
Accelerating Reinforcement Learning
with Learned Skill Priors

Karl Pertsch Youngwoon Lee Joseph J. Lim
Department of Computer Science
University of Southern California

{pertsch,lee504,limjj}@usc.edu

Abstract

Intelligent agents rely heavily on prior experience when learning a new task, yet
most modern reinforcement learning (RL) approaches learn every task from scratch.
One approach for leveraging prior knowledge is to transfer skills learned on prior
tasks to the new task. However, as the amount of prior experience increases, the
number of transferable skills grows too, making it challenging to explore the full set
of available skills during downstream learning. Yet, intuitively, not all skills should
be explored with equal probability; instead information e.g., about the environment
state can hint which skills are promising to explore. We propose to implement this
intuition by learning a prior over skills. We propose a deep latent variable model
that jointly learns an embedding space of skills and the skill prior from offline
agent experience. We then extend common maximum-entropy RL approaches to
incorporate skill priors to guide downstream learning. We validate our approach
on complex navigation and robotic manipulation tasks and show that learned skill
priors are essential for effective transfer of skills from rich datasets. For a more
detailed version of the paper, videos and code, see clvrai.com/spirl.

1 Introduction

Intelligent agents are able to utilize a large pool of prior experience to efficiently learn how to solve
new tasks [37]. In contrast, reinforcement learning (RL) agents typically learn each new task from
scratch, without leveraging prior experience. On the other hand, there is an abundance of collected
agent experience available in domains like autonomous driving [3], indoor navigation [24], or robotic
manipulation [4, 2]. In this work, our aim is to devise a scalable approach for leveraging such
unstructured experience to accelerate the learning of new downstream tasks.

One flexible way to utilize unstructured prior experience is by extracting skills, temporally extended
actions that represent useful behaviors, which can be repurposed to solve downstream tasks. Prior
work has learned skill libraries from data collected by humans [27, 22, 23, 29, 19] or by agents
autonomously exploring the world [12, 30]. To solve a downstream task using the learned skills,
these approaches train a high-level policy whose action space is the set of extracted skills. The
dimensionality of this action space scales with the number of skills. The large skill libraries extracted
from rich datasets can, somewhat paradoxically, lead to worse learning efficiency since the agent
needs to collect large amounts of experience to perform the necessary exploration in skill space [14].

The key idea of this work is to learn a prior over skills along with the skill library to guide exploration
in skill space and enable efficient downstream learning, even with large skill spaces. Intuitively, the
prior over skills is not uniform: if the agent holds the handle of a cup, it is more promising to explore
a pick-up skill than a sweeping skill (see Fig. 1). To implement this idea, we design a stochastic latent
variable model that learns a continuous embedding space of skills and a prior distribution over these
skills from unstructured agent experience. We then show how to naturally incorporate the learned

NeurIPS 2020 3rd Robot Learning Workshop: Grounding Machine Learning Development in the Real World.

https://clvrai.com/spirl


Open Microwave

Move KettleSlide Cabinet Door

Skill Library

Microwave OpenedKettle Grasped

slide move openslide move open

Skill Priors

1

2

3

Efficient Downstream 
Task Learning

Figure 1: Intelligent agents can use a large library of acquired skills when learning new tasks. Instead
of exploring skills uniformly, they can leverage priors over skills as guidance, based e.g., on the
current environment state. Such priors capture which skills are promising to explore, like moving a
kettle when it is already grasped, and which are less likely to lead to task success, like attempting to
open an already opened microwave. In this work, we propose to jointly learn an embedding space of
skills and a prior over skills from unstructured data to accelerate the learning of new tasks.

skill priors into maximum-entropy RL algorithms for efficient learning of downstream tasks. We
validate our approach on complex, long-horizon navigation and robot manipulation tasks. We show
that through the transfer of skills we can use unstructured experience for accelerated learning of new
tasks and that learned skill priors are essential to scale to rich experience datasets.

In summary, the contributions of this work are threefold: (1) we design a model for jointly learning
an embedding space of skills and a prior over skills from unstructured data, (2) we extend maximum-
entropy RL to incorporate learned skill priors for efficient task learning, and (3) we show that learned
skill priors accelerate learning across three simulated navigation and robot manipulation tasks.

