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Figure 1: D3Fields Representation and Application to Various Manipulation Tasks. D>Fields take in
multi-view RGBD images and encode semantic features and instance masks using foundational models. The gray
and colored points in the bottom left visualize background and semantic features mapped to RGB space using
Principal Component Analysis (PCA), demonstrating consistency across instances. We use our representation
for diverse tasks in a zero-shot manner. These tasks are defined by 2D goal images with diverse instances and
styles. We address pick-and-place tasks such as shoe organization and tasks requiring dynamic modeling like
collecting debris. We also demonstrate in the office table organization that our framework can accomplish 3D
manipulation and compositional task specification.

Abstract

Scene representation has been a crucial design choice in robotic manipulation
systems. An ideal representation should be 3D, dynamic, and semantic to meet the
demands of diverse manipulation tasks. However, previous works often lack all
three properties simultaneously. In this work, we introduce D3Fields — dynamic
3D descriptor fields. These fields capture the dynamics of the underlying 3D envi-
ronment and encode both semantic features and instance masks. Specifically, we
project arbitrary 3D points in the workspace onto multi-view 2D visual observations
and interpolate features derived from foundational models. The resulting fused
descriptor fields allow for flexible goal specifications using 2D images with varied
contexts, styles, and instances. To evaluate the effectiveness of these descriptor
fields, we apply our representation to a wide range of robotic manipulation tasks
in a zero-shot manner. Through extensive evaluation in both real-world scenarios
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and simulations, we demonstrate that D3Fields are both generalizable and effective
for zero-shot robotic manipulation tasks. In quantitative comparisons with state-of-
the-art dense descriptors, such as Dense Object Nets and DINO, D>Fields exhibit
significantly better generalization abilities and manipulation accuracy.

1 Introduction

The choice of scene representation is critical in robotic systems. An ideal representation should be
simultaneously 3D, dynamic, and semantic to meet the needs of various robotic manipulation tasks
in our daily lives. However, previous research into scene representations in robotics often does not
encompass all three properties. Some representations exist in 3D space Manuelli et al.| [2020], Li et al.
[2021]],|Shi et al.[[2022],Ze et al.| [2023a]], yet they overlook semantic information. Others focus on
dynamic modeling Hafner et al.| [2019b], Yan et al.| [2021]], Wang et al.|[2023]], Minderer et al.|[2019],
but only consider 2D data. Some other works are limited by only considering semantic information
such as object instance and category [Tremblay et al.| [2018]], Tyree et al.|[2022], Jatavallabhula et al.
[2023]], Mazur et al.| [2023], Liu et al. [2023Db].

In this work, we aim to satisfy all three criteria by introducing D3Fields, unified descriptor fields that
are 3D, dynamic, and semantic. D®Fields take in arbitrary points in the 3D world coordinate frame
and output both geometric and semantic information related to these points. This includes the instance
mask, dense semantic features, and the signed distance to the object surface. Notably, deriving these
descriptor fields requires no training and is conducted in a zero-shot manner using large foundational
vision models and vision-language models (VLMs). Specifically, we first use Grounding-DINO Liu
et al.[[2023a]], Segment Anything (SAM) Kirillov et al.|[2023]], XMem |Cheng and Schwing| [2022]],
and DINOv2|Oquab et al.|[2023]] to extract information from multi-view 2D RGB images. We then
project the 3D points back to each camera, interpolate to compute representations from each view,
and fuse these data to derive the descriptors for the associated 3D points, as shown in Fig. [I| (left). By
leveraging the dense semantic feature and instance mask of our representation, we can robustly track
3D points of the target object instance and train dynamics models. These learned dynamics models
can then be incorporated into a Model-Predictive Control (MPC) framework to plan for manipulation
tasks.

