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Abstract

Advances in computer vision and machine learning enable robots to perceive their
surroundings in powerful new ways, but these perception modules have well-known
fragilities. We consider the problem of synthesizing a safe controller that is robust
despite perception errors. The proposed method constructs a state estimator based
on Gaussian processes with input-dependent noises. This estimator computes a
high-confidence set for the actual state given a perceived state. Then, a robust neural
network controller is synthesized that can provably handle the state uncertainty.
Furthermore, an adaptive sampling algorithm is proposed to jointly improve the
estimator and controller. Simulation experiments, including a realistic vision-based
lane keeping example in CARLA, illustrate the promise of the proposed approach
in synthesizing robust controllers with deep-learning-based perception.

1 Introduction

Advances in computer vision and machine learning enable robots to perceive their surroundings in
powerful new ways, but these perception modules have well-known fragilities. In this paper, we
address the problem of designing robust controllers that tolerate and compensate for the fragilities of
the perception modules they use. Simply put, how to design reliable controllers that use unreliable
perception? We study the fundamental control task for a robot to maintain a given invariant. For
example, a drone has to stay within a geo-fenced area, or a car has to stay within the lanes.

In this paper, the perception module is modeled as a function that takes in the actual state and
generates a noisy copy of it, i.e., the perceived state. In order to design a feedback controller that
only has access to the perceived state to maintain safety, we utilize Gaussian processes (GP) to
construct a state estimator and machine learning to synthesize a certified controller. Furthermore, an
adaptive sampling algorithm is proposed to jointly improve the estimator and controller. We evaluate
the proposed approach on three benchmark systems. Experimental results clearly verify that with
the proposed approach, one can synthesize controllers that are robust to perception errors, and the
proposed adaptive sampling algorithm indeed improves the sample efficiency.

Related work Data-driven approaches have been developed for perception-based control [1; 2].
However, such purely data-driven approaches do not provide any safety guarantees. In a series of
recent works by Dean et al., the authors studied the robustness guarantees of perception-based control
algorithms. In [3], the authors proposed a perception-based controller synthesis approach for linear
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Figure 1: Overview of the system and the learning algorithm.

systems and provided a theoretical analysis. In [4], the authors proposed robust barrier functions for
synthesizing safety-critical controllers under uncertainty of the state. In our approach, such a robust
barrier function is used as a component of the estimation and control pipeline.

2 Preliminaries and problem setup

Dynamical systems. We consider dynamical systems of the form ẋ = f(x, u), where x ∈ X ⊆ Rn

is the state and u ∈ U ⊆ Rm is the control input.

Imperfect perception functions. We study systems equipped with sensors and perception modules,
which together constitute a perception function s : X 7→ X . That is, it takes in the actual state x ∈ X
and produces a noisy observation x̂ := s(x) which is called the perceived state. The perception
function s is a complex composite of the environment, the sensor, and the perception module, for
instance, a deep convolutional neural network, and we treat it as a black box function.

Invariant sets. Consider an autonomous system ẋ = f(x), where x ∈ X . A set C ⊆ X is called an
invariant set of it, if starting from any initial state in C, a trajectory always stays in C.

The synthesis problem. As shown in Figure 1, the goal is to synthesize a module that computes
control input u for the dynamical system such that after plugging this module into the dynamical
system, a user-defined set S ⊂ X is invariant to the closed-loop system. However, different from an
ordinary feedback controller, this module does not have access to the actual state x of the system.
Instead, it only has access to a noisy version of the actual state, which is the perceived state x̂.

3 Design Methodology

Our approach decomposes the desired controller function c into two components, a GP-based state
estimator g : X 7→ 2X aiming to recover a high-confidence set for the actual state from the perceived
state, and a robust controller π : X 7→ U (See Fig. 1). As will be shown later, the output of g is an
ellipsoid. We call the sequential combination of the two components as the Estimator and Controller
Module (ECM): c(·) := π(center(g(·))), where center picks the center of an ellipsoid.

3.1 Constructing the state estimator

The state estimator is designed as g : X 7→ 2X such that for an arbitrary state x, x ∈ g(s(x)) with a
high probability. In this paper, we construct such an estimator using Gaussian processes. Here, we
view the problem of estimating x from x̂ as a regression problem.

Construction of the data set. The state estimator will be constructed from samples of the perception
function s. To this end, a data set D = {(x̂j , xj)}Nj=1 that captures the relationship between the
perceived state and the actual state is constructed. Each sample is obtained as follows: first, a state
xj ∈ X is sampled, then x̂j is computed as x̂j = s(xj).

Setup of the probabilistic model. In order to apply GP regression, we first set up a probabilistic
model to represent the observations in the above data set. As stated earlier, since s might not be
invertible, there might be multiple x’s that correspond to the same x̂ in the above data set. To
characterize this property of the data set, we assume there is an input-dependent observation noise.



Specifically, we adopt the following probabilistic model (Along the lines of [5]).

xj = s+(x̂j) + wj , j = 1, · · · , N,

where s+ : X 7→ X approximately inverts s with an input-dependent zero-mean noise wj ∼
N

(
0,diag(exp(z(x̂j)))

2
)
. Here, z : X 7→ Rn is the noise-level function, which characterizes the

non-invertibility of the perception function s at x̂.

Posterior distribution and construction of the high-confidence set. With the data set and the prior
distributions, the posterior distribution of the actual state x corresponding to a query perceived state
x̂ is also a multivariate Gaussian distribution as in [5]. Then, it is standard to construct an ellipsoid as
the high-confidence set. Specifically, given a confidence level δ, we construct the high-confidence
set g(x̂) as an ellipsoid centered at the mean of the multivariate Gaussian distribution and whose
semiaxes are proportional to the standard deviations such that Pr (x ∈ g(x̂)) = δ. For more details,
please refer to the extended version [6] of this paper.