2 Related Work

The problem of inter-task transfer has been studied for a long time in the RL community [34]. The idea
of transferring skills between tasks dates back at least to the SKILLS [35] and PolicyBlocks [25]
algorithms. Learned skills can be represented as sub-policies in the form of options [33, 1], as subgoal
setter and reacher functions [9, 21] or discrete primitive libraries [27, 17]. Recently, a number of
works have explored the embedding of skills into a continuous skill space via stochastic latent variable
models [12, 22, 16, 23, 29, 36, 19]. When using powerful latent variable models, these approaches
are able to represent a very large number of skills in a compact embedding space. However, the
exploration of such a rich skill embedding space can be challenging, leading to inefficient downstream
task learning [14]. Our work introduces a learned skill prior to guide the exploration of the skill
embedding space, enabling efficient learning on rich skill spaces.

Learned behavior priors are commonly used to guide task learning in offline RL approaches [7,
13, 38] in order to avoid value overestimation for actions outside of the training data distribution.
Recently, action priors have been used to leverage offline experience for learning downstream
tasks [31]. Crucially, our approach learns priors over temporally extended actions, i.e. skills, allowing
it to scale to complex, long-horizon downstream tasks.

3 Approach

Our goal is to leverage skills extracted from large, unstructured datasets to accelerate the learning
of new downstream tasks. Scaling skill transfer to large datasets is challenging, since learning the
downstream task requires picking the appropriate skills from an increasingly large library of extracted
skills. We assume access to a dataset D of pre-recorded agent experience in the form of state-action
trajectories τi = {(s0, a0), . . . , (sTi , aTi)}. This data can be collected using previously trained agents
across a diverse set of tasks [6, 8], through agents autonomously exploring their environment [12, 30],

2



a1 a2 a3 aH

q(z |ai)
Skill Prior

pa(z |s1)
Skill 

Encoder

s1

Skill Embedding

̂a1 ̂a2 ̂a3 ̂aH

Skill 
Decoder
p(ai |z)

Learned Prior
pa(z |s1)

Skill Posterior
q(z |ai)

Fixed Prior
p(z) ∼

Learned Skill Embedding
aiSkill

s2 s3 sH+1

Figure 2: Deep latent variable model for joint learning of skill embedding and skill prior. Given a
state-action trajectory from the dataset, the skill encoder maps the action sequence to a posterior
distribution q(z|ai) over latent skill embeddings. The action trajectory gets reconstructed by passing
a sample from the posterior through the skill decoder. The skill prior maps the current environment
state to a prior distribution pa(z|s1) over skill embeddings. Colorful arrows indicate the propagation
of gradients from reconstruction, regularization and prior training objectives.

via human teleoperation [28, 9, 20, 19] or any combination of these. Crucially, we aim to leverage
unstructured data that does not have annotations of tasks or sub-skills and does not contain reward
information to allow for scalable data collection on real world systems.

3.1 Learning Continuous Skill Embeddings and Skill Priors

We define a skill ai as a sequence of actions {ait, . . . , ait+H−1} with fixed horizon H . Using fixed-
length skills allows for scalable skill learning and has proven to be effective in prior works [22,
23, 9, 36, 21, 5]. To learn a low-dimensional skill embedding space Z , we train a stochastic latent
variable model p(ai|z) of skills using the offline dataset (see Fig. 2). We randomly sample H-
step trajectories from the training sequences and maximize the following evidence lower bound

(ELBO): log p(ai) ≥ Eq
[

log p(ai|z)︸ ︷︷ ︸
reconstruction

−β
(

log q(z|ai)− log p(z)︸ ︷︷ ︸
regularization

)]
. We optimize this objective

using amortized variational inference with a learned inference model q(z|ai) [15, 26].

Our aim is to learn a prior over skills along with the skill embedding model. We therefore introduce
another component in our model: the skill prior pa(z|·). The input to this skill prior can be adjusted
to the environment and task at hand; in this work we focus on learning a state-conditioned skill prior
pa(z|st). Intuitively, the current state should provide a strong prior over which skills are promising to
explore and, maybe more importantly, which skills should not be explored in the current situation (see
Fig. 1). To train the skill prior we minimize the Kullback-Leibler divergence between the predicted
prior and the inferred skill posterior: E(s,ai)∼DDKL

(
q(z|ai), pa(z|st)

)
.

3.2 Skill Prior Regularized Reinforcement Learning

To use the learned skill embedding and skill prior for efficient downstream task learning, we employ
a hierarchical policy learning scheme by using the learned skill embedding space as the action space
of a high-level policy. Concretely, instead of learning a policy over actions a ∈ A we learn a policy
over skill embeddings πθ(z|st). We execute the actions {ait, . . . , ait+H−1} ∼ p(ai|z) for H steps
before sampling the next skill from the high-level policy.