Notably, the derived representations allow for goal specification using 2D images sourced from the
Internet, phones, or those generated by Al models. Such goal images have been challenging to
manage with previous methods, because they contain varied styles, contexts, and object instances
different from the robot’s workspace. Our proposed D>Fields can establish dense correspondences
between the robot workspace and the target configurations. These correspondences give us the task
objective, enabling us to plan the robot’s actions with the learned dynamics model within the MPC
framework. This task execution process does not require any further training, offering a flexible and
convenient interface for humans to instruct robots.

We evaluate our method across a wide range of household robotic manipulation tasks in a zero-shot
manner. These tasks include organizing shoes, collecting debris, and organizing office desks, as shown
in Fig.[I] (right). Furthermore, we offer detailed quantitative comparisons between our method and
other state-of-the-art dense descriptor techniques. Our results indicate that our approach significantly
outperforms in terms of generalizability and manipulation accuracy.

To summarize our contributions: (1) We introduce a novel representation, D3Fields, that is 3D,
dynamic, and semantic. (2) We present a novel and flexible goal specification method using 2D
images that incorporate a range of styles, contexts, and instances. (3) Our proposed robotic manipu-
lation framework supports zero-shot generalizable manipulation applicable to a broad spectrum of
household tasks.

2 Method

In this section, we introduce the problem formulation in Section[g] and define camera transformation
and projection notations in Section The construction of D°Fields is detailed in Section
Section [7.2]discusses tracking keypoints and learning dynamics, while Section [8.3] showcases how
our representation enables zero-shot generalizable manipulation skills.
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Figure 2: Overview of the proposed framework. (a) The fusion process fuses RGBD observations from
multiple views. Each view is processed by foundation models to obtain the feature volume Y. Arbitrary 3D
points are processed through projection and interpolation. (b) After fusing information from multiple views, we
obtain an implicit distance function to reconstruct the mesh form. We also have instance masks and semantic
features for evaluated 3D points, as shown by the mask field and descriptor field in the top right subfigure.
(c) Given a 2D goal image, we use foundation models to extract the descriptor map. Then we correspond 3D
features to 2D features and define the planning cost based on the correspondence.

MSE Loss

Correspondence
Planning Cost

2.1 Problem Formulation

Given a 2D goal image Z, we denote the corresponding scene representation as Sgoy. Our goal is to
find the action sequence {a’} to minimize the task objective:

min c(sT7 Sgoal ),
ot M

st. st = g(ot)v st = .f(sta at),

where c(-, -) is the cost function measuring the distance between the terminal representation s” and
the goal representation sg0a1. Representation extraction function g(-) takes in the current multi-view
RGBD observations o’ and outputs the current representation s*. f(-,-) is the dynamics function that
predicts the future representation s‘*!, conditioned on the current representation s’ and action a'.
The optimization aims to find the action sequence {a;} that minimizes the cost function ¢(s7, sgou1).

2.2 Notation: Camera Transformation and Projection

We assume all cameras’ intrinsic parameters K and extrinsic parameters T are known. The camera ¢
extrinsic parameters are defined as follows.

T, = [?T tl] € SE(3), 2)

where Euclidean group SE(3) := {R, t | R € SO* t € R3}. For a 3D point x in the world frame,
we could obtain projected pixel u; and distance to camera r; as follows:

w;, =7 (Kz (R1X + tz)) , r, = [0, 0, 1}T (RZX + tl) s (3)
where 7 performs perspective projection, mapping a 3D vector p = [x,y,2]T to a 2D vector
q=[x/2y/z]".

2.3 D3Fields Representation

We fuse observation o from multiple views to build the implicit 3D descriptor fields F*(-). For
simplicity, we will represent o! as o, and F*(-) as F(-) in this subsection. The implicit 3D descriptor

field F(-) is defined as
(d,f,p) = F(x), ©)



where x is an arbitrary 3D point in the world frame, and (d, f, p) is the corresponding geometric
and semantic descriptor. d € R is the signed distance from x to the surface. f € R" represents the
semantic information of N dimension. p € RM denotes the instance probability distribution of A/
instances. M could be different across scenarios.

