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Abstract

We present a framework for building interactive, real-time, natural language-
instructable robots in the real world, and we open source related assets (dataset,
environment, benchmark, and policies). Trained with behavioral cloning on a
dataset of hundreds of thousands of language-annotated trajectories, a produced
policy can proficiently execute an order of magnitude more commands than previous
works: specifically, we estimate a 93.5% success rate on a set of 87,000 unique
natural language strings specifying raw end-to-end visuo-linguo-motor skills in the
real world. We find that the same policy is capable of being guided by a human via
real-time language to address a wide range of precise long-horizon rearrangement
goals, e.g. “make a smiley face out of blocks". The dataset we release comprises
nearly 600,000 language-labeled trajectories, an order of magnitude larger than prior
available datasets. We hope the demonstrated results and associated assets enable
further advancement of helpful, capable, natural-language-interactable robots. See
videos at https://interactive-language.github.io.
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Figure 1: Real-time language, diverse robot behav-
iors. a) Over the course of 5 minutes, a human guides
a robot to precisely rearrange objects a table into a de-
sired shape, with real-time natural language as the only
mechanism for specifying behaviors. b) We demonstrate
a single robot that can capably address 87,000 behav-
iors specified entirely in natural language. c) We release
Language-Table, a suite of human-collected datasets and
benchmark for learning continuous visuolinguomotor
control.

The goal of building a robot that can follow a
diverse array of natural language instructions has
been a longstanding goal of AI research, since
at least the SHRDLU [1] experiments starting
in the late 1960s. While recent research on this
topic has been abundant [2–9], few efforts have
actually produced a robot that (i) exists in the
real world, and (ii) can capably respond to a large
number of rich, diverse language commands. We
expect that future research will continue to pro-
duce larger and more diverse sets of behaviors,
either by sequencing raw skills together [10] or
growing the number of raw skills themselves [11].
However, we are also interested in (iii), the ca-
pacity to follow interactive language commands,
by which we mean that the robot reacts capa-
bly and in-the-moment to new natural language
instructions provided during ongoing task exe-
cution. Although we might expect such a robot
to be possible given current methods, natural
language-interactable robots are frequently slow
in practice, and often use blocking parameter-
ized skills [7, 10] or simplifying self-resetting
behaviors [9, 12] that prohibit this kind of live,
real-time interaction.
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In this paper, we (i) contribute and demonstrate a large scale imitation learning framework, Interactive
Language, for producing real-world, real-time-interactable1, natural-language-instructable robots
(Fig. 1, a). In terms of scale, the produced robot policies can address 87,000 unique commands at
an estimated 93.5% success rate (Fig. 1, b), with continuous 5Hz visuo-linguo-motor control. To
accelerate further research in this setting, we (ii) we release Language-Table (Fig. 1, c), a dataset
and simulated multitask imitation learning benchmark. With nearly 600,000 diverse demonstrations
across simulation and the real world, Language-Table is, to our knowledge, the largest natural language
conditioned imitation learning dataset of its kind by an order of magnitude (Table 1). We additionally
(iii) show that through interactive language guidance in the form of occasional human natural-language
feedback, the robot can accomplish a wide array of complex long-horizon rearrangements such as “put
the blocks into a smiley face with green eyes” that require multiple minutes of precise coordinated
control (Figure 2, left). We also (iv) find that real-time language competency unlocks new capabilities
like simultaneous, multi-robot instruction (Figure 2, right).