3



Ours Flat Prior SSP w/o Prior SAC BC + SAC

Maze Navigation Block Stacking Kitchen Environment

Figure 3: Downstream task learning curves for our method and all comparisons. Both, learned
skill embeddings and skill priors are essential for downstream task performance: single-action priors
without temporal abstraction (Flat Prior) and learned skills without skill prior (SSP w/o Prior) fail
to converge to good performance. Shaded areas represent standard deviation across three seeds.

We can use standard model-free RL to optimize the high-level policy. In this work we propose to
use the learned skill prior to guide the learning process. We extend maximum entropy RL [39, 18]
approaches by replacing the entropy term that gets added to the reward, representing the divergence
from an uniform action prior, with a divergence term towards our learned skill prior, leading to the

following objective: J(θ) = Eπ
[∑T

t=1 r̃(st, zt)− αDKL
(
π(zt|st), pa(zt|st)

)]
.

We can modify the state-of-the-art maximum-entropy RL algorithms, such as Soft Actor-Critic
(SAC, [10, 11]) to optimize this objective. We summarize our skill-prior regularized SAC approach
in algorithm 1 in the appendix with changes to SAC marked in red.

4 Experiments

We test our approach on a maze navigation task with sparse rewards and two challenging robotic
manipulation tasks: block stacking and long-horizon manipulations with a 7DoF robotic arm in a
simulated kitchen environment (see Fig. 4). We compare to conventional model free RL (SAC, [10],
w/ and w/o behavioral cloning initialization); learning priors over primitive actions not skills ("Flat
Prior", similar to [31]); leveraging transferred skills without guidance via a learned prior ("w/o prior",
representative of [22, 16, 29]). More details on environments and comparisons are in appendix,
section D. Detailed ablation studies are in section E.

Maze Navigation We first evaluate our approach on the sparse-reward maze navigation task. In
Fig. 3 (left) we show that only our method is able to learn a goal-reaching policy. To better understand
this result, we compare the exploration behavior of our approach and the baselines in Fig. 6: only our
approach is able to explore large parts of the maze. Random exploration in skill space does not lead
to good exploration behavior since the number of possible skills is too large and targeted sampling is
required to e.g. navigate through doorways. The comparison to single-step action priors ("Flat Prior")
shows that temporal abstraction is beneficial for coherent exploration. We further show that a single
learned prior can be reused for learning to reach a variety of goals in the maze in appendix, section F.

Robotic Manipulation For both robotic manipulation environments we find that using learned
skill embeddings together with the extracted skill prior is essential to solve the task (see Fig. 3, middle
and right; appendix Fig. 7 for qualitative policy rollouts). In contrast, using non-hierarchical action
priors ("Flat Prior") leads to performance similar to behavioral cloning of the training dataset, but
fails to solve longer-horizon tasks. The approach leveraging the learned skill space without guidance
from the skill prior ("SSP w/o Prior") only rarely stacks blocks or successfully manipulates objects in
the kitchen environment. Due to the large number of extracted skills from the rich training datasets,
random exploration in skill space does not lead to efficient learning, underlining the importance of
learned skill priors for scaling skill transfer to large datasets.

4



References
[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, 2017.

[2] Serkan Cabi, Sergio Gomez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott
Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, David Budden, Mel Vecerik, Oleg Sushkov, David
Barker, Jonathan Scholz, Misha Denil, Nando de Freitas, and Ziyu Wang. Scaling data-driven
robotics with reward sketching and batch reinforcement learning. RSS, 2019.

[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. preprint arXiv:1903.11027, 2019.

[4] Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning.
CoRL, 2019.

[5] Kuan Fang, Yuke Zhu, Animesh Garg, Silvio Savarese, and Li Fei-Fei. Dynamics learning with
cascaded variational inference for multi-step manipulation. CoRL 2019, 2019.

[6] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[7] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062,
2019.

[8] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo,
Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. Rl
unplugged: Benchmarks for offline reinforcement learning. arXiv preprint arXiv:2006.13888,
2020.

[9] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay
policy learning: Solving long-horizon tasks via imitation and reinforcement learning. CoRL,
2019.

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. ICML, 2018.

[11] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[12] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations, 2018.

[13] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza,
Noah Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement
learning of implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

[14] Nicholas K Jong, Todd Hester, and Peter Stone. The utility of temporal abstraction in reinforce-
ment learning. In AAMAS (1), pages 299–306. Citeseer, 2008.

[15] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.

[16] Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Edward Grefenstette, Pushmeet Kohli,
and Peter Battaglia. Compositional imitation learning: Explaining and executing one task at a
time. ICML, 2019.

