
Motion Planner Augmented Reinforcement Learning
for Robot Manipulation in Obstructed Environments

Jun Yamada1∗, Youngwoon Lee1∗, Gautam Salhotra2, Karl Pertsch1,
Max Pflueger2, Gaurav S. Sukhatme2, Joseph J. Lim1, Peter Englert2

1 Cognitive Learning for Vision and Robotics Lab
2 Robotic Embedded Systems Laboratory

Department of Computer Science
University of Southern California, Los Angeles, CA

Abstract

Deep reinforcement learning (RL) agents are able to learn contact-rich manipula-
tion tasks by maximizing a reward signal, but require large amounts of experience,
especially in environments with many obstacles that complicate exploration. In
contrast, motion planners use explicit models of the agent and environment to plan
collision-free paths to faraway goals, but suffer from inaccurate models in tasks
that require contacts with the environment. To combine the benefits of both ap-
proaches, we propose motion planner augmented RL (MoPA-RL) which augments
the action space of an RL agent with the long-horizon planning capabilities of
motion planners. Based on the magnitude of the action, our approach smoothly
transitions between directly executing the action and invoking a motion planner.
We evaluate our approach on various simulated manipulation tasks and compare it
to alternative action spaces in terms of learning efficiency and safety. The experi-
ments demonstrate that MoPA-RL increases learning efficiency, leads to a faster
exploration, and results in safer policies that avoid collisions with the environment.
Videos and code are available at https://clvrai.com/mopa-rl.

1 Introduction

RL Policy

∥at∥∞ ≤ Δqstep

Motion Planner

False

Environment

True

at = Δqt

stMP-Augmented Agent

τ0:H

Figure 1: Our framework extends an RL
policy with a motion planner. If the pre-
dicted action by the RL policy is above
a threshold ∆qstep, the motion planner is
called. Otherwise, it is directly executed.

In recent years, deep reinforcement learning (RL) has
shown promising results in continuous control prob-
lems [1, 2, 3, 4, 5, 6, 7]. Driven by rewards, robotic agents
can learn tasks such as grasping [8, 9, 10] and peg in-
sertion [10]. However, prior works mostly operated in
controlled and uncluttered environments, whereas in real-
world environments, it is common to have many objects
unrelated to the task, which makes exploration challenging.
This problem is exacerbated in situations where feedback
is scarce and considerable exploration is required before
a learning signal is received.

Motion planning (MP) is an alternative for performing
robot tasks in complex environments, and has been widely
studied in the robotics literature [11, 12, 13, 14, 15, 16,
17]. MP methods, such as RRT [12] and PRM [11], can
find a collision-free path between two robot states in an

∗Equal contribution. Correspondence to: jy_597@usc.edu and lee504@usc.edu

NeurIPS 2019 Workshop on Robot Learning: Control and Interaction in the Real World, Vancouver, Canada

https://clvrai.com/mopa-rl
mailto:jy\protect _597@usc.edu
mailto:lee504@usc.edu

Motion Plannner Direct Action Execution

a1

<latexit sha1_base64="O54TWJ9WDlmQQzQPLLiUwogG7+A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYL0VvHisaD+gDWWz3bRLN5uwOxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkQKg6777RQ2Nre2d4q7pb39g8Oj8vFJ28SpZrzFYhnrbkANl0LxFgqUvJtoTqNA8k4wuZ37nSeujYjVI04T7kd0pEQoGEUrPdCBNyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9WvbmvVRr1PI4inME5XIIH19CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gDpdY2L</latexit>

a3

<latexit sha1_base64="aYhOpn4jx3J/mPZ5+QjnRHdKSfg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0YL0VvHisaG2hDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjRx2nimGLxSJWnYBqFFxiy3AjsJMopFEgsB2Mb2Z++wmV5rF8MJME/YgOJQ85o8ZK97R/2S9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhHU/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVfJ4UfVq1eu7WqVRz+Mowgmcwjl4cAUNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/sfY2N</latexit>

a4, a5, a6

<latexit sha1_base64="Bb5qDElV/K/9pPglabrwcBhRUUQ=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgQcquVK23ghePFewHbJclm2bb0GyyJLNCKf0ZXjwo4tVf481/Y9ruQVsfDDzem2FmXpQKbsB1v53C2vrG5lZxu7Szu7d/UD48ahuVacpaVAmluxExTHDJWsBBsG6qGUkiwTrR6G7md56YNlzJRxinLEjIQPKYUwJW8klYuyDhla3rsFxxq+4ceJV4OamgHM2w/NXrK5olTAIVxBjfc1MIJkQDp4JNS73MsJTQERkw31JJEmaCyfzkKT6zSh/HStuSgOfq74kJSYwZJ5HtTAgMzbI3E//z/AziejDhMs2ASbpYFGcCg8Kz/3Gfa0ZBjC0hVHN7K6ZDogkFm1LJhuAtv7xK2pdVr1a9fahVGvU8jiI6QafoHHnoBjXQPWqiFqJIoWf0it4ccF6cd+dj0Vpw8plj9AfO5w+SvpAh</latexit>

