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Abstract

This paper presents a novel approach to solve simultaneously the problems of
human whole-body motion prediction and action recognition for real-time applica-
tions. Starting from the dynamics of human motion and motor system theory, the
notion of mixture of experts from deep learning literature has been extended to solve
this problem. The work is accompanied by 66-DoFs human model experiments.

1 Introduction

This paper addresses the problem of human whole-body motion prediction and action recognition.
Given an unfinished set of observed human motion, the prediction should fundamentally respond to
two questions for a predefined time horizon in the future: what the human subject will do next in the
short-term at the symbolic level, hence a classification problem; how the human subject will do that,
i.e., motion prediction as a regression problem.

A primary application of prediction is in human-robot collaboration and joint action scenarios, where
predictions of human forthcoming actions and motions allow the robot to plan and adapt itself to
the human in a proactive fashion [1], hence enhancing the fluency, safety, and ergonomics. Other
applications of this work include robot teleoperation in a remote environment under time delay [2],
robot motion generation [3], and exoskeleton control [4].

Human action and motion prediction problems are very challenging due to intrinsic variations in
human action execution, including both spatial and temporal variations. The challenges are further
intensified when prediction should generalize over several human subjects, and when subjects are
not restricted, i.e., at any moment can make a new decision and switch from an action to another.
While many works address the problem of human action recognition, i.e., recognizing human action
when its execution is over, in this work, we are interested in predicting human action for a specified
time horizon in the future given an unfinished set of observations. The approaches to solve these two
distinct problems are similar in the literature, thus we are using the two terms interchangeably in this
manuscript.

In this paper, first, we describe human motor control policy for motion generation from a biological
and dynamical system point of view. Later, we have extended the Mixture of Experts (MoE) deep
neural network (DNN) approach to jointly learn the problems of human action recognition and
motion prediction. For this purpose, each expert in MoE is enforced to learn a specific human motion
generation policy related to a given action, hence expert outputs predict human motion, and a gating
network output classifies human actions. Experiments follow.
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2 Background & Problem Statement

To address human action and motion prediction problems, this section presents the underlying
principles of human motion generation and action from dynamical system and human motor system
perspectives. This study will support the formulation of human action and motion prediction problems
with a holistic view, which in turn gives an idea of how to solve the problem in a generalized form.
Following this investigation and indications, next section attempts at solving these problems.

We model a human as a Markov process expressed as a multi-body mechanical system with n joints,
each with one degree of freedom, connecting n+1 links. The joint angle, velocity and torque vectors
are denoted by s ∈ Rn, ṡ ∈ Rn, and τ ∈ Rn respectively, and the system state vector is denoted by
x = (s, ṡ) ∈ R2n.

According to the literature on biomechanics and motor system and human dynamics, we can write
down the way a human generates new joint torques as a function of current s(t), ṡ(t), s̈(t),

...
s(t)

(joint jerks), f c(t) ∈ R6nc (nc external forces), τ (t), τ̇ (t), τ̈ (t) (the first and second derivative of
joint torques resulted from muscle contractions),

∫
τT(t)τ (t)d(t) (joint efforts),

∫
ṡT(t)τ (t)d(t)

(kinetic energy of the joints), and r(t) ∈ Rnr (other nr terms associated with the generation of joint
torques) [5]. Some of the important terms that we can identify associated with r(t) are the human
objective or the immediate task, the task space constraints such as obstacles, time constraints, and
spatial constraints. In many works in robotics where human motion is predicted, r(t) is considered
to be known implicitly. It is injected into the problem when a human should act in a structured
environment or perform a given task sequence. However, in an unstructured environment or when
human subjects are not provided with a description of the tasks to execute, r(t) can be considered as
a hidden state in a Markov process and is required to be estimated given input data [6–8].

Remark 1 Biomechanical studies tend to show that humans generate motion in order to minimize a
cost function. This cost function combines mechanical energy expenditure (related to joint torques
and velocities) and the motion smoothness (related to minimum jerk) while executing a reaching task
[5, 9].