[17] Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward S Hu, and Joseph J Lim.
Composing complex skills by learning transition policies. In International Conference on
Learning Representations, 2018.

[18] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909, 2018.

[19] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on Robot Learning, pages
1113–1132, 2020.

5



[20] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
Gao, John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, and Li Fei-Fei. Roboturk: A
crowdsourcing platform for robotic skill learning through imitation. In Conference on Robot
Learning, 2018.

[21] Ajay Mandlekar, Fabio Ramos, Byron Boots, Li Fei-Fei, Animesh Garg, and Dieter Fox.
Iris: Implicit reinforcement without interaction at scale for learning control from offline robot
manipulation data. ICRA, 2020.

[22] Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne,
Yee Whye Teh, and Nicolas Heess. Neural probabilistic motor primitives for humanoid control.
ICLR, 2019.

[23] Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham,
Tom Erez, Greg Wayne, and Nicolas Heess. Catch & carry: Reusable neural controllers for
vision-guided whole-body tasks. ACM. Trans. Graph., 2020.

[24] Kaichun Mo, Haoxiang Li, Zhe Lin, and Joon-Young Lee. The AdobeIndoorNav Dataset:
Towards deep reinforcement learning based real-world indoor robot visual navigation. preprint
arXiv:1802.08824, 2018.

[25] Marc Pickett and Andrew G Barto. Policyblocks: An algorithm for creating useful macro-actions
in reinforcement learning. In ICML, volume 19, pages 506–513, 2002.

[26] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In ICML, 2014.

[27] Stefan Schaal. Dynamic Movement Primitives - A Framework for Motor Control in Humans
and Humanoid Robotics. Springer Tokyo, 2006.

[28] Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. Learning movement primitives. In
Paolo Dario and Raja Chatila, editors, Robotics Research. Springer Berlin Heidelberg, 2005.

[29] Tanmay Shankar, Shubham Tulsiani, Lerrel Pinto, and Abhinav Gupta. Discovering motor
programs by recomposing demonstrations. In International Conference on Learning Represen-
tations, 2019.

[30] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills. ICLR, 2020.

[31] Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what worked:
Behavioral modelling priors for offline reinforcement learning. ICLR, 2020.

[32] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[33] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):
181–211, 1999.

[34] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(7), 2009.

[35] Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement learning. In NIPS,
1995.

[36] William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-aware
embeddings. ICLR, 2020.

[37] Robert S Woodworth and EL Thorndike. The influence of improvement in one mental function
upon the efficiency of other functions.(i). Psychological review, 8(3):247, 1901.

[38] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[39] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010.

6



A Action-prior Regularized Soft Actor-Critic

The original derivation of the SAC algorithm assumes a uniform prior over actions. We extend the
formulation to the case with a non-uniform action prior p(a|·), where the dot indicates that the prior
can be non-conditional or conditioned on e.g., the current state or the previous action. Our derivation
closely follows Haarnoja et al. [10] and Levine [18] with the key difference that we replace the
entropy maximization in the reward function with a term that penalizes divergence from the action
prior. We derive the formulation for single-step action priors below, and the extension to skill priors
is straightforward by replacing actions at with skill embeddings zt.

We adopt the probabilistic graphical model (PGM) described in [18], which includes optimality
variablesO1:T , whose distribution is defined as p(Ot|st, at) = exp

(
r(st, at)

)
where r(st, at) is the

reward. We treat O1:T = 1 as evidence in our PGM and obtain the following conditional trajectory
distribution:

p(τ |O1:T ) = p(s1)

T∏
t=1

p(Ot|st, at)p(st+1|st, at)p(at|·)

=

[
p(s1)

T∏
t=1

p(st+1|st, at)p(at|·)
]
· exp

T∑
t=1

r(st, at)

Crucially, in contrast to [18] we did not omit the action prior p(at|·) since we assume it to be generally
not uniform.

Our goal is to derive an objective for learning a policy that induces such a trajectory distribution.
Following [18] we will cast this problem within the framework of structured variational inference
and derive an expression for an evidence lower bound (ELBO).

We define a variational distribution q(at|st) that represents our policy. It induces a trajectory
distribution q(τ) = p(s1)

∏T
t=1 p(st+1|st, at)q(at|st). We can derive the ELBO as:

log p(O1:T ) ≥ −DKL
[
q(τ) || p(τ |O1:T )

]
≥ Eτ∼q(τ)

[
log p(s1) +

T∑
t=1

[
log p(st+1|st, at) log p(at|·)

]
+

T∑
t=1

r(st, at)

− log p(s1)−
T∑
t=1

[
log p(st+1|st, at) log q(at|st)

]]

≥ Eτ∼q(τ)

[
T∑
t=1

r(st, at) + log p(at|·)− log q(at|st)

]

≥ Eτ∼q(τ)

[
T∑
t=1

r(st, at)−DKL
[
q(at|st) || p(at|·)

]]
Note that in the case of a uniform action prior the KL divergence is equivalent to the negative entropy
−H(q(at|st)). Substituting the KL divergence with the entropy recovers the ELBO derived in [18].