More specifically, we denote a single view RGBD observation from camera ¢ as 0; = (Z;, R;),
where RGB image Z; € R7*W>3 'and depth image R; € R”*W . For an arbitrary 3D point x, we
project it to image space using Eq. [3|and use bilinear interpolation to obtain the corresponding depth
r; = R;[u;]. Then the descriptors from camera i are

d’i = I';: — Ty, d; = max(min(dia ,LL), 7:“’)7
£, = Wiw), pi=WP[ul,
where DINOvV2 |Oquab et al.| [2023]] extracts the semantic feature volume Wf € RIXWXN from

RGB observation Z;. WP € RH*WXM g the instance mask volume using Grounded-SAM Liu et al.
[2023a], Kirillov et al. [2023] 1 1s the truncation threshold for TSDF.

&)

We fuse descriptors from all K views to obtain the associated descriptor. We could also use the
descriptor fields to track keypoints and train corresponding dynamics. All these details are presented

in Appendix

2.4 Zero-Shot Generalizable Robotic Manipulation

As described in Section we denote initial tracked points and features as s° and f°. We estimate
Sgoal € R2%7™s of goal image Zg. as follows:

Q5 = €xXp (Hngoal[ui] - fJOHQ) )

B exp (sa;) (6)
Wiy = HxW b
dic1 exp (saij)
then we have sgq,; = Zfixlw w;ju;, where W a1 the feature volume extracted from Zgoq

using DINOV?2. s is the hyperparameter to determlne whether the heatmap w;; is more smooth or
concentrating. Although Eq.[6only shows a single instance case, it could be naturally extended to
multiple instances by using instance mask information.

However, Sgo is in the image space, while s* is in the 3D space. We bridge this gap by introducing a
reference camera with approximate intrinsic and extrinsic parameters K’ and T. Instead of rendering
images in the reference view, we focus on projecting 3D keypoints into 2D images and define the
task cost function in image space as follows:

c(s, Sgoal) = || (K, (Rlst + t,)) - Sgoang- (7N

3 Experiments

In this section, we evaluate our representation across various manipulation tasks with varying goal
image styles, instances, and contexts. Detailed results are presented in Section §]

4 Conclusion

In this work, we introduce D3Fields, which implicitly encode 3D semantic features and 3D instance
masks, and model the underlying dynamics. Our emphasis is on zero-shot generalizable robotic
manipulation tasks specified by 2D goal images of varying styles, contexts, and instances. Our
framework excels in executing a diverse array of household manipulation tasks in both simulated and
real-world scenarios. Its performance greatly surpasses baseline methods such as Dense Object Nets
and DINO in terms of generalization capabilities and manipulation accuracy.
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Supplementary Materials

6 Related Works

6.1 Foundation Models for Robotics

Foundation models generally refer to those trained on broad data, often using self-supervision at
scale, which can then be adapted (e.g., fine-tuned) to various downstream tasks. Large Language
Models (LLMs) have showcased promising reasoning abilities for language. Robotics researchers
have recently released a series of works that leverage LLMs, including SayCan |Brohan et al.| [[2023]]
and Inner Monologue |[Huang et al.|[2023b], to directly generate robot plans. Some later works have
used LLMs as a code generator: Code as Policies |Liang et al.|[2023]] uses 2D object detectors as the
perception API, whereas VoxPoser|[Huang et al.|[2023a] creates a 3D value map. Yet, their perception
modules fall short in modeling the precise geometry and dynamics of objects. Our D3Fields aim to
address this by focusing on detailed 3D geometry and dynamics.

Meanwhile, foundational vision models, such as SAM [Kirillov et al.| [2023]] and DINOv2 |[Oquab
et al.|[2023]], have demonstrated impressive zero-shot generalization capabilities across various vision
tasks. However, their focus is primarily on 2D vision tasks. Grounding these models in a dynamic
3D environment remains a challenge. The recent GROOT project showcases how to construct 3D
object-centric representations using foundational models and exhibits notable few-shot generalization
capabilities |Zhu et al.|[[2023]]. Still, GROOT does not emphasize learning about object dynamics or
achieving zero-shot generalizable robotic manipulation.

