
Making Hyper-parameters of Proximal Policy
Optimization Robust to Time Discretization

Homayoon Farrahi
Department of Computing Science

University of Alberta
Edmonton, AB T6G2E8
farrahi@ualberta.ca

A. Rupam Mahmood
Department of Computing Science

University of Alberta
Edmonton, AB T6G2E8

armahmood@ualberta.ca

Abstract

A small action cycle time can help reinforcement learning agents by granting them
fast reaction and a more temporally detailed perception of the environment. The
learning performance of both policy gradient and action value methods, however,
deteriorates as the cycle time duration is reduced, which necessitates the tuning of
the cycle time as a hyper-parameter. Since tuning an additional hyper-parameter
is time-consuming when learning on real-world robots, existing algorithms can
benefit from having hyper-parameters that are more robust to the choice of cycle
time. In this work, we show the inefficacy of the default hyper-parameters of a
policy gradient algorithm across different cycle times and propose a novel set of
hyper-parameters. We investigate the effectiveness of the new hyper-parameters on
a simulated task and validate them on simulated and real-world robotic tasks. Our
experiments highlight the superiority of small cycle times over large ones and show
that these novel hyper-parameters, unlike the default ones, are robust to different
cycle times.

1 Introduction

Real-world robotic control tasks can benefit considerably from a small time discretization, allowing
fast interaction between the agent and the environment. In reinforcement learning (Sutton & Barto
2018), the discrete time step, also known as the action cycle time δt, refers to the time elapsed in
the environment between two consecutive actions of an agent. Choosing a smaller δt entails taking
actions more frequently and having faster reactions to changes in the environment, which can improve
the performance of reinforcement learning (RL) algorithms in many tasks and might even be crucial
for others. Even if a task does not require fast reactions, an agent can still benefit from a small δt by
observing the environment more frequently allowing it to observe important changes it might have
otherwise missed with a large δt.

Unfortunately, using a small cycle time can hinder both action value and policy gradient methods
from effective learning. Baird (1994) illustrated the ineffectiveness of Q-learning at small δt, as
various actions in a state maintain similar action values, and its inability to learn in continuous time
since the action value function becomes equal to the value function. Policy gradient methods, also,
suffer from a small δt, as the variance of the policy gradient estimate, or that of the likelihood ratio
specifically, grows inversely proportionally to δt, which was shown in a simple example by Munos
(2006). These challenges make learning with small δts difficult, even though small δts can provide
benefits as mentioned in the above.

Finding a time discretization that provides the right balance between task performance and learnability
entails a search over several values of δt, which is time-consuming and costly for real-world robots.
The effect of using different values of δt on the learning performance of a 2-dimensional reaching

NeurIPS 2020 3rd Robot Learning Workshop: Grounding Machine Learning Development in the Real World.

task on a real-world robotic arm was investigated by Mahmood et al. (2018a), who showed a δt
in the middle of their chosen range to perform better than the smallest or the largest ones. The
smallest δt afforded by the hardware is not always the best and the optimal δt might be different
for different tasks and robots, necessitating its tuning. While the cost of tuning one additional δt
hyper-parameter can be negligible in simulated environments, real-world robots can only collect
experience in real-time, which makes the tuning time-consuming and potentially more costly.

Understanding how time discretization affects learning and knowing its relationship to other hyper-
parameters may lead to a more efficient hyper-parameter tuning strategy. For instance, using a small
δt means that a sample batch of the same size will be collected in less time and that future rewards are
discounted more heavily for the same duration in real-time (Doya 2000). Having a set of guidelines
and heuristics for adjusting the values of different algorithm hyper-parameters upon changing δt can
reduce tuning time and cost substantially, and lead to better task performance.

In this paper, we demonstrate the ineffectiveness of the default hyper-parameters of Proximal Policy
Optimization (PPO), a popular policy gradient algorithm (Schulman et al. 2017), when learning at
δts other than the simulated environment’s default. We then propose a set of modifications, based on
δt, to these hyper-parameters to improve upon the performance of the default values and show the
advantage of small δts over large ones in achieving superior performance. Lastly, we validate our
proposed set of modifications on a simulated and a real-world robotic task.