a7, a8, a9, a10

<latexit sha1_base64="AVQqHTiv/WC1VTcPNJ6ii24+e6A=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgQkoihba7ghuXFewD2hBuppN26GQSZiZiCf0VNy4UceuPuPNvnLZZaOuBA4dz7mXunCDhTGnH+bYKW9s7u3vF/dLB4dHxiX1a7qo4lYR2SMxj2Q9AUc4E7WimOe0nkkIUcNoLpreLvPdIpWKxeNCzhHoRjAULGQFtLN8ug1+/Br9h2DTMXGfu2xWn6iyBN4WbiwrK0fbtr+EoJmlEhSYclBq4TqK9DKRmhNN5aZgqmgCZwpgOjBQQUeVly9vn+NI4IxzG0lBovHR/b2QQKTWLAjMZgZ6o9Wxh/pcNUh02vIyJJNVUkNVDYcqxjvGiCDxikhLNZ0YAkczciskEJBBt6iqZEtz1L2+K7k3VrVWb97VKq5HXUUTn6AJdIRfVUQvdoTbqIIKe0DN6RW/W3Hqx3q2P1WjBynfO0B9Ynz+plZLm</latexit>

a2

<latexit sha1_base64="pA+OxdpcjvWvWOYghkPH09wGnSk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKwXorePFY0dZCG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYkUBl332ylsbG5t7xR3S3v7B4dH5eOTjolTzXibxTLW3YAaLoXibRQoeTfRnEaB5I/B5GbuPz5xbUSsHnCacD+iIyVCwSha6Z4OaoNyxa26C5B14uWkAjlag/JXfxizNOIKmaTG9Dw3QT+jGgWTfFbqp4YnlE3oiPcsVTTixs8Wp87IhVWGJIy1LYVkof6eyGhkzDQKbGdEcWxWvbn4n9dLMWz4mVBJilyx5aIwlQRjMv+bDIXmDOXUEsq0sLcSNqaaMrTplGwI3urL66RTq3r16vVdvdJs5HEU4QzO4RI8uIIm3EIL2sBgBM/wCm+OdF6cd+dj2Vpw8plT+APn8wfq+Y2M</latexit>

Figure 2: To learn both collision-avoidance and contact-rich skills, our method (MoPA-RL) combines
motion planning and model-free RL. In the images, the green robot visualizes the target state provided
by the policy. Initially, motion planning can be used to navigate to target states a1, a2, and a3 while
avoiding collision. Once the arm passes over other legs, a sequence of primitive actions a4 − a10 are
directly executed to assemble the leg and tabletop.

obstructed environment using explicit models of the robot and the environment. However, MP
struggles on tasks that involve rich interactions with objects or other agents, where it is challenging
to obtain accurate contact models. Furthermore, MP methods cannot generate plans for complex
manipulation tasks (e.g., object pushing) that cannot be simply specified by a single goal state.

In this work, we propose motion planner augmented RL (MoPA-RL) which combines the strengths
of both MP and RL by augmenting the action space of an RL agent with the capabilities of a motion
planner. Our approach has three benefits: (1) MoPA-RL can add motion planning capabilities to any
RL agent with joint space control as it does not require changes to the agent’s architecture or training
algorithm; (2) MoPA-RL allows an agent to freely switch between MP and direct action execution
by controlling the scale of action; and (3) the agent naturally learns trajectories that avoid collisions
by leveraging motion planning, allowing for safe policy execution even in obstructed environments.
We show that MoPA-RL learns to solve manipulation tasks in these obstructed environments while
model-free RL agents suffer from local optima and difficult exploration.

2 Method

2.1 Motion Planner Augmented Reinforcement Learning

We formulate the problem as a Markov decision process (MDP) defined by a tuple (S,A, P,R, ρ, γ)
consisting of states s ∈ S , actions a ∈ A, transition function P (s′ ∈ S|s, a), reward R(s, a), initial
state distribution ρ, and discount factor γ ∈ [0, 1]. The agent’s action distribution at time step t
is represented by a policy πφ(at|st) with state st ∈ S and action at ∈ A, where φ denotes the
parameters of the policy. Once the agent executes the action at, it receives a reward rt = R(st, at).
The performance of the agent is evaluated using the discounted sum of rewards

∑T−1
t=0 γtR(st, at),

where T denotes the episode horizon.