To maximize this ELBO with respect to the policy q(at|st), [18] propose to use an inference
procedure based on a message passing algorithm. Following this derivation for the "messages" V (st)
and Q(st, at) (Levine [18], section 4.2), but substituting policy entropy − log q(at|st) with prior
divergence DKL

[
q(at|st) || p(at|·)

]
, the modified Bellman backup operator can be derived as:

T πQ(st, at) = r(st, at) + γEst+1∼p
[
V (st+1)

]
where V (st) = Eat∼π

[
Q(st, at)−DKL

[
π(at|st) || p(at|·)

]]
To show convergence of this operator to the optimal Q function we follow the proof of [10] in
appendix B1 and introduce a divergence-augmented reward:

rπ(st, at) = r(st, at)− Est+1∼p

[
DKL

[
π(at+1|st+1) || p(at+1|·)

]]
.

7



Algorithm 1 Skill-prior regularized Soft Actor-Critic
1: Inputs: high-level policy πθ(zt|st), critic Qφ(st, zt), target network Qφ̄(st, zt), H-step reward

function r̃(st, zt), discount γ, target divergence δ, learning rates λπ, λQ, λα, target update τ .
2: Initialize empty replay buffer: D ← ∅
3: for each iteration do
4: for each environment step do
5: zt ∼ π(zt|st) . sample skill from policy
6: st′ ∼ p(st+H |st, zt) . execute skill in environment
7: D ← D ∪ {st, zt, r̃(st, zt), st′} . store transition in replay buffer
8: for each gradient step do
9: Q̄ = r̃(st, zt) +γ

[
Qφ̄(st′ , πθ(zt′ |st′))−αDKL

(
πθ(zt′ |st′), pa(zt′ |st′)

)]
. compute Q-target

10: θ ← θ − λπ∇θ
[
Qφ(st, πθ(zt|st))−αDKL(πθ(zt|st), pa(zt|st))

]
. update policy weights

11: φ← φ− λQ∇φ
[
1
2

(
Qφ(st, zt)− Q̄

)2]
. update critic weights

12: α← α− λα∇α
[
α · (DKL(πθ(zt|st), pa(zt|st))− δ)

]
. update alpha

13: φ̄← τφ+ (1− τ)φ̄ . update target network weights
14: return trained policy πθ(zt|st)

Then we can recover the original Bellman update:

Q(st, at)← rπ(st, at) + γEst+1∼p,at+1∼π
[
Q(st+1, at+1)

]
,

for which the known convergence guarantees hold [32].

The modifications to the messagesQ(st, at) and V (st) directly lead to the following modified policy
improvement operator:

arg min
θ

Est∼D,at∼π
[
DKL

[
π(at|st) || p(at|·)

]
−Q(st, at)

]
Finally, the practical implementations of SAC introduce a temperature parameter α that trades off
between the reward and the entropy term in the original formulation and the reward and divergence
term in our formulation. Haarnoja et al. [11] propose an algorithm to automatically adjust α by
formulating policy learning as a constrained optimization problem. In our formulation we derive a
similar update mechanism for α. We start by formulating the following constrained optimization
problem:

max
x1:T

Epπ
[ T∑
t=1

r(st, at)

]
s.t. DKL

[
π(at|st) || p(at|·)

]
≤ δ ∀t

Here δ is a target divergence between policy and action prior similar to the target entropy H̄ is the
original SAC formulation. We can formulate the dual problem by introducing the temperature α:

min
α>0

max
π

T∑
t=1

r(st, at) + α
(
δ −DKL

[
π(at|st) || p(at|·)

])
This leads to the modified update objective for α:

arg min
α>0

Eat∼π
[
αδ − αDKL

[
π(at|st) || p(at|·)

]]
We combine the modified objectives for Q-value function, policy and temperature α in the skill-prior
regularized SAC algorithm, summarized in algorithm 1.

B Environment and Comparison Details

We evaluate our approach on one simulated navigation task and two simulated robotic manipulation
tasks (see Fig. 4). For each environment, we collect a large and diverse dataset of agent experience that
allows to extract a large number of skills. To test our method’s ability to transfer to unseen downstream
tasks, we vary task and environment setup between training data collection and downstream task.