2 Related works

Reducing δt can inhibit effective learning in RL algorithms. Baird (1994) demonstrated the inefficacy
of the action value function in continuous time and proposed to use the advantage function instead.
Tallec et al. (2019) extended this work to deep Q-learning methods. The continuous-time version
of the Bellman equation, Hamilton-Jacobi-Bellman (HJB) equation, has been used by Munos and
Bourgine (1998) to develop a model-based algorithm, and Doya (2000) who provided methods for
learning the value function and extended the actor-critic method to the continuous-time case. Munos
(2006) showed that the variance of the policy gradient estimates that use the likelihood ratio can
explode as δt goes toward 0. They formulated an alternative policy gradient estimate, which is
difficult to apply to more challenging tasks due to their assumptions about the environment.

Previous works (Mahmood et al. 2018a, Dulac-Arnold et al. 2020) have mentioned the issues that
can arise in real-world robotic tasks due to the delays between observations and actions, and efforts
have been made to alleviate them (Travnik et al. 2018, Ramstedt and Pal 2019). In this paper, we
focus on the time discretization issues and consider that the chosen action cycle times always fit the
forward pass for action calculations. Although Dulac-Arnold et al. (2020) showed declining task
performance with increasing δt, we show that reducing δt can negatively affect performance as well.

3 Failure of the default hyper-parameters at different time discretizations

In this section, we investigate the robustness of the default hyper-parameters of the algorithm PPO to
different δts. We modify the PyBullet (Coumans & Bai 2016) environment ReacherBulletEnv-v0 by
changing its environment time step from the default 16.5 ms to a constant 2 ms for all experiments
and implementing different δts by making the agent interact with the environment at multiples of
2 ms. To run an experiment with δt of 8 ms, for instance, the agent interacts with the environment
every fourth environment step by taking the most recent observation as input and outputting an action,
which is repeatedly applied to the environment until the next interaction. The reward for each action is
a summation over all individual rewards received every environment step of 2 ms. Each episode lasts
for 2.4 simulation seconds. We also slightly modify the environment’s state construction to dispense
with duplicate states and to make the stuck joint cost component of the reward more robust to the
physics engine’s behaviour. The agent’s architecture comprises a two hidden layer neural network
with tanh activations and an independent parameter producing the mean µ and log(σ), respectively,
of a normal distribution N (µ, σ2) from which the policy π samples its actions.

To study the robustness of algorithm hyper-parameters to different δts, we ran PPO with the default
hyper-parameters using different δts and stored the undiscounted episodic returns. The learning
curve for each δt was plotted in Figure 1. We further experimented with different values of the
batch size and mini-batch size to see if any improvements at all could be made to the learning

2

performance of different δts. The overall average return for each run was calculated for a set of tuned
hyper-parameters for each δt and plotted against δt in Figure 2. All plots were averaged over 30
independent runs each lasting 10 million environment steps.

Our experimental results indicate that the default hyper-parameters can lead to suboptimal perfor-
mance when changing the time discretization, and that performance can be recovered, at least partially,
by using a different set of hyper-parameters. Figure 1 shows that the asymptotic performance declines
when using small δts and that large δts hurt the learning speed. We show in Figure 2 that adjust-
ing hyper-parameters for each δt can lead to increased learning performance. This demonstrates
the importance of having guidelines for adjusting different hyper-parameters based on δt, to avoid
time-consuming hyper-parameter tuning on real-world robots.

Figure 1: Learning curves for different δt
with default PPO hyper-parameters. Smaller
δts have worse asymptotic performance while
larger δts learn more slowly.

Figure 2: Overall average return vs. δt for dif-
ferent hyper-parameter configurations. Tuned
hyper-parameters can improve the learning per-
formance for the majority of δt values.

4 Setting hyper-parameters as a function of the action cycle time

Figure 3: Learning performance using the δt-aware
hyper-parameters. Small δts are better than or
equal to large δts at all batch times. The circles
mark the performance for the default b.