In RL for continuous control, the action space can be defined as the joint displacement at = ∆qt,
where qt represents robot joint angles. To prevent collision and reduce control errors, the action
space is constrained to be small, A = [−∆qstep,∆qstep]d, where ∆qstep represents the maximum joint
displacement for a direct action execution [18] and d denotes the dimensionality of the action space.

On the other hand, a kinematic motion planner computes a collision-free path from a start joint
state qt to a goal joint state gt. We denote the motion planner as MP(qt, gt) and the collision-free
path as τ0:H = (qt, qt+1, . . . , qt+H), where H is the number of states in the path and qt+H = gt.
The sequence of actions at:t+H−1 that realize the path τ0:H can be obtained by computing the
displacement between consecutive joint states, ∆τ0:H = (∆qt, . . . ,∆qt+H−1).

To efficiently learn a manipulation task in an obstructed environment, we propose motion planner aug-
mented reinforcement learning (MoPA-RL). Our method harnesses a motion planner for controlling a
robot toward a faraway goal without colliding with obstacles, while directly executing small actions
for sophisticated manipulation. By utilizing MP, the robot can effectively explore the environment
avoiding obstacles and passing through narrow passages. For contact-rich tasks, where MP often fails
due to an inaccurate contact model, model-free RL can be used instead of the motion planner.

2

(a) 2D Push (b) Sawyer Push (c) Sawyer Lift (d) Sawyer Assembly

Figure 3: Manipulation tasks in obstructed environments. (a) 2D Push: The 2D reacher agent has
to push the green ball to the goal (black circle). (b) Sawyer Push: Sawyer arm should push the red
box toward the goal (green circle). (c) Sawyer Lift: Sawyer arm takes out the can from the long box.
(d) Sawyer Assembly: Sawyer arm moves and inserts the table leg into the hole in the table top. The
environment is built upon the IKEA furniture assembly environment [19].

As illustrated in Figure 1, our framework consists of two components: an RL policy πφ(a|s) and a
motion planner MP(q, g). In our framework, the motion planner is integrated into the RL policy by
enlarging its action space, Ã = [−∆qMP,∆qMP]d. The agent directly executes an action if it is in
the original action space. If an action is sampled from outside of the original action space, which
requires a large movement of the agent, the motion planner is called and computes a path to realize
the large joint displacement.

2.2 Action Space Rescaling

The proposed motion planner augmented action space Ã = [−∆qMP,∆qMP]d extends the typical
action space for model-free RL, A = [−∆qstep,∆qstep]d. An action ã from the original action space
A is directly executed with a feedback controller. On the other hand, an action from outside of A is
handled by the motion planner. However, in practice, ∆qMP is much larger than ∆qstep, which results
in a drastic difference between the proportions of the action spaces for direct action execution and
motion planning. Especially with high-dimensional action spaces, this leads to very low probability
(∆qstep/∆qMP)

d of selecting direct action execution during exploration. Hence, this naive action
space partitioning biases using motion planning over direct action execution and leads to failures of
learning contact-rich manipulation tasks.

To circumvent this issue, we balance the ratio of sampling actions for direct action execution a ∈ A
and motion plan actions ã ∈ Ã \ A by rescaling the action space. To increase the portion of direct
action execution, we apply a piecewise linear function f to the policy output u ∈ [−1, 1]d. From the
policy output u, the action (joint displacement) of the i-th joint can be computed by

ai = f(ui) =

{∆qstep

ω ui |ui| ≤ ω
sign(ui)

[
∆qstep + (∆qMP −∆qstep)

(
|ui|−ω
1−ω

)]
otherwise

, (1)

where ω ∈ [0, 1] determines the desired ratio between the sizes of the two action spaces.

3 Experiments

To verify efficiency and safety of our method, we conduct experiments on the following hard-
exploration tasks in obstructed settings: 2D Push, Sawyer Push, Sawyer Lift, and Sawyer Assembly.
We train 2D Push, Sawyer Push and Sawyer Assembly using sparse rewards. For Sawyer Lift, we use
a shaped reward function, similar to Fan et al. [10]. In all tasks, the agent receives a sparse completion
reward upon solving the tasks. Further details about the environments and reward functions can be
found in the supplementary material.

We compare the performance of our method, MoPA-SAC, against vanilla Soft Actor-Critic (SAC,
[3]), SAC with the larger action space Ã (SAC Large), and SAC with IK controller (SAC IK). We
also test MoPA-SAC with explicitly choosing between MP and RL (MoPA-SAC Discrete) and our
method on the Cartesian action space instead of joint pose (MoPA-SAC IK).