2 Related work

Imitation learning (see review [14]), the perspective we adopt in this work, provides a simple and stable
way for robots to acquire behaviors from human expert demonstrations. While historically imitation
learning has been applied to individual tasks from instrumented state [15–18], the desire for more
general purpose robots has motivated study into policies capable of learning multiple skills at once
from on-board sensory observations like RGB pixels [19–21]. To condition multiple behaviors, prior
setups have relied on discrete task identifiers [22], which can be difficult to scale to many tasks, or
goal images [23–25], which can be impractical to provide in real world scenarios. Alternatively, a
long history of prior work in broader AI research [1–6, 11] has investigated natural language as a more
convenient task specification format (survey [26]), with some results on physical robots [7–9, 12].
However, instruction-following robots rarely leverage the full capabilities of continuous control
continuous control, instead using simpler, parameterized action spaces [6,7,27,28]. Furthermore, once
provided, language conditioning is typically presumed fixed over robot execution [8–10, 12], with little
opportunity for subsequent interaction by the instructor. Our work exists in a larger setting of humans
modifying or correcting the online behavior of autonomous agents [29], historically addressed in forms
like teleoperation [30–32], kinesthetic teaching [33], or sparse human preference feedback [34]. Certain
works have studied language as a means of correction, but typically do so under simplifying assumptions
that we relax in the current work. For example, [35], [36], [37], and [38] study language corrections, but
under the respective simplifying assumptions of hand-defined optimization for grounding, undivided
operator attention, paired iterative corrections at training time, and presumed access to motion planners
and task cost functions. Additionally, to the best of our knowledge, none of these works support
multiple-Hz iterative specification over the course of execution. Closest to our approach is [11]
and [28], which study imitation learned language-interactive agents, but entirely in simulation and
under varying degrees of actuation realism. Our work, in contrast, studies the first combination, to
our knowledge, of real-time natural language guidance of a physical robot engaged in continuous
visuomotor manipulation.

3 Interactive Language: Data Collection and Imitation Learning Framework

We introduce Interactive Language, summarized in Figure 3, an imitation learning framework for train-
ing real-time natural-language-interactable robots. Interactive Language combines a scalable method
for collecting varied real world language-conditioned demonstration datasets with straightforward
language conditioned behavioral cloning (LCBC).

Data Collection. In our framework, operators continuously teleoperate a variety of long horizon
behaviors, without low-level task definition, segmentation, or episodic resets. Each collect episode
lasts∼10 minutes before a break, and is guided by multiple randomly chosen long horizon prompts
p∈P (e.g. “make a square shape out of the blocks"), drawn from the set of target long horizon goals,
which teleoperators are free to follow or ignore. We do not assume all of the data collected for each
prompt p is optimal (each p is discarded after collecting). This strategy shares assumptions with “play"
collection [24], but additionally guides collect towards temporally extended low-entropy states like lines,

1For the scope of this paper, by real-time we mean new language conditioning can occur in the “blink of an
eye”, i.e. approximately 3 Hz [13] or greater.
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shapes, and complex arrangements. This collect procedure yields a semi-structured, optimality-agnostic
collectionDcollect={τi}Dcollect

i=0 , which we convert into natural language conditioned demonstrations
Dtraining={(τ,l)i}

Dtraining

i=0 , using a new variant of hindsight language relabeling [11] we call “Event-
Selectable Hindsight Relabeling" (Fig.3, left). Here, we ask crowdsourced annotators watch a full
collection episode, then findK coherent behaviors (K=24 in our case), using marking the start and
end frame of each behavior, and describing it as an open vocabulary natural language command reached
in hindsight. See Table 5 for a comparison to prior “random window" relabeling techniques.

Policy Learning. In Figure 4, we describe our transformer-based [39] neural network policy ar-
chitecture, mapping from video and text to continuous actions, which we refer to as LAVA (“Lan-
guage Attends to Vision to Act"). Each training example consists of (s,a, l)i ∼ Dtraining, where
s ∈ Rseqlen×640×320×3 is RGB observation history. We pass each frame in the video s through
a Imagenet-pretrained ResNet [40, 41] and embed instruction l using a pretrained (and in-domain
finetuned) CLIP text encoder [42], then fuse multi-scale vision and language embeddings using a
“Language-Attends-to-Vision" cross-attention transformer block. The sequence output is fed to a
temporal prenorm [43] transformer, which is then average pooled over time and fed to an MLP which
outputs next action a. All the policies we present are deterministic and simply trained with mean
squared error behavioral cloning [44]: min

θ

∑
(s,a,l)∼Dtraining

||a−πθ(s, l)||22, e.g. as in [9, 45].