Changing the time discretization affects the rela-
tionship between time, and the hyper-parameters
batch size b and mini-batch size m. As δt de-
creases, each fixed-size batch or mini-batch of
samples contains less amount of real-time expe-
rience. We make the real-time experience con-
tent consistent among different δts by scaling
the default b and m inversely proportionally to
δt, shown in (1) as bδt and mδt. The scaled bδt
and mδt represent the batch size and mini-batch
size used when δt is the action cycle time. For
instance, reducing δt from the default δt0 = 16
ms to 8 ms, makes the batch size b8 double the
size of b16. This keeps the batch time δt · bδt,
the time in seconds it takes to collect a batch,
consistent between different δts.

The time discretization affects the behaviour of the discount factor γ and the trace-decay parameter λ,
as well, by changing the rate at which rewards and n-step returns are discounted through time (Doya
2000, Tallec et al. 2019). When using a small δt, γ and λ decay faster, as more experience samples
are collected in a fixed time interval compared to larger δts. We propose to exponentiate γ and λ to
the δt power only for δts larger than the default δt0 since doing so leads to decreased performance
for smaller δts. Appendix A.1 lists the default hyper-parameter values for δt0 = 16 ms. The new
δt-aware hyper-parameters bδt, mδt, γδt and λδt, shown in (1), are calculated as:

bδt =
δt0
δt
bδt0 , mδt =

δt0
δt
mδt0 , γδt = min

(
γδt0 , γ

δt/δt0
δt0

)
, λδt = min

(
λδt0 , λ

δt/δt0
δt0

)
. (1)

We evaluated the δt-aware hyper-parameters by running PPO on the environment from the previous
section using different batch times and time discretizations each for 10 million environment steps.
The overall average return for each learning curve was calculated, averaged over 30 runs, and plotted
against the batch times in Figure 3.

3

Figure 3 illustrates that the δt-aware hyper-parameters make the performance of small δts better
than or equal to that of large δts at all batch times and thus showcases the superiority of small δts to
larger ones. We also experimented with the δt-aware hyper-parameters but using γδt = γ

δt/δt0
δt0

and

λδt = λ
δt/δt0
δt0

instead, which lead to diminished performance for smaller δts at smaller batch times.
When using (1) but keeping γ16 and λ16 constant across all δts, we observed decreased performance
for larger δts. The figures for these two modifications are available in Appendix A.4.

5 Validating the new δt-aware hyper-parameters

We ran PPO with the default and the δt-aware hyper-parameters each on a simulated and on a
real-world robotic task to validate our proposed set of hyper-parameters. We reduced the environment
time step of another PyBullet environment InvertedDoublePendulumBulletEnv-v0 from 16.5 ms to a
constant 4 ms and simulated other δts as integer multiples of 4 ms. We ran the experiments once by
keeping the default hyper-parameters of Appendix A.2 (b16 = 4000) constant across δts, and another
time using the δt-aware hyper-parameters with δt0 = 16 ms and b16 = 4000, each for 10 million
environment steps. The overall average return was aggregated over 30 runs and plotted against δt in
Figure 4. Episodes of this environment lasted for a maximum of 16 simulation seconds.

For the real-world task, we adopted UR-Reacher-2 developed by Mahmood et al. (2018b) and enlarged
the movement boundary to reduce the number of scripted position corrections at the boundary. We
set the environment time step to 10 ms and ran three sets of experiments, one with δt = 40 ms as
the benchmark, and two with δt = 10 ms to compare the default hyper-parameters of Appendix A.3
(b40 = 2000), kept constant across δts, to the δt-aware hyper-parameters using δt0 = 40 ms and
b40 = 2000. All episodes were 4 seconds long. The runs lasted for 600000 environment steps, and
the learning curves, averaged over 5 runs, were plotted in Figure 5. All rewards were scaled by δt,
and other experimental details were as in the previous section.

On the simulated task, the δt-aware hyper-parameters, compared to the default set, improves the
learning performance and makes it more robust to the choice of δt as seen in Figure 4. Figure 5
shows that the δt-aware hyper-parameters recover the asymptotic performance that is lost by using
the default hyper-parameters with a small δt. We believe more runs can help reduce the uncertainty
in the performance of the default hyper-parameters with δt = 10 ms.