3

0.00 0.25 0.50 0.75 1.00
Environment steps (1M)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

SAC
SAC Large
SAC IK
MoPA-SAC
MoPA-SAC discrete
MoPA-SAC IK

(a) 2D Push

0.0 0.3 0.6 0.9 1.2 1.5
Environment steps (1M)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(b) Sawyer Push

0.0 0.3 0.6 0.9 1.2 1.5
Environment steps (1M)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

(c) Sawyer Lift

0.0 0.3 0.6 0.9 1.2 1.5

Environment steps (1M)
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

(d) Sawyer Assembly

Figure 4: Success rates of our MoPA-SAC (green) and several baselines averaged over 4 seeds. Our
approach can leverage the motion planner to converge with fewer environment steps than the baseline.
Both SAC and ours are trained for the same number of environment steps.

Figure 5: End-effector positions of SAC
(left) and MoPA-SAC (right) after the
first 100k training environment steps in
2D Push. The usage of the motion plan-
ner allows the agent to fast exploration.

We compare the learning performance of all approaches on
four tasks in Figure 4. Only our MoPA-SAC approach is
able to learn all four tasks, while other methods converge
more slowly or struggle to obtain any rewards. While
conventional model-free RL agents struggle to learn com-
plex motions from scratch, our approach can leverage the
capabilities of the motion planner to successfully learn to
produce collision-free movements.

To further analyze the exploration efficiency, we compare
the exploration behavior in the first 100k training steps of
our MoPA-RL agent and the SAC agent on the 2D Push
task in Figure 5. The SAC agent initially explores only in
close proximity to its starting position as it struggles to find
valid trajectories between the obstacles. In contrast, the
motion-planner augmented agent explores a wider range
of target positions by using the motion planner to find
collision-free trajectories to faraway goal states. This allows the agent to more quickly learn the task,
especially in the presence of many obstacles.

MoPA-SAC (Ours)

MoPA-SAC IK

MoPA-SAC Discrete

SAC

SAC IK

Figure 6: Averaged contact force in an
episode over 7 executions in 2D Push.
MoPA-RL naturally learns collision-safe
trajectories with motion planning.

The ability to execute safe collision-free trajectories, even
in environments with many obstacles, is important for the
application of RL agents in the real world. We hypothesize
that the MoPA-RL agents can leverage the motion planner
to learn trajectories that avoid unnecessary collisions. To
validate this, we report the average contact force of all
robot joints on successful rollouts from the trained poli-
cies in Figure 6. The MoPA-RL agents show low average
contact forces that are mainly the result of the necessary
contacts with the objects that need to be pushed or lifted.
Crucially, these agents are able to perform the manipula-
tions safely while avoiding collisions with obstacles. In
contrast, conventional RL agents are unable to effectively
avoid collisions in the obstructed environments, leading
to high average contact forces.

4 Conclusion

In this work, we propose a flexible framework that combines the benefits of both motion planning
and reinforcement learning for sample-efficient learning of continuous robot control in obstructed
environments. Specifically, we augment a model-free RL policy with a sampling-based motion
planner with minimal task-specific knowledge, the policy can learn when to use the motion planner
and when to take a single-step action directly through reward maximization. The experimental results
show that our approach improves the training efficiency over conventional model-free RL baselines,
especially in environments that require object manipulations in the presence of many obstacles.

4

Acknowledgments and Disclosure of Funding

We thank our colleagues from the CLVR lab and RESL for the valuable discussions that considerably
assisted the research.

References
[1] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous

control with deep reinforcement learning. International Conference on Learning Representations, 2016.

[2] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

[3] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In International Conference on Machine Learning, pages
1856–1865, 2018.

[4] Y. Lee, S.-H. Sun, S. Somasundaram, E. Hu, and J. J. Lim. Composing complex skills by learning transition
policies. In International Conference on Learning Representations, 2019.

[5] Y. Lee, J. Yang, and J. J. Lim. Learning to coordinate manipulation skills via skill behavior diversification.
In International Conference on Learning Representations, 2020.

[6] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. Journal of
Machine Learning Research, 2016.

[7] S. Levine and V. Koltun. Guided policy search. In International Conference on Machine Learning, 2013.

[8] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning Hand-Eye Coordination for Robotic Grasping
with Deep Learning and Large-Scale Data Collection. In International Symposium on Experimental
Robotics, 2016.

[9] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakrishnan,
V. Vanhoucke, et al. Scalable deep reinforcement learning for vision-based robotic manipulation. In
Conference on Robot Learning, pages 651–673, 2018.

[10] L. Fan, Y. Zhu, J. Zhu, Z. Liu, O. Zeng, A. Gupta, J. Creus-Costa, S. Savarese, and L. Fei-Fei. Surreal:
Open-source reinforcement learning framework and robot manipulation benchmark. In Conference on
Robot Learning, pages 767–782, 2018.