3.2 Learning the controller

In this section, we elaborate on the process of learning a certified controller π given such a state
estimator g. We fix the target invariant set S ⊂ X for the control system. In order to prove or
certify that S is indeed invariant with respect to the closed-loop system, we will learn a continuously
differentiable function h : X 7→ R, the certificate, such that the 0-superlevel set of h, Ch := {x ∈
X : h(x) > 0} is equal to S . Functions like h are often called barrier functions or barrier certificates.
The learning algorithm is designed based on the following theorem inspired by [4].

Theorem 1. Assume that a state estimator g satisfies that for all x, the set g(s(x)) contains x. If
π : X 7→ U be a differentiable controller such that there exists an extended class K∞ function α such
that ∀x̂ ∈ X ,

inf
x∈g(x̂)

(
∂h

∂x
(x) · f(x, c(x̂)) + α(h(x))

)
≥ 0, (1)

where c(·) := π(center(g(·))), then, Ch is invariant to the closed-loop system, i.e., ẋ = f(x, c◦s(x)).

Learning-based synthesis. As shown in Figure 1, we model the controller and the barrier function
with two neural networks π(·; θπ) and h(·; θh), where θπ and θh are the parameters. The learning
algorithm aims at finding the correct parameters such that π and h satisfy the condition in Theorem 1.
In order to train the neural networks on sampled data, we transform the above loss functions into
their empirical version. That is, replacing the expectations with empirical averages. To this end,
we construct a data set Dc as follows. We sample M1 perceived state x̂ from Unif (X ) and denote
them by {x̂i}M1

i=1. Then, for each x̂i, we sample M2 points x from Unif (g(x̂)) and denote them by
{xj

i}
M2
j=1. These samples constitute the data set Dc := ∪M1

i=1{(x̂i, x
j
i )}

M2
j=1. Then, we train the neural

networks with the following loss function L.

L(θh, θπ) =
1

M1M2

M1∑
i=1

M2∑
j=1

[
λ1ReLU

(
−
(
∂h

∂x
(xj

i ) · f(x
j
i , π(center(g(x̂i)))) + α(h(xj

i ))

))

+ λ2

((
1− IS(xj

i )
)
h(xj

i )− IS(xj
i )h(x

j
i )
)]

, (2)

where the first term is to impose the condition in Theorem 1 and the second term is to impose the
condition that Ch = S. Here, λ1 > 0 and λ2 > 0 are weights that balance two loss terms.

3.3 Adaptive sampling for estimation and control

After training, the loss function L might remain positive due to the large uncertainty of the Gaussian
process at certain points. These points are called hard samples. For a hard sample x̂, the set g(x̂) is
too large and satisfying the condition in Theorem 1 might be impossible. To conquer this problem,
we sample more data around these hard samples to reduce uncertainty. We collect these samples



Figure 2: Image 1-3: Comparison of sample efficiency of learning certifiable controller. While both uniform
and adaptive sampling approaches learn safety preserving controllers, the latter is significantly more sample
efficient. The baseline for the three benchmarks are 0.58, 0.85, and 0.61 respectively. Image 4-5: Distribution of
samples in the data set D constructed by two sampling approaches on Dubins vehicle. Red lines are the boundary
of the target invariant set S . Image 6-7: The simulated lane-keeping scenario in CARLA and the detected lanes.

into a setH, andH is then merged with the current D to improve the GP. The algorithm returns the
control module c if it successfully finds one, otherwise, it returns some debug information to the user
such that the perception function can be improved accordingly in a separate procedure. The debug
information is simply the setH in the last iteration.

Algorithm 1: Adaptive sampling.
Input: Max number of iteration: I; Confidence δ.
Output: π and g, orH.
Randomly initialize D = {(x̂1, x1), · · · , (x̂N , xN )};
i← 0;
do

Compute the state estimator g on D;
Construct Dc and train h and π on Dc;
Collect hard samplesH;
D ← D ∪H; i← i+ 1;

whileH ̸= ∅ and i < I;

4 Experiments

We evaluated the proposed approach on three dynamical systems, two simple systems with synthetic
perception error functions, and one realistic lane-keeping task in CARLA with deep-learning-based
perception modules [7]. As a performance index for the learned controller, we report the unsafe ratio,
which empirically measures the fraction of finite-time (10 seconds in our experiments) trajectories
that exit the invariant set S.

In Figure 2, we show how the unsafe ratio varies with the number of samples in the data set D.
We compared the proposed adaptive sampling approach with uniform sampling, where instead of
enlarging the data set D with hard samples we use data points that are uniformly sampled from the
state space, and the baseline, where GP is disabled and the state estimator is set to g(x̂) = {x̂}.
There are several observations from the experiments. (1) Both sampling methods find controllers
that are robust to the perception error. (2) Adaptive sampling leads to a lower unsafe ratio than
uniform sampling with the same number of samples in D, which empirically confirms our intuition
that the proposed controller design approach with adaptive sampling is more sample efficient. To
further illustrate the benefit of adaptive sampling, we contrast the data sets D generated by adaptive
and uniform sampling in Figure 2. As can be seen from the figure, adaptive sampling zooms in on
relevant areas of the state space, because at those areas, a more accurate state estimator is needed,
while uniform sampling evenly distributes its sampling budget.

5 Limitations and future work

One should be careful with interpreting the theoretical guarantee of the proposed approach. The
confidence δ characterizes the probability of each standalone state falling into the high-confidence set.
Further theoretical treatment is required to boost such a guarantee to one on the safety of trajectories.
Furthermore, in order to handle larger data sets, approximate GP such as [8] has to be used.
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