6.2 Representation for Visual Robotic Manipulation

Scene representation has been a pivotal component in robotic manipulation systems. Some early
work relies on 2D representations, such as bounding boxes Miilling et al.| [2013]],|Duan et al.| [2017].
Many recent methods construct particle representations of the environment and employ learned
dynamics to capture the system’s underlying structure [Li et al.| [2019]], |Shi et al.| [2022]], [Wang et al.
[2023]], Minderer et al.|[2019]], Wang et al.|[2022],|Gao and Tedrake|[2021a], Manuelli et al.|[2019],
Gao and Tedrake|[2021b]]. They demonstrate impressive results in unstructured environments and
with non-rigid objects. However, they are not semantic, which can hinder their ability to generalize
to new tasks and scenarios. Some research opts for a fixed-dimension latent vector derived from
high-dimensional sensory inputs as the representation |Hafner et al.| [2019a/b]], |Yan et al.| [2021]],
Lin et al.| [2022]], [Nair et al.| [2023]], [ Xiao et al.| [2022], Radosavovic et al.| [2022], Mandi et al.
[2022],Stone et al.[[2023], Li et al.|[2021]], but such a representation does not scale well to complex
manipulation tasks that require high precision and explicit scene structures. Other approaches use
6 DoF object poses as their representation [Tremblay et al.| [2018]], Tyree et al.| [2022], |Yoon et al.
[2003]], Zhu et al.[[2014], though focusing primarily on grasping tasks instead of more dynamic ones.
In this work, we aim to address these issues by introducing D*Fields, a representation that models
dynamic 3D environments at varying semantic levels.

6.3 Neural Fields for Robotic Manipulation

Researchers have presented a variety of works using neural fields as a representation for robotic
manipulation Zhu et al.|[2021], Ichnowski et al.|[2021]], Wi et al.| [2022a]], Simeonov et al.| [2022]],
Driess et al.|[2022a]], Jiang et al.[[2021], Weng et al.| [2023]], Driess et al.|[2022b], |Shim et al.| [2023]],
Yen-Chen et al.| [2022], Tang et al.| [2023]], Zhou et al.| [2023]], | [Mahil, Wi et al.| [2022bla]. Among
them, Neural Descriptor Fields are the most relevant to ours |[Simeonov et al.| [2022]]. They build
neural feature fields that generalize to different instances with several demonstrations; but they focus
on learning geometric, not semantic features, which hinders cross-category generalization.

Recently, a series of works distilled neural feature fields using foundation models such as CLIP and
DINO for supervision |Radford et al.|[2021]], Caron et al.|[2021]. LeRF distills neural feature fields to
handle open-vocabulary 3D queries and develops task-oriented grasping based on it|Kerr et al.[[2023]],
Sharma et al|[2023]]. Shen et al. Shen et al.|[2023]] use a similar distilled feature field for the grasping
task. Both methods require dense camera views to train the neural field. GNFactor addresses this
by introducing a voxel encoder|Ze et al|[2023b]]. However, distilling foundation models to create
neural feature fields has drawbacks: (1) They often require dense camera views for a quality field. (2)



§ AP o
Q r v

N
Qk |

Ob servation

\_J A |
2 ; |
o |
A i
% 1
< '
= i
3 |
e |
= ’ e :
5 , Q ’ - \\ i
B -— i
- - 2
3 “ '
= Shoe Mug Fork ; Push and Rotate
(a) Representation Visualization : (b) Tracking Visualization

Figure 3: Representation and Tracking Visualizations. (a) To verify that the representation is both 3D and
semantic, we visualize the representation across different object categories. Mask fields color 3D points based
on their instance masks, which clearly differentiates between instances. Descriptor fields color 3D points by
mapping features to RGB space using PCA. They display a consistent color pattern within a category, such as
mug handles being colorized as green for different mug instances. (b) To demonstrate that our representation is
dynamic, we apply it to tracking tasks and showcase two tracking examples, both of which involve 3D motions
and partial observations in single views. The robust 3D tracking results confirm that our representation is 3D,
dynamic, and semantic.