[11] N. M. Amato and Y. Wu. A randomized roadmap method for path and manipulation planning. In IEEE
International Conference on Robotics and Automation, 1996.

[12] S. M. Lavalle. Rapidly-exploring random trees: A new tool for path planning. Technical report, Iowa State
University, 1998.

[13] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. International
Journal of Robotics Research, 30(7):846–894, 2011.

[14] M. Elbanhawi and M. Simic. Sampling-based robot motion planning: A review. IEEE Access, 2014.

[15] L. Kavraki and J.-C. Latombe. Randomized preprocessing of configuration for fast path planning. In IEEE
International Conference on Robotics and Automation, 1994.

[16] M. Overmars. A random approach to motion planning. Technical Report RUU-CS-92-32, Department of
Computer Science, Utrecht University, 1992.

[17] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical Report TR 98-11,
Computer Science Department, Iowa State University, 1998.

[18] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates. In IEEE International Conference on Robotics and Automation, 2017.

[19] Y. Lee, E. S. Hu, Z. Yang, A. Yin, and J. J. Lim. IKEA furniture assembly environment for long-horizon
complex manipulation tasks. arXiv preprint arXiv:1911.07246, 2019.

[20] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic methods.
In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
ICML, pages 1582–1591. PMLR, 2018.

5

[21] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query paoverth planning. In
IEEE International Conference on Robotics and Automation, volume 2, pages 995–1001. IEEE, 2000.

[22] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE Robotics & Automation
Magazine, 19(4):72–82, 2012.

[23] R. Geraerts and M. H. Overmars. Creating high-quality paths for motion planning. The International
Journal of Robotics Research, 26(8):845–863, 2007.

[24] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.

[25] L. Zhang and D. Manocha. An efficient retraction-based rrt planner. In IEEE International Conference on
Robotics and Automation, pages 3743–3750, 2008.

[26] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In International
Conference on Learning Representations, 2017.

6

A Ablation Studies

A.1 Action range

We analyze the influence of the action range ∆qMP on task performance in Figure 7a. We find that
for too small action ranges the policy cannot efficiently explore the environment and does not learn
the task. Yet, for too large action ranges the number of possible actions the agent needs to explore is
large, leading to slow convergence. In between, our approach is robust to the choice of action range
and able to learn the task efficiently.

A.2 Action rescaling and direct action execution

In Figure 7b we ablate the action space rescaling introduced in Section 2.2. We find that action space
rescaling improves learning performance by encouraging balanced exploration of both single-step
and motion planner action spaces. More crucial is however our hybrid action space formulation with
direct and MP action execution: MoPA-SAC trained without direct action execution struggles on
contact-rich tasks, since it is challenging to use the motion planner for solving contact-rich object
manipulations.

0.0 0.3 0.6 0.9 1.2 1.5
Environment Steps (1M)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

qMP = 0.1
qMP = 0.3
qMP = 0.5
qMP = 1.0

(a) Action range ∆qMP

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (1M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s r

at
e

MoPA-SAC (Ours)
MoPA-SAC w/o rescaling
MoPA-SAC w/o direct

(b) Action space rescaling

Figure 7: (a) Averaged contact force in an episode over 7 executions in Push 2D. Leveraging a motion
planner, all variants of our method naturally learn collision-safe trajectories. (b) Comparison of our
model with different action range values ∆qMP on Sawyer Lift. (c) Comparison of our model w/ and
w/o action rescaling or w/o direct action execution on Sawyer Lift.

A.3 Reuse of Motion Planning Trajectories

As mentioned in Section D, to improve sample efficiency of motion plan actions, we sample n
sub-trajectories of the motion plan trajectory τ0:H = (qt, qt+1, . . . , qt+H) and augment the replay
buffer with sub-sampled motion plan transitions (st+ai ,∆τai:bi , st+bi , R̃(st+ai ,∆τai:bi)), where
ai < bi ∈ [0, H] and i ∈ [1, n].

Figure 8a shows the success rates of our model for different n, the number of samples reused
per motion plan trajectory. Reusing trajectory of motion planner in this way improves the sample
efficiency as the success rate starts increasing earlier than the one without reusing motion plan
trajectories (n = 0). However, augmenting too many samples (n = 30, 45) degrades the performance
since it biases the distribution of the replay buffer to motion plan actions and reduces the sample
efficiency of the direct action executions, which results in slow learning of contact-rich skills. This
biased distribution of transitions leads to convergence towards sub-optimal solutions while the model
without bias n = 0 eventually finds a better solution.