Figure 4: Learning performance of different δts
on a simulated validation task. The δt-aware
hyper-parameters make the performance more
robust to the choice of δt.

Figure 5: Learning curves of the UR5 robot
comparing the δt-aware hyper-parameters to
the default ones. Asymptotic performance is
recovered by the δt-aware hyper-parameters.

6 Conclusion

We demonstrated the sensitivity of PPO’s performance to the choice of δt when using the default
hyper-parameters, proposed a replacement set of δt-aware hyper-parameters that scale according to
δt, and empirically showed that they improve the robustness of the performance to δt. The δt-aware
hyper-parameters showcased the superiority of small δts to large ones and can lessen the need for
extensive hyper-parameter tuning, which is time-consuming and costly on real-world robots. We
finally showed the advantage of δt-aware hyper-parameters over the default ones by validating them
on simulated and real-world robotic tasks.

4

Acknowledgments

This work was sponsored by the Reinforcement Learning and Artificial Intelligence (RLAI) Lab,
Alberta Machine Intelligence Institute (Amii), and Canada CIFAR AI Chairs Program.

References

Baird, L. C. (1994). Reinforcement learning in continuous time: advantage updating. In Proceedings
of 1994 IEEE International Conference on Neural Networks.

Coumans, E., Bai, Y. (2016). PyBullet, a python module for physics simulation for games, robotics
and machine learning. URL http://pybullet.org

Doya, K. (2000). Reinforcement learning in continuous time and space. Neural computation 12 (1):
219-245.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal, S., Hester, T. (2020).
An empirical investigation of the challenges of real-world reinforcement learning. arXiv preprint
arXiv:2003.11881.

Mahmood, A. R., Korenkevych, D., Komer, B. J., Bergstra, J. (2018a). Setting up a reinforcement
learning task with a real-world robot. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Mahmood, A. R., Korenkevych, D., Vasan, G., Ma, W., Bergstra, J. (2018b). Benchmarking rein-
forcement learning algorithms on real-world robots. In Proceedings of the 2nd Annual Conference
on Robot Learning.

Munos, R. (2006). Policy gradient in continuous time. Journal of Machine Learning Research 7
(May): 771-791.

Munos, R., Bourgine, P. (1998). Reinforcement learning for continuous stochastic control problems.
In Advances in Neural Information Processing Systems.

Ramstedt, S., Pal, C. (2019). Real-time reinforcement learning. In Advances in Neural Information
Processing Systems.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. (2017). Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347.

Sutton, R. S., Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.

Tallec, C., Blier, L., Ollivier, Y. (2019). Making deep Q-learning methods robust to time discretization.
arXiv preprint arXiv:1901.09732.

Travnik, J. B., Mathewson, K. W., Sutton, R. S., Pilarski, P. M. (2018). Reactive reinforcement
learning in asynchronous environments. Frontiers in Robotics and AI 5 (79).

5

http://pybullet.org

Appendices
A Default hyper-parameters

A.1 ReacherBulletEnv-v0

hyper-parameter value
b16 2000
m16 50
γ16 0.99
λ16 0.95

A.2 InvertedDoublePendulumBulletEnv-v0

hyper-parameter value
b16 4000
m16 100
γ16 0.99
λ16 0.95

A.3 UR-Reacher-2

hyper-parameter value
b40 2000
m40 50
γ40 0.99
λ40 0.95

A.4 Different approaches for scaling γ and λ

Figure 6: Learning performance of δt-aware
hyper-parameters, except, γ and λ are always
exponentiated to the δt power. The circles mark
the performance for the default b.

Figure 7: Learning performance of δt-aware
hyper-parameters, except, γ16 and λ16 are con-
stant in all runs. The circles mark the perfor-
mance for the default b.

6

	Introduction
	Related works
	Failure of the default hyper-parameters at different time discretizations
	Setting hyper-parameters as a function of the action cycle time
	Validating the new t-aware hyper-parameters
	Conclusion
	Default hyper-parameters
	ReacherBulletEnv-v0
	InvertedDoublePendulumBulletEnv-v0
	UR-Reacher-2
	Different approaches for scaling and