4 Language-Table: Datasets and Environment

To facilitate further research in language-conditioned visuomotor learning, we release Language-Table,
which consists of (i) a suite of datasets and (ii) a simulated multi-task environment and benchmark.
Language-Table provides our human-relabeled Dtraining and the underlying human-teleoperated
Dcollect, both in simulation and the real world. TheDtraining real and sim datasets are highlighted in
Table 1 – an order of magnitude larger than comparable, previously-available datasets.

# # Physical
Dataset Traj. (k) Unique (k) Actions Real Available

Episodic Demonstrations
BC-Z [9] 25 0.1 3 3 3
SayCan [10] 68 0.5 3 3 7
Playhouse [28] 1,097 779 7 7 7

Hindsight Language Labeling
BLOCKS [46, 47] 30 n/r 7 7 3
LangLFP [11] 10 n/r 3 7 7
LOREL [8, 48] 6 1.7 3 3 3
CALVIN [49] 20 0.4 3 7 3
Language-Table 594 198 3 3 3

(real+sim) (413+181) (119+79)

Table 1: Comparison of human-guided, language-labeled tra-
jectory datasets.

Language-Table’s simulated environ-
ment resembles our real-world table-
top manipulation scenario, which con-
sists of an xArm6 robot, constrained
to move in a 2D plane with a cylindri-
cal end-effector as in [50], in front of a
smooth wooden board with a fixed set
of 8 plastic blocks, comprising 4 colors
and 6 shapes (Fig. 2). In both simula-
tion and real collection, we use high-
rate human teleoperation with a 3rd
person view (line-of-sight in real). Ac-
tions are 2D delta Cartesian setpoints,
from the previous setpoint to the new
one. We batch collected training and inference data to 5hz observations and actions. The Language-
Table benchmark computes automated metrics for 5 task families, with 696 unique task variations. We
note that policy hyperparameters ordered by success in Language-Table have thus far been ordered
similarly in real-world performance, providing a degree of validation for the simulated benchmark’s
relevancy to real world robotics.

5 Policy Results, Discussion, and Conclusion

We present experiments aimed at answering the following questions: Q1: How capably can the system
follow a wide variety of short-horizon natural language conditioned commands? Q2: How capably
can these skills be composed through interactive language guiding to accomplish a wide variety of
multi-step long-horizon compositional rearrangements, and what is the benefit of this guidance? Q3:
Can one operator simultaneously guide several robots equipped with our policy?

Q1: Diverse short-horizon language conditionable skills. To study Q1, we estimate a 95% confi-
dence interval on average success over the 87,588 natural language instructions collected via crowd-
sourcing (20 randomly selected instructions, 10 trials each) (Table 4), with results reported in Table 2.
We see that Interactive Language obtains a 93.5% expected average success rate over the instruction
set, 95% CI [90.08%,96.92%]. See examples of diverse learned behaviors in Figure 5. This is the
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largest set of language conditioned behaviors, to our knowledge, a real-world policy has been shown to
capably address.
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Figure 2: Capabilities explored with Interactive Language. Left: Long horizon language guidance allows
a human to guide a single policy to achieve a wide variety of long horizon precise rearrangement goals. Right:
Simultaneous multi-robot control. Real time language allows a single human operator to guide multiple robots
at once through the same long horizon task, without requiring undivided attention to any one robot.

Instruction Success %
(87k more...) ...

nudge the yellow heart a bit right 80%
place the red star above the blue cube 90%
push the group of blocks left a bit 100%

Average over 87k, CI 95% 93.50%
± 3.42%

Table 2: Real world: Evaluating a wide va-
riety of short horizon language condition-
able skills.

Interaction style
Avg. #
instructions
given

Success %

Open-loop 6.5 25.0%
+- 18.98%

Real-time (ours) 15 85.0%
+- 15.65%

Table 3: Real world: long horizon goal
reaching via real-time human language
guidance.