A.4 Further Study on Action Space Rescaling

In Section 2.2, we proposed action space rescaling to balance the sampling ratio between direct
action execution and motion planning. As illustrated in Figure 8b, our method without action space
rescaling (ω = 0.1) fails to solve Sawyer Assembly while the policy with action space rescaling learns

7

0.0 0.3 0.6 0.9 1.2 1.5
Environment Steps (1M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s r

at
e

n=45
n=30
n=15
n=10
n=5
n=0

(a) Number of reused sample n

0.0 0.3 0.6 0.9 1.2 1.5
Environment Steps (1M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s r

at
e

= 0.1
= 0.3
= 0.5
= 0.7

(b) Ratio in action space ω

Figure 8: Learning curves of ablated models on Sawyer Assembly. (a) Comparison of our model with
different number of samples reused from trajectories of the motion planner. (b) Comparison of our
model with different action space rescaling parameter ω.

to solve the task. This failure is mainly because direct action execution is crucial for inserting the
table leg and the policy without action space rescaling rarely explores the direct action execution
space, which makes the agent struggle to solve the task. We also find that the ω value is not sensitive
in Sawyer Assembly, as different ω values achieve similar success rates.

A.5 Performance in Uncluttered Environments

We further verify whether our method does not degrade the performance of model-free RL in
uncluttered environments. Therefore, we remove obstacles, such as a box on a table in Sawyer Lift
and three other table legs in Sawyer Assembly. Figure 9a and Figure 9b show that our method is as
sample efficient as the baseline SAC and it is even better in Sawyer Lift w/o box because our method
does not need to learn how to control an arm for the reaching skill.

0.0 0.3 0.6 0.9 1.2 1.5
Environment Steps (1M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s r

at
e

SAC
MoPA-SAC (Our method)

(a) Sawyer Lift w/o box

0.0 0.3 0.6 0.9 1.2 1.5
Environment Steps (1M)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

SAC
MoPA-SAC (Our method)

(b) Sawyer Assembly w/o legs

Figure 9: Success rate on (a) Sawyer Lift w/o box and (b) Sawyer Assembly w/o legs.

A.6 Handling of Invalid Target Joint States for Motion Planning

When a predicted target joint state gt = qt + ãt for motion planning is in collision with obstacles,
instead of penalizing or using the invalid action ãt, we search for a valid action by iteratively moving
the target joint state towards the current joint state and executing the new valid action, described in
Section B. We investigate the importance of handling the invalid actions for motion planning, by
comparing to a naive approach for handling invalid actions in which the robot does not execute any
action and a transition (st, at, rt, st+1) is added into a replay buffer, where st = st+1 and rt is the
reward of being at the current state. Figure 10a and Figure 10b show that MoPA-SAC with naive
handling of invalid states cannot learn to solve the tasks, which implies that our proposed handling of
invalid target state is very crucial to train MoPA-SAC agents. A reason behind this behavior is that
the agent can explore the state space even though the invalid target joint state is given.

8

0.0 0.3 0.6 0.9 1.2 1.5
Environment Steps (1M)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s r

at
e

w/ Invalid target handlng
w/o Invalid target handling

(a) Sawyer Lift

0.0 0.3 0.6 0.9 1.2 1.5
Environment Steps (1M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s r

at
e

w/ Invalid target handlng
w/o Invalid target handling

(b) Sawyer Assembly

Figure 10: Ablation of effect from invalid target handling on (a) Sawyer Lift and (b) Sawyer Assembly.

0.0 0.3 0.6 0.9 1.2 1.5
Environment steps (1M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s r

at
e

MoPA-SAC RRT-Connect
MoPA-SAC RRT*

(a) Different motion planner

0.0 0.3 0.6 0.9 1.2 1.5
Environment steps (1M)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s r

at
e

MoPA-SAC
MoPA-TD3

(b) Different RL algorithm

Figure 11: Learning curves of ablated models on Sawyer Assembly. (a) Comparison of our model
with different motion planner algorithms. (b) Comparison of our model with different RL algorithms.

A.7 Ablation of Motion Planning algorithm

We also test whether our framework is compatible with different motion planning algorithms. Figure
Figure 11a shows the comparison of our method using RRT-connect and RRT* [13], and MoPA-SAC
with RRT* learns to solve tasks less efficiently than MoPA-SAC with RRT-connect, since, in our
experiments, RRT-Connect found better paths than RRT* within the limited time given to both
planners.

A.8 Ablation of Model-free RL algorithm

In order to verify the compatibility of our method with different RL algorithms, we replaced SAC
with TD3 [20] and compare those results. As illustrated in Figure 11b, MoPA-TD3 shows unstable
training, though the best performing seed can achieve around 1.0 success rate.