8



Maze Navigation Block Stacking Kitchen Environment

1
2

3

Tr
ai

ni
ng

 
D

at
a

Ta
rg

et
 T

as
ks

4

Figure 4: For each environment we collect a diverse dataset from a wide range of training tasks
(examples on top) and test skill transfer to more complex target tasks (bottom), in which the agent
needs to: navigate a maze (left), stack as many blocks as possible (middle) and manipulate a kitchen
setup to reach a target configuration (right). All tasks require the execution of complex, long-horizon
behaviors and need to be learned from sparse rewards.

Maze Navigation. A simulated maze navigation environment based on the D4RL maze environ-
ment [6]. The task is to navigate a point mass agent through a maze between fixed start and goal
locations. We use a planner-based policy to collect 85 000 goal-reaching trajectories in randomly
generated, small maze layouts and test generalization to a goal-reaching task in a randomly generated,
larger maze. The state is represented as a RGB top-down view centered around the agent. For
downstream learning the agent only receives a sparse reward when in close vicinity to the goal. The
agent can transfer skills like traversing hallways or passing through narrow doors, but needs to learn
to navigate a new maze layout for solving the downstream task.

Block Stacking. The goal of the agent is to stack as many blocks as possible in an environment
with eleven blocks. We collect 37 000 training sequences with a noisy, scripted policy that randomly
stacks blocks on top of each other in a smaller environment with only five blocks. The state is
represented as a RGB front view centered around the agent and it receives binary rewards for picking
up and stacking blocks. The agent can transfer skills like picking up, carrying and stacking blocks,
but needs to perform a larger number of consecutive stacks than seen in the training data on a new
environment with more blocks.

Kitchen Environment. A simulated kitchen environment based on Gupta et al. [9]. We use the
training data provided in the D4RL benchmark [6], which consists of 400 teleoperated sequences in
which the 7-DoF robot arm manipulates different parts of the environment (e.g., open microwave,
switch on stove, slide cabinet door). During downstream learning the agent needs to execute an unseen
sequence of multiple subtasks. It receives a sparse, binary reward for each successfully completed
manipulation. The agent can transfer a rich set of manipulation skills, but needs to recombine them
in new ways to solve the downstream task.

For further details on environment setup, data collection and training, see appendix, sections C and D.

We compare the downstream task performance of our approach to several flat and hierarchical
baselines that test the importance of learned skill embeddings and skill prior:

• Flat Model-Free RL (SAC). Trains an agent from scratch with Soft Actor-Critic
(SAC, [10]). This comparison tests the benefit of leveraging prior experience.

• Behavioral Cloning w/ finetuning (BC + SAC). Trains a supervised behavioral cloning
(BC) policy from the offline data and finetunes it on the downstream task using SAC.

9



• Flat Behavior Prior (Flat Prior). Learns a single-step action prior on the primitive action
space and uses it to regularize downstream learning as described in section 3.2, similar
to [31]. This comparison tests the importance of temporal abstraction through learned skills.

• Hierarchical Skill-Space Policy (SSP). Trains a high-level policy on the skill-embedding
space of the model described in section 3.1 but without skill prior, representative of [22, 16,
29]. This comparison tests the importance of the learned skill prior for downstream task
learning.

C Implementation Details

C.1 Model Architecture and Training Objective

We instantiate the skill embedding model described in section 3.1 with deep neural networks. The
skill encoder is implemented as a one-layer LSTM with 128 hidden units. After processing the full
input action sequence, it outputs the parameters (µz, σz) of the Gaussian posterior distribution in the
10-dimensional skill embedding space Z . The skill decoder mirrors the encoder’s architecture and
is unrolled for H steps to produce the H reconstructed actions. The sampled skill embedding z is
passed as input in every step.

The skill prior is implemented as a 6-layer fully-connected network with 128 hidden units per layer.
It parametrizes the Gaussian skill prior distribution N (µp, σp). For image-based state inputs in maze
and block stacking environment, we first pass the state through a convolutional encoder network with
three layers, a kernel size of three and (8, 16, 32) channels respectively. The resulting feature map is
flattened to form the input to the skill prior network.