Q2, Q3: Long-horizon real-time language guidance. To
answer Q2, we define over 100,000 language-distinct com-
positional goal states on our tabletop from 11 high level
families (e.g. make high-level shapes, sort by color, place
all blocks in specific locations, arrange into lines, etc.),
then sample 20 uniformly from all 11. See Figure 2 for
examples of different goal states. We evaluate each long
horizon goal 3 times from randomly reset board states,
yielding 60 total evaluations of a single policy. Results
show (Table 3, see video) our policy obtains an 85.0% ex-
pected average success rate on this diverse set of goals,
95%CI [69.35%,100.00%]. Even though our policies do
not do so fully autonomously, we believe the fact that a real
robot can address such a large and varied set of goals with
real-time language feedback suggests a synergistic mode of
teaching robots to be even more capable: robots learn a set
of general-purpose low-level skills, and humans put them
together in a familiar way using natural language, interrupt-
ing at any time to offer situation-specific corrections. To

quantify the benefit, we perform the same evaluation as in the previous section, but the human operator
commits up front to the set and order of commands they will provide. We present results for this
ablation in Table 3, finding that performance deteriorates from 85% to 25% when real-time language is
removed, highlighting the dependence on sufficient feedback, not only for the low-level poicy but for
the agent providing it instructions. Finally, in Figure 2 (see video as well), we find affirmative evidence
for Q3. We see that four robots equipped with Interactive Language policies can be guided at the same
time by one operator. This language guided multi-robot control is, as far as we know, a capability
not yet demonstrated in the literature. See the appendix for additional experiments comparing our
transformer-based policy architecture compare to an existing visuo-linguo-motor baseline and studying
how our presented approach scales with varying amounts of data.

Conclusion We have presented and analyzed the Interactive Language framework and we provide a
number of associated assets, notably the Language-Table dataset and environment. We believe the scale
of the dataset assets, the recipe used to produce them, the scale of the demonstrated policy diversity, and
the exploration of new capabilities, each offer benefit to the research community in further advancing
capable, realtime-conditionable visuo-linguo-motor robots.
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Appendix for Interactive Language
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Figure 3: Interactive Language: a large scale robot imitation learning framework for real-time language.
Stage 1: First, high throughput robot data collection with multiple operators. Post-collection, relabel robot video
and actions into language conditioned demonstrations using event-selectable hindsight relabeling. Stage 2: do
simple language conditioned behavioral cloning. Stage 3: Human guides a single learned policy in real-time using
natural language to accomplish hundreds of thousands of goals.

A Data Collection

See Table 4 for statistics on our dataset collection. We find, perhaps surprisingly, that the main
bottleneck in our data operation is not robot teleoperation but rather the crowdsourced language
annotation that follows, with 18.06% of the raw data having undergone annotation prior to model
training (5.5x as much unlabeled collected data as annotated data). This is true even though there are
16x as many hindsight annotators as robots. Bottlenecks like this may be addressed by exploiting
language-free co-training [11], or by simply continuing to horizontally scale crowdsourced annotators.
A simple way to address this bottleneck may be to continue to horizontally scale more crowdsourced
annotators, or to make use of goal conditioned co-training capable of exploiting language-free robot
data [11].

Real-World Data Collection
Total robots 4
Total teleoperators 10
Total episodes 16.4k
Average episode length (minutes) 9.9
Total hours of collect time 2.7k
Hindsight Relabeling
Total crowdsourced annotators 64
Total relabeled demonstrations obtained 299k
Total unique relabeled instructions 87k
Average relabeled demonstration length (seconds) 5.8
Total number of hours of relabeled demonstrations obtained 488
Total instruction hours / Collect hours 18.06%

Table 4: Statistics: real-world collection and relabeling. This data snapshot went into training and is a subset
of the full Language-Table data.
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Has contact
Object/location
-directed
instructions

Compound
instructions

Random window [8, 11] 86% 47% 16%
Event-selectable (ours) 91% 83% < 1%
Real test instructions 89% 84% < 1%

Table 5: Which relabeling strategy aligns best with test-time language?