B Motion Planner Details

Our method seamlessly integrates model-free RL and motion planning through the augmented action
space. Our method is agnostic to the choice of motion planning algorithm. Specifically, we use
RRT-Connect [21] from the open motion planning library (OMPL) [22] due to its fast computation
time. After the motion planning, a shortcutting algorithm [23] is used to smooth the path. For collision
checking, we use the collision checking function provided by the MuJoCo physics engine [24].

The expensive computations performed by the motion planner can be a major bottleneck for RL
training. Thus, we design the motion planning procedure with several features to improve training
efficiency. First, we reduce the number of costly motion planner executions by using a simpler motion
planner that attempts to linearly interpolate between the initial and goal state before executing the
sampling-based motion planner. If the interpolated path is collision-free, our method uses this path for

9

execution and skips calling the expensive motion planning algorithm. If the path is not collision-free,
then RRT-Connect is used to find a collision-free path amongst obstacles.

Second, the RL policy can predict a goal joint state that is in collision or not reachable by the robot.
A simple way to resolve this action is to ignore the current action and sample a new action. However,
it slows down training because the policy can repeatedly output invalid actions, especially in an
environment with many obstacles. Instead, we find an alternative collision-free goal joint state
by iteratively reducing the action magnitude and checking collision, similar to [25]. This strategy
prevents the policy from being stuck or wasting samples, which results in improved training efficiency.
Finally, we allow the motion planner to derive plans while grasping an object by considering the
object as a part of the robot once it holds the object.

C Environment Details

All of our environments are simulated in the MuJoCo physics engine [24]. The positions of the
end-effector, object, and goal are defined as peef, pobj, and pgoal, respectively. T is the maximum
episode horizon.

Table 1: Environment specific parameters for MoPA-SAC

Environment Action dimension Reward scale ∆qstep ∆qMP ω n T

2D Push 4 0.2 0.1 1.0 0.7 30 400
Sawyer Push 8 1.0 0.05 0.5 0.7 15 250
Sawyer Lift 8 0.5 0.05 0.5 0.5 15 250

Sawyer Assembly 7 1.0 0.05 0.5 0.5 15 250

C.1 2D Push

A reacher agent with 4 joints needs to first reach an object while avoiding obstacles and then push the
object to the goal region.

Success criteria: ||pgoal − pobj||2 ≤ 0.05.

Initialization: The goal and box position are randomly sampled from regions shown in Figure 5.
Moreover, random noise is added to the agent’s initial pose.

Observation: The observation consists of (sin θ, cos θ) for each joint angle θ, velocity of each joint,
the box position (xobj, yobj), the box velocity, and end-effector position (xeef, yeef).

Rewards: Instead of defining a dense reward over all states which causes sub-optimal solutions, we
define the reward function such that the agent receives a signal only when the end-effector is close to
the object (i.e., ||peef − pobj||2 ≤ 0.1). The reward function consists of rewards for reaching the box
and pushing the box to the goal region.

Rpush = 0.1 · 1||peef−pobj||2≤0.1(1− tanh(5||peef − pobj||2))

+ 0.3 · 1||pobj−pgoal||2≤0.1(1− tanh(5||pobj − pgoal||2)) + 150 · 1success
(2)

C.2 Sawyer Lift

In Sawyer Lift the agent has to pick up an object inside a box. To lift the object, the Sawyer arm first
needs to get into the box, grasp the object, and lift the object above the box.

Success criteria: The goal criteria is to lift the object above the box height.

Initialization: Random noise sampled from N (0, 0.02) is added to the initial position of a sawyer
arm. The target position is always above the height of the box.

Observation: The observation consists of each joint state (sin θ, cos θ), velocity of each joint, the
goal position, the object position and quaternion, end-effector coordinates, the relative distance
between the end-effector and object.

10

Rewards: This task can be decomposed into three stages; reach, grasp, and lift. For each of the
stages, we define the reward function, and the agent receives the maximum reward over three values.
The success of grasp is detected when both of two fingers of the end-effector touch the object.

Rlift = max
(

0.1 · (1− tanh(10||peef − pobj||2))︸ ︷︷ ︸
reach

, 0.35 · 1grasp︸ ︷︷ ︸
grasp

,

0.35 · 1grasp + 0.15 · (1− tanh(15 ·max(pzgoal − pzobj, 0)))︸ ︷︷ ︸
lift

) (3)

C.3 Sawyer Push

Sawyer Push requires the agent to reach an object in a box and push the object toward a goal region.

Success criteria: ||pgoal − pobj||2 ≤ 0.05.

Initialization: The random noise sampled from N (0, 0.02) is added to the goal position and the
initial pose of the Sawyer arm.