We use leaky-ReLU activations and batch normalization throughout our architecture. We optimize
our model using the RAdam optimizer with parameters with β1 = 0.9 and β2 = 0.999, batch size 16
and learning rate 1e−3. Training on a single high-end NVIDIA GPU takes approximately 8 hours.
Assuming a unit-variance Gaussian output distribution our full training objective is:

L =

H∑
i=1

(ai − âi)2︸ ︷︷ ︸
reconstruction

−β DKL
(
N (µz, σz)||N (0, I)

)︸ ︷︷ ︸
regularization

+DKL
(
N (bµzc, bσzc)||N (µp, σp)

)︸ ︷︷ ︸
prior training

. (1)

Here b·c indicates that gradients flowing through these variables are stopped. For Gaussian distribu-
tions the KL divergence can be analytically computed. For non-Gaussian prior parametrizations (e.g.
with Gaussian mixture model or normalizing flow priors) we found that sampling-based estimates
also suffice to achieve reliable, albeit slightly slower convergence. We tune the weighting parameter β
separately for each environment and use β = 1e−2 for maze and block stacking and β = 5e−4 for the
kitchen environment.

C.2 Reinforcement Learning Setup

The architecture of policy and critic mirror the one of the skill prior network. The policy outputs
the parameters of a Gaussian action distribution while the critic outputs a single Q-value estimate.
Empirically, we found it important to initialize the weights of the policy with the pre-trained skill
prior weights in addition to regularizing towards the prior.

We use the hyperparameters of the standard SAC implementation [10] with batch size 256, replay
buffer capacity of 1e6 and discount factor γ = 0.99. We collect 5e3 warmup rollout steps to initialize
the replay buffer before training. We use Adam optimizer with β1 = 0.9, β2 = 0.999 and learning
rate 3e−4 for updating policy, critic and temperature α. Analogous to SAC, we train two separate
critic networks and compute the Q-value as the minimum over both estimates to stabilize training.
The corresponding target networks get updated at a rate of τ = 5e−3. The policies’ action range is
limited in the range [−2 . . . 2] by a tanh "squashing function" (see Haarnoja et al. [10], appendix C).

We tune the target divergence δ separately for each environment and use δ = 1 for the maze navigation
task and δ = 5 for both robot manipulation tasks.

D Environments and Data Collection

10



Maze Navigation Block Stacking

Figure 5: Image-based state representation for
maze (left) and block stacking (right) environ-
ment.

Maze Navigation. The maze navigation envi-
ronment is based on the maze environment in
the D4RL benchmark [6]. Instead of using a
single, fixed layout, we generate random layouts
for training data collection by placing walls with
doorways in randomly sampled positions. For
each collected training sequence we sample a
new maze layout and randomly sample start and
goal position for the agent. Following Fu et al.
[6], we collect goal-reaching examples through
a combination of high-level planner with access
to a map of the maze and a low-level controller
that follows the plan.

For the downstream task we randomly sample a maze that is four times larger than the training data
layouts. We keep maze layout, as well as start and goal location for the agent fixed throughout
downstream learning. The policy outputs (x,y)-velocities for the agent. The state is represented as a
local top-down view around the agent (see Fig. 5). To represent the agent’s velocity, we stack two
consecutive 32× 32px observations as input to the policy. The agent receives a per-timestep binary
reward when the distance to the goal is below a threshold.

Block Stacking. The block stacking environment is simulated using the Mujoco physics engine.
For data collection, we initialize the five blocks in the environment to be randomly stacked on top of
each other or placed at random locations in between. We use a hand-coded data collection policy to
generate trajectories with up to three consecutive stacking manipulations. The location of blocks and
the movement of the agent are limited to a 2D plane and a barrier prevents the agent from leaving the
table. To increase the support of the collected trajectories we add noise to the hard-coded policy by
placing pseudo-random subgoals in between and within stacking sequences.

The downstream task of the agent is to stack as many blocks as possible in a larger version of the
environment with 11 blocks. The environment state is represented through a front view of the agent
(see Fig. 5). The policies’ input is a stack of two 32× 32px images and it outputs (x,z)-displacements
for the robot as well as a continuous action in range [0 . . . 1] that represents the opening degree of
the gripper. The agent receives per-timestep binary rewards for lifting a block from the ground and
moving it on top of another block. It further receives a reward proportional to the height of the highest
stacked tower.

Kitchen environment. We use the kitchen environment from the D4RL benchmark [6] which was
originally published by Gupta et al. [9]. For training we use the data provided in D4RL (dataset
version "mixed"). It consists of trajectories collected via human tele-operation that each perform
four consecutive manipulations of objects in the environment. There are seven manipulatable objects
in the environment. The downstream task of the agent consists of performing an unseen sequence
of four manipulations - while the individual manipulations have been observed in the training data,
the agent needs to learn to recombine these skills in a new way to solve the task. The state is a
30-dimensional vector representing the agent’s joint velocities as well as poses of the manipulatable
objects. The agent outputs 7-dimensional joint velocities for robot control as well as a 2-dimensional
continuous gripper opening/closing action. It receives a one-time reward whenever fulfilling one of
the subtasks.