Distilled neural fields need retraining for new scenes, limiting their generalization and making them
ineffective for dynamic scenes. In contrast, our D3Fields do not need extra training for new scenes
and can work with sparse views and dynamic settings.

7 Method

7.1 D3Fields Representation

We fuse descriptors from all K views to obtain the associated descriptor as follows:
i —|d;],0
vi = H(d; +p), w; =exp (mm(“")) ®)
7]

and then
K K K
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where H is the unit step function and § is a small value to avoid numeric errors. v; = 0 when x is not
observable in camera ¢, because if x is occluded in camera ¢, it should not contribute to the descriptor

of x. In addition, we could only have a confident estimation when x is close to the surface. Therefore,
w; will decay as |d;| increases. For x that is far away, f and m will degrade to 07 .

©))

We convert the implicit field function F(-) to a set of keypoints s. First, we create voxels x €
RWXLxHX3 i the workspace and evaluate (d, f, p) = F(x). We filter out x; € x where d; is large
or p; has a low probability to avoid empty space and the background. After obtaining filtered points
x’, we use farthest point sampling to find surface points s € R3*™s of an instance.

7.2 Keypoints Tracking and Dynamics Training

This section will present how to use the dynamic implicit 3D descriptor field F(+) to track keypoints
and train dynamics. Without losing generalization, consider the tracking of a single instance st €
R3*"s . For clarity, we denote f and d from F(-) as F¢(-) and Fq(-). We formulate the tracking
problem as an optimization problem:

min - [|Fe(s") = Fe(s”)]|2- (10)
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Figure 4: Qualitative results. We qualitatively evaluate our proposed framework on household manipulation
tasks, both in the real world and in simulation, encompassing tasks such as organizing utensils, fruits, shoes,
food, and mugs. The figure highlights that our representation can generalize across varied instances, styles,
and contexts. For instance, in the organizing fruits example, the goal image, unlike the workspace, is styled as
a sketch drawing. Because our representation can map bananas with varied styles and appearances to similar
features, the banana in the workspace can correspond to the banana in the sketch. This allows the task to be
successfully completed. This wide range of tasks showcases the generalization capabilities and manipulation
precision of our framework.

Since F(+) is differentiable, we could use a gradient-based optimizer. This method could be naturally
extended to multiple-instance scenarios. We found that relying solely on features for tracking is
unstable. We added rigid constraints and distance regularization for a more stable tracking.

Keypoint tracking enables dynamics model training on real data. We instantiate the dynamics model
f(-,-) as graph neural networks (GNNs). We follow [Li et al. to predict object dynamics.
Please refer to[Li et al| [2019} [2020] for more details on how to train the GNN-based dynamics model.
The trained dynamics will be used for trajectory optimization in Section[2.4]

8 Experiments

In this section, we evaluate our representation across various manipulation tasks with varying goal
image styles, instances, and contexts. We visualize D3Fields and showcase tracking results in
Section[8:2] Then, we highlight our framework’s zero-shot generalizability in both real-world and
simulated tasks in Section [8:3] Finally, a quantitative comparison with baselines in Section [8:4]
underscores our framework’s generalization and manipulation precision.

8.1 Experiment Setup

In the real world, we employ four OAK-PRO D cameras to gather RGBD observations and use
the Kinova® Gen3 for action execution. In simulation, we utilize OmniGibson and deploy Fetch
for mobile manipulation tasks [2022]]. Our evaluations span a variety of tasks, including
organizing shoes, collecting debris, tidying the office table, arranging utensils, and more.