Observation: The observation consists of each joint state (sin θ, cos θ), velocity of each joint, the
goal position pgoal, the object position and quaternion, end-effector coordinates peef, the relative
distance between the end-effector and object, and the relative distance between the object and target.

Rewards:
Rpush = 0.1 · 1||peef−pobj||2≤0.1(1− tanh(5||peef − pobj||2))

+ 0.5 · 1||pobj−pgoal||2≤0.1(1− tanh(5||pobj − pgoal||2)) + 150 · 1success
(4)

C.4 Sawyer Assembly

The agent needs to avoid the other table legs while moving the leg in a gripper to a hole. Note that
the table leg that the agent manipulates is attached to the gripper; therefore, it does not need to learn
how to grasp the leg. In this task, if the robot hits the table legs, the table position moves. This
environment is based on the IKEA furniture assembly environment [19].

Success criteria: The goal criteria is when the table leg is pegged into a hole. The goal position is at
the bottom of the hole, and its goal criteria is represented by ||pgoal − phead||2 ≤ 0.05, where phead is
position of head of the pole.

Initialization: Random noise sampled from N (0, 0.02) is added to the initial position of the Sawyer
arm. The target and obstacle position are fixed.

Observation: The observation consists of each joint state (sin θ, cos θ), velocity of each joint, the
hole position pgoal, positions of two ends of the leg in hand phead, ptail, the object quaternion.

Rewards:

Rassembly = 0.4 · 1||phead−phole||2≤0.3(1− tanh(15||phead − phole||2)) + 150 · 1success (5)

D Training Details

We model the policy πφ as a neural network. The policy and critic networks consist of 3 fully
connected layers of 256 hidden units with ReLU nonlinearities. The policy outputs the mean and
standard deviation of a Gaussian distribution over an action space. To bound actions in [−1, 1],
we apply tanh activation to the policy output. Before executing the action in the environment, we
transform the action with the action rescaling function f described in Section 2.2. The policy is
trained using a model-free RL method, Soft Actor-Critic [3].

To improve sample efficiency, we randomly sample the intermediate transitions of a path from
the motion planner, and store the sampled transition in the replay buffer. By making use of these
additional transitions, the agent experience can cover a wider region in the state space during training.
For hyperparameters and more details about training, please refer to the supplementary material.

11

Table 2: SAC Shared Hyperparameter

Parameter Value

Optimizer Adam
Learning rate 3e-4

Discount factor (γ) 0.99
Replay buffer size 106

Number of hidden layers for all networks 2
Number of hidden units for all networks 256

Minibatch size 256
Nonlinearity ReLU

Target smoothing coefficient (τ) 0.005
Target update interval 1

Network update per environment step 1
Target entropy −dim(A)

For reward scale in our baseline, we use 10 for all environment. In our method, each reward
can be much larger than the one in baseline, because it is a cumulative reward when the motion
planner is called. Therefore, larger reward scale in our method degrades the performance, and using
small reward scale 0.1 ∼ 0.5 enables the agent to solve tasks. Moreover, α in SAC, which is a
coefficient of entropy, is automatically tuned. To train a policy over discrete actions with SAC, we
use Gumbel-Softmax distribution [26] for categorical reparameterization with temperature of 1.0.

D.1 Wall-clock Time

Table 3: Comparison of the wall-clock time (∼ hours)

Sawyer Push Sawyer Lift Sawyer Assembly

MoPA-SAC 15 17 14
SAC 24 24 24

The wall-clock time of our method depends on various factors, such as the computation time of an
MP path and the number of policy updates. As Table 3 shows, MoPA-RL learns quicker in wall-clock
time compared to SAC for 1.5M environment steps. This is because SAC updates the policy once
for every taken action, and our method requires fewer policy actions for completing an episode.
As a result, our method performs fewer costly policy updates. Moreover, while a single call to the
motion planner can be computationally expensive (0.3 seconds in our case), we need to invoke it less
frequently since it produces a multi-step plan (40 steps on average in our experiments). We further
increased the efficiency of our method by introducing a simplified interpolation planner.

12

	Introduction
	Method
	Motion Planner Augmented Reinforcement Learning
	Action Space Rescaling

	Experiments
	Conclusion
	Ablation Studies
	Action range
	Action rescaling and direct action execution
	Reuse of Motion Planning Trajectories
	Further Study on Action Space Rescaling
	Performance in Uncluttered Environments
	Handling of Invalid Target Joint States for Motion Planning
	Ablation of Motion Planning algorithm
	Ablation of Model-free RL algorithm

	Motion Planner Details
	Environment Details
	2D Push
	Sawyer Lift
	Sawyer Push
	Sawyer Assembly

	Training Details
	Wall-clock Time