E Ablation Studies

We analyze the influence of skill horizon H and dimensionality of the learned skill space |Z| on
downstream performance in Fig. 8. We see that too short skill horizons do not afford sufficient
temporal abstraction. Conversely, too long horizons make the skill exploration problem harder, since
a larger number of possible skills gets embedded in the skill space. Therefore, the policy converges
slower.

We find that the dimensionality of the learned skill embedding space needs to be large enough to
represent a sufficient diversity of skills. Beyond that, |Z| does not have a major influence on the
downstream performance. We attribute this to the usage of the learned skill prior: even though the

11



Skills + Prior 
(Ours)

Flat PriorSkills w/o Prior

Figure 6: Exploration behavior of our method vs. alternative transfer approaches on the downstream
maze task. Through learned skill embeddings and skill priors our method can explore the environment
more widely. We visualize positions of the agent during 1M steps of exploration rollouts in blue and
mark episode start and goal positions in green and red respectively.

Ours

Flat Prior

SSP      
w/o Prior

time

Figure 7: Comparison of policy execution traces on the kitchen environment. Following Fu et al. [6],
the agent’s task is to (1) open the microwave, (2) move the kettle backwards, (3) turn on the burner
and (4) switch on the light. Red frames mark the completion of subtasks. Our skill-prior guided
agent (top) is able to complete all four subtasks. In contrast, the agent using a flat single-action
prior (middle) only learns to solve two subtasks, but lacks temporal abstraction and hence fails to
solve the complete long-horizon task. The skill-space policy without prior guidance (bottom) cannot
efficiently explore the skill space and gets stuck in a local optimum in which it solves only a single
subtask. Best viewed electronically and zoomed in.

nominal dimensionality of the high-level policies’ action space increases, its effective dimensionality
remains unchanged since the skill prior focuses exploration on the relevant parts of the skill space.

F Reuse of Learned Skill Priors

0.00 0.15 0.30 0.45 0.60
Environment steps (1M)

0

1

2

3

4

St
ac

ke
d 

Bl
oc

ks

Skill Horizon

H = 30
H = 10
H = 3

0.00 0.15 0.30 0.45 0.60
Environment steps (1M)

0

1

2

3

4

St
ac

ke
d 

Bl
oc

ks

Embedding Dimension

|Z| = 30
|Z| = 10
|Z| = 2

Figure 8: Ablation analysis of skill horizon and skill space
dimensionality on block stacking task. See text for details.

Our approach has two separate stages:
(1) learning of skill embedding and
skill prior from offline data and
(2) prior-regularized downstream RL.
Since the learning of the skill prior is
independent of the downstream task,
we can reuse the same skill prior for
guiding learning on multiple down-
stream tasks. To test this, we learn
a single skill prior on the maze envi-
ronment depicted in Fig. 4 (left) and
use it to train multiple downstream task agents that reach different goals.

12



1

2

3

1 2 3

Figure 9: Reuse of one learned skill prior for multiple downstream tasks. We train a single skill
embedding and skill prior model and then use it to guide downstream RL for multiple tasks. Left: We
test prior reuse on three different maze navigation tasks in the form of different goals that need to be
reached. (1)-(3): Agent rollouts during training; the darker the rollout paths, the later during training
they were collected. The same prior enables efficient exploration for all three tasks, but allows for
convergence to task-specific policies that reach each of the goals upon convergence.

In Fig. 9 we show a visualization of the training rollouts in a top-down view, similar to the visualization
in Fig. 6; darker trajectories are more recent. We can see that the same prior is able to guide
downstream agents to efficiently learn to reach diverse goals. All agents achieve ∼ 100 % success
rate upon convergence. Intuitively, the prior captures the knowledge that it is more meaningful to e.g.
cross doorways instead of crashing into walls, which helps exploration in the maze independent of
the goal position.

13


	Introduction
	Related Work
	Approach
	Learning Continuous Skill Embeddings and Skill Priors
	Skill Prior Regularized Reinforcement Learning

	Experiments
	Action-prior Regularized Soft Actor-Critic
	Environment and Comparison Details
	Implementation Details
	Model Architecture and Training Objective
	Reinforcement Learning Setup

	Environments and Data Collection
	Ablation Studies
	Reuse of Learned Skill Priors