We implement the baseline methods using Dense Object Nets (DON) and DINO for feature extrac-

tion [Florence et al.| [2018]], Caron et al. [2021]]. We quantitatively evaluate these methods on five
object classes for single-instance manipulation tasks in the real world. The results and analysis are

presented in Section [8.4]
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Figure 5: Quantitative Evaluation. We perform real-world quantitative evaluations by measuring final
goal-achieving performance and keypoints correspondence accuracy. (a) We use IoU to measure goal-achieving
performance. Results indicate that our method aligns with the goal configurations much better than DON and
DINO across various object categories and scenarios. (b) We measure the keypoints correspondence accuracy
according to the fraction of points with accurate matches, with correct matches determined by a distance
threshold. Our method is consistently better at aligning with the goal image, regardless of the chosen threshold.

8.2 Descriptor Fields Visualization and Keypoints Tracking

D3Fields provide a good 3D semantic representation, as shown in Fig. a). We first visualize the
mask fields by coloring 3D points according to their most likely instance, and our visualization
shows a clear 3D instance segmentation. Additionally, we map the semantic features to RGB space
using PCA, as with DINOv2|Oquab et al.|[2023]]. Visualization of the descriptor fields reveals that
D3Fields retain a dense semantic understanding of objects. In the provided shoe example, even
though various shoes have distinct appearances and poses, they exhibit similar color patterns: shoe
heels are represented in green, and shoe toes in red. We observed similar patterns when evaluating
the model on mugs and forks.

As discussed before, D3Fields can also capture scene dynamics. We evaluate it by tracking the object
keypoints. We show two examples of 3D keypoint tracking in Fig.[3[(b). In the first example, a shoe is
pushed and then flipped. Although only a portion of the shoe is visible from the view, our framework
tracks it reliably. In another example, a shoe is lifted and then set down. Despite parts of the shoe
being out of the camera’s view, we can robustly track it in 3D.

8.3 Zero-Shot Generalizable Manipulation

We conduct a qualitative evaluation of D®Fields in common household robotic manipulation tasks in
a zero-shot manner, with partial results displayed in Fig. [[|and Fig.[d The following capabilities of
our framework are observed:

Generalization to AI-Generated Goal Images. In Fig.[I] the goal image, rendered in a Van
Gogh style, depicts shoes distinct from those in the workspace. Since D3Fields encode semantic
information, capturing shoes with varied appearances under similar descriptors, our framework can
manipulate shoes based on Al-generated goal images.

Compositional Goal Images and 3D Manipulation. Using the office desk organization example in
Fig.[I] the robot first arranges the mouse and pen according to the goal image. It then repositions the
mug from the box to the mug pad, referencing a goal image of the upright mug.

Generalization across Instances and Materials. Granular objects, unlike rigid ones, have more
complex dynamics. Our framework effectively handles these materials, as shown in the debris
collection in Fig.[T] Fig. @] further showcases our framework’s instance-level generalization, where
the goal image displays instances different from the workspace.

Generalization across Simulation and Real World. We evaluated our framework on household
tasks in the simulator, as shown in the utensil organization and mug organization examples in Fig. {]
Given goal images taken from the real world, our framework can also manipulate objects to the goal
configurations. Our framework demonstrates generalization capabilities between simulation and the
real world.



8.4 Quantitative Comparisons with Baselines

In Fig. 5(a), we measure performance using the IoU between the goal image mask and the final
state mask after manipulation, with higher values indicating better alignment. Evaluating across five
object classes, our method consistently outperforms the baselines, underscoring its generalization
and manipulation accuracy. While DINO struggles with distinguishing object components, leading to
imprecise results, it still works better than DON. Although DON performs well on familiar object
classes and configurations, it lacks generalization in novel scenarios.

In Fig. [5(b), we present the correspondence results. We manually label corresponding keypoints
on both the goal image and the final manipulation result to evaluate the correspondence accuracy.
We calculate the fraction of accurately matched points based on a distance threshold. Our method
consistently outperforms the baselines, regardless of the threshold. DINO ranks second, while DON
lags behind. Consistent with Fig. [5(a), our method excels in generalization and accuracy, DINO is
broadly applicable but less precise, and DON struggles with generalization.
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