt|ot)||

) (1)

G Visualizations of Predicted Actions

We overlay predicted actions and COLMAP-generated labels on the images to qualitatively evaluate our results.
Fig. 8 displays examples of test time results for both the pushing and stacking task.

The arrows on the images show the relative translations across the transverse plane of the camera between It and
It+1. The aqua arrow represents the true action as output by COLMAP, and the yellow arrow represents our
model’s prediction. At the bottom left corner are two color-map arrows representing the up-down movement. The
first arrow is the label action and the second arrow is the predicted action. The intensity of the color represents
the magnitude of the action.
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Figure 7: This is our network architecture. The input to the network is an image It ∈ R3x224x224 and
it outputs ∆pt = (∆xt,∆wt) and gt predictions.

The angle plot shows the predicted relative frame rotation between It and It+1. The blue and green arrows
represent true and predicted rotations respectively as rotation matrices multiplied by the unit vector < 1, 0, 0 >.
We apply minimal rotation in these tasks, so these arrows are very close to < 1, 0, 0 >.

The bar chart in the stacking task shows the predicted probability of the status of the gripper at the next timestep.
The true gripper label is green.
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Figure 8: Examples of pushing and stacking result visualizations. The aqua arrow represents the
true action across the transverse plane of the camera, while the yellow arrow represents the predicted
action. The arrows in the corner are the true and predicted up-down actions. In the stacking task, the
heights of the bars show the probabilities of the predicted gripper status at the next timestep, and the
true gripper transition is shown in green.

H Data Augmentations for imitation:

To improve the performance of our networks with limited data, we experiment with using the following data
augmentations in training [42, 43, 48]:

• Color Jitter: Randomly adds up to ±20% random noise to the brightness, contrast and saturation of
each observation.

• Crop: Randomly extracts a 224 x 224 patch from an original image of size 240 x 240.

• Cutout-color[rad]: Randomly inserts a colored box of size [10, 60] into the image.

• Rotation: Randomly rotates original image [-5, 5] degrees.

• Horizontal Reflection: Mirrors image across the y-axis. Action labels are reflected as well.
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H.1 Real Robot Evaluation with Augmented Data

Our second method of evaluation is to compare the success rates of stacking and pushing with data augmentations
to naive behavioral cloning. Table 1 shows that for both tasks we achieve significant improvements with data
augmentations. We see the biggest increases in performance in the second part of each task (after the initial
object has been reached): a 12.5% improvement for reaching the goal in pushing and a 33.4% improvement
in stacking. Interestingly, using augmentations with just 50% of training data surpasses the performance of
not using augmentation with 100% of training data on both pushing and stacking. This ability to improve
performance in robotics is in line with recent research in RL [42, 43] and computer vision [48].

I Data Size and Diversity Analysis

I.1 Data Size: Behavioral Cloning Evaluation

In Fig. 9 we illustrate the effects of changing dataset size on BC-MSE performance. In both the pushing and
stacking task, we see increasing data size significantly improves performance especially in the low-data regime.
We note that improvements diminish with larger data on the BC-MSE metric with just ∼ 0.9% performance
gain when increasing our training data from 500 to 1000 trajectories.

Train Set Test Set Effect of Data Size 
Push with augments
Push

Stack with augments

Stack
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Figure 9: On the left, we show examples of objects used in training and testing for behavioral cloning
evaluation. On the right, we evaluate the MSE error on held-out testing objects with and without
random data augmentations. Note that as we increase the amount of data, our models improve and
achieves lower error.

I.2 Data Diversity Analysis

We provide more detail on the results of comparing random and sequential splits. We let dataset (A) be many
observations of the same objects and scenes (sequential split) and dataset (B) be sparse observations across a
diverse set of objects and scenes (random split). We showed that in the most extreme case, when using 10% of
the data, we see an average of 1.4% increase in performance when comparing the sequential dataset (A) to the
diverse dataset (B). We analyze these results in more detail by running naive behavioral cloning without data
augmentations for the following splits of data: 10, 25, 50, and 75%.

In Fig. 10, we compare error rates for both dataset types in both pushing and stacking. The most prominent
performance increase of using diverse data is when we only use 10% of the data, and as the amount of data
increases, the gap between dataset (A) and dataset (B) starts to decrease. Even at 75% data, we still see a 0.005
and a 0.001 increase in accuracy in the pushing and stacking task, respectively. As we train on more data, it
follows that the diversity of data increases and thus the difference in performance decreases.

I.3 Study of Data Augmentations on Random Data Splits

We show the same analysis in Fig. 9 using random, diverse data splits instead of sequential data splits to
demonstrate that data augmentations are effective and amount of data is important in both cases. Similar to the
case with sequential data, we note that the performance gains diminish as we include more data in our training
set. In Fig. 10, we see that random splits perform better the sequential splits across every fraction of data. We
analyze this difference in more detail in Appendix I.2.
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Figure 10: We show a comparison of performance between a sequential split and a random split,
dataset (A) and dataset (B) respectively. In both tasks across all fractions of data, diverse data has
much better performance.

J Closed-loop Control with Moving Objects

We have shown that our DemoAT framework can solve complex tasks in diverse domains, and further investigate
whether our learned policies are robust to disturbances. We perturb the objects and goals during online robot
execution and find that our closed-loop policy is still able to successfully complete both tasks. Results are shown
in Fig. 11 and in the provided supplementary video on our project website.

Pushing

Stacking
Move object

Move object Move goal

Figure 11: Here, we demonstrate how our learned closed-loop policies are robust to disturbances
applied on the objects. When we slightly move the object or goal location, our policy immediately
learns to adapt to the new scene. The frames where we apply a perturbation to the scene are
highlighted in yellow.

K Third-person Views of Robot Experiments

We show additional robot trajectories for both the pushing and stacking task from a third person point of view in
Fig. 12. These experiments are run with the best data augmentations for each respective task. In the pushing
task, the most common reason for failure is the gripper not fully wrapping around the object such that it slides
out of its fingers during execution. In the stacking task, we note that common causes of failure are that the policy
often grasps too late or it does not lift the object high enough to successfully stack onto the second object.
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Figure 12: We visualize additional trajectories executed on the robot using our learned pushing and
stacking policies from a third person point of view. Successful trajectories are highlighted in green,
unsuccessful ones in red.
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