B Event-selectable Hindsight Relabeling

A drawback of prior “random window" relabeling systems [8, 11] is that random windows are not
guaranteed to contain “usefully describable" actions. We instead ask annotators to watch the full collect
video, then findK coherent behaviors (K=24 in our case), using temporal segmentation tools to mark
the start and end frame of each behavior, and phrasing their descriptions as natural language commands.
We instead ask annotators to watch the full collect video, then findK coherent behaviors (K=24 in
our case). Annotators have the ability to mark the start and end frame of each behavior, and are asked to
phrase their text descriptions as natural language commands. In Table 5, we compare event-selectable
relabeling to prior “random window" relabeling on a subset of our training data, finding that while both
strategies tend to describe contact-rich behaviors, our analysis suggests event-selectable relabeling
yields more well-matched data: fewer complex compound instructions, and more compositionally
directed instructions.

C Architecture Details

In Figure 4, we describe our transformer-based [39] neural network policy architecture, mapping from
video and text to continuous actions, which we refer to as LAVA (“Language Attends to Vision to
Act"). Each training example consists of (s,a,l)i∼Dtraining, where s∈Rseqlen×640×320×3 is RGB
observation history. We pass each frame in the video s through a convnet to obtain multi-scale visual
feature descriptors (features at multiple layers). Our convnet consists of two Imagenet-pretrained
ResNet [40,41] layers and two additional learned convolutional layers. l is embedded using a pretrained
CLIP text encoder [42], which is finetuned on our in-domain data, but remains fixed during policy
training. We fuse visual and lingual information using a “Language-Attends-to-Vision" transformer
block, which performs cross-attention with the sentence token acting as query, and flattened multi-scale
visual tokens acting as keys and values. This operation is applied to each image, and the sequence
output is fed to a temporal prenorm [43] transformer, which is average pooled and fed to a deep residual
multi-layer perceptron (MLP), outputting the predicted next action a.

D Short horizon behaviors

In Figure 5 see Interactive Language rollouts on a sample of the >87,000 crowdsourced natural
language instructions we evaluate.

E Ablations

In Figure 6, we present results in simulation ablating (i) our transformer-based policy architecture
LAVA against the FiLM-conditioned ResNet architecture in [9] and (ii) the amount of data provided to
policy training. We report average success and SPL over the multi-task benchmark in Language-Table
(see “Environment and Benchmark" in Section 4), and all numbers are reported with confidence
intervals over three seeded training runs. We see the presented architecture is indeed responsible for
significant gains over prior work in SPL, a path-length-aware success metric we find correlates best
with real world quality in our setup. When sweeping the amount of training data, we find that policy
performance is seeing diminishing returns, but not yet plateauing across each doubling of data. While
perhaps surprising given the scale of our collect, we believe that this result highlights the environment’s
complexity as well as the difficulty of open vocabulary visuomotor learning.
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Figure 4: LAVA: our transformer-based architecture for language conditioned visuomotor control.
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push the green star
between the yellow blocks nudge the yellow heart right a bit

push the green circle and blue triangle 
towards the group of blocks

push green star towards the center slide the green star closer to the blue cube

move blue triangle to the right of the green 
circle

separate the yellow hexagon and the red 
star

push the green star
between the yellow blocks

nudge the yellow heart 
right a bit

push the blue triangle
to the top left corner

push the green circle and blue triangle 
towards the group of blocks

push green star 
towards the center

slide the green star 
closer to the blue cube

move blue triangle to the 
right of the green circle

separate the yellow hexagon 
and the red star

Figure 5: Learning a wide variety of short-horizon open vocabulary behaviors. Interactive Language rollouts
on a sample of the >87,000 crowdsourced natural language instructions we evaluate.
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Figure 6: Ablations in simulation. We compare our LAVA transformer architecture to a baseline ResNet-18
FiLM model from [9], as well as ablate the amount of data provided to training. We find the average success-
weighted path length (SPL) to be a better indicator of qualitative performance than (unweighted) average success.
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