Following Rem. 1, we can approximate the human policy for joint torque generation as an optimal
control problem with an unknown cost function, i.e., an inverse optimal control problem. One can
show the following optimal relationship between the next optimal state of the human x∗

k+1 and the
past human states xk−i, external forces f c

k−i, and hidden states rk−i is hold:

x∗
k+1 = H∗(xk,xk−1,xk−2, . . . ,xk−N ,f c

k , . . . ,f
c
k−N , rk, . . . , rk−N ). (1)

By recursively applying (1), we can predict the future states of the human dynamical system for the
time horizon T , i.e., x∗

k+1,x
∗
k+2, . . . ,x

∗
k+T . However, to estimate the future states of the human

system in a recursive fashion, there are the following problems that needs to be addressed: i) the
mappingH∗ in (1) is not known; ii) external forces/torques acting on the human in the future f c

k+i in
(1) are not known; iii) the hidden states rk±i in (1) are not known, neither in the past nor the future.

3 Proposed Solution

To address the challenges derived at the end of Sec. 2 for human motion prediction, we propose a
learning-based approach, i.e., the mappingH∗ in (1) is learned from human demonstrations. In the
literature, approaches based on a single neural network have been proposed to learn the mappingH∗.
However,H∗ is very complex, and yet no approach has resolved this problem effectively. Starting
from (1), here first, we discuss different approaches to solve the difficulties that emerged previously
and reformulate the action and motion prediction problem in a new form. Afterward, we adopt the
Mixture of Experts (MoE) approach to solve the two problems simultaneously [10, 11].

In order to predict the external wrenches acting on the human in the future f̃k+i, one can come
out with two approaches. First, given the predicted states of the human x̂k+i, we can model the
human and the world and perform simulations to predict the external forces acting on the human [12].
However, this solution is time-consuming and cumbersome to model the human and the world for
different scenarios. Another approach is to learn a model of the world for relevant tasks from the
human offline demonstrations and try to predict the interaction forces/torques acting on the human
[13]. For this work, we have decided to go for the learning approach.
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In regard to rk±i, when the human subject is not asked to do a given task, the problem becomes
even more complex and depends on many variables. For example, for daily-life activities, to
estimate what a human will do and how will do them, we should know the hidden internal objective
(state) of the human in his mind. Using other sensory modalities like cameras, we may infer
the human action, e.g., reaching an object, and human motion and trajectory, e.g., depending on
the object’s location and obstacles. However, this is out of the scope of this work, and we are
only considering the human dynamical states and interaction forces. Moreover, depending on the
type of rk±i, we can consider rk±i as the solution of a classification or a regression problem. In
this work, as a simplifying assumption, we only consider human symbolic actions as the hidden
state, and will estimate it as a classification problem. In the offline phase, human actions are
annotated by experts, while in the online phase, given the input data human next action is estimated,
i.e., P(ak+1|xk, . . . ,xk−N ,f c

k , . . . ,f
c
k−N ). Noticeably, in (1), rk, . . . , rk−N are compacted and

approximated as ãk+1. Hence, equation (1) can be revised as the following set of equations:
ãk+1 = D∗

1(xk,xk−1,xk−2, . . . ,xk−N ,f c
k , . . . ,f

c
k−N ), (2a)

x̃k+1, f̃ c
k+1 = D∗

2(xk,xk−1,xk−2, . . . ,xk−N ,f c
k , . . . ,f

c
k−N , ãk+1), (2b)

where D∗
1 and D∗

2 are two optimal mappings to learn. As presented, the original complex problem
of motion prediction introduced in (1) is transformed into action recognition in (2a) and motion
prediction in (2b) problems.

In order to solve the problem of human action recognition (i.e., learnD∗
1 in (2a)) and motion prediction

(i.e., learn D∗
2 in (2b)) jointly, we have elaborated on the idea of MoE. We consider the outputs of

both the gating and expert networks as the two sets of outputs of a single and large MoE network. The
gating network tries to solve the human action recognition as a classification problem. Each expert
tries to predict human motion associated with an action as a regression problem. In this case, the total
loss function L for MoE can be written as a linear combination of the two output losses L1 and L2

with the weights b1 and b2 that are set by the user. Here, L1 is set as a categorical cross-entropy loss
and L2 is the mean squared error; in other problems, the user may choose different loss functions. In
our case, we define the total loss as:

L = b1 L1 + b2 L2 = − b1
2M

∑M
j=1

∑N
i=1 a

j
i log(ã

j
i ) +

b2
2M

∑M
j=1 ‖ỹj − yj‖2,

s.t. ỹj =
∑N

i=1 ã
j
i ỹ

j
i ,

(3)

where scalar value aji and vector yj
i are human action and motion (e.g., joint values) ground truth

related to the i’th action and j’th data, and .̃ indicates estimated values that are stochastically
found. M is the total number of data, and N is the number of experts or modeled actions. When
designing the network, b1 and b2 are positive numbers chosen manually as hyperparameters such that
both classification (action recognition) and regression (motion prediction) problems converge while
training. For this purpose, a suggested approach is first to tune b1 such that the classification problem
converges, and later accordingly, set the parameter b2. In this way, we are ensuring each expert is
learning the motion associated with an action. Moreover, l1 and l2 regularization terms are used to
penalize the weight values and avoid overfitting, however they are not reported in the loss function in
(3). Looking at (3), during back-propagation while training, we can observe that the gate weights
rely on both L1 and L2 losses, while the expert weights only depend on L2. This shows an important
feature of the proposed approach, not only does human action affects how human moves, but also
the way human moves affects the recognized action. Moreover, when human subject is performing
an action ai (assuming the optimization problem is converged), ak goes close to zero ∀k 6= i, hence
expert i is enforced to learn the human motion associated with i’th action. Finally, in the transient
phase when the subject alters from an action to another, the two associated experts try together to
reduce the error on the motion prediction output, proportional to the gate outputs.

4 Experiments, Results, and Discussions

For experiments, human data are collected using a wearable motion capture system equipped with
inertial measurement units (IMUs) and a pair of shoes equipped with force/torque sensors. Human
model has 66 DoFs, and an inverse kinematic implementation computes the joint values and velocities
[14]. Data are sampled at 25 Hz. The programs run on a 64 bit i7 2.8 GHz workstation, equipped
with 32 GB RAM, Ubuntu 20.04 LTS, and Intel(R) Iris(R) Xe Graphics. In the experimental process,
the human subject was asked to walk naturally inside the room, and in total less than 8 mins of data
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𝑡 = 182.3 𝑠𝑒𝑐 𝑡 = 184.5 𝑠𝑒𝑐 𝑡 = 186.1 𝑠𝑒𝑐 𝑡 = 188.1 𝑠𝑒𝑐 𝑡 = 189.1 𝑠𝑒𝑐

Figure 1: Snapshots of human motion prediction (top), action recognition (middle), and right knee
joint angle (in radian, bottom) taken from accompanied video at https://youtu.be/XK4vmD6pJ9Q.

have been collected and carefully annotated. 70% of data are considered as the training data, 20%
validation data, and the last 10% as the test dataset. The human subject was doing the following
actions: Walking, Rotating, Standing, and other irrelevant actions were labeled as None. To implement
MoE (using TensorFlow2), four similar experts associated with the number of human actions and one
gate network have been considered. In the implementation, LSTM, Dense, Softmax, Dropout, Batch
Normalization layers have been used. Moreover, l2 regularization terms have been added to the layers
to avoid overfitting. The inputs to the network are joint values and velocities, and ground reaction
forces/torques with N = 5 in (2). Since LSTMs are inherently recursive, we predict the future of
human motion directly (without autoregressive implementation) for the future time horizon of 1 sec,
i.e., T = 25 steps. The training, validation, and test set results are shown in the accompanying video.

Figure 1 shows the results of the human action recognition and motion prediction at different moments.
Online inference takes 26ms on average at each time step. On the top, it shows the snapshots of the
human motion in gray color and the results of the prediction for 0.2sec in the future in the red color.
Notice that, currently, the future base pose is not estimated, hence the two avatar bases coincide. In
the middle, the results of the human action recognition are shown for three 1, 12, 24 steps in the
future. Finally, at the bottom, it shows the results of the prediction of the human right knee joint
angle in radians (in small gray circles) for the prediction time horizon at each step, and the blue line
shows the actual value of the knee joint angle. Notice when human starts to rotate at t = 185sec,
the probability of the human rotating action at t+ 0.96sec is higher than the one at t, and reversely
for the walking. Later, at t = 186sec, it predicts the subject will rotate for the next T time horizon.
Finally, at t = 188sec (the fourth column on the right side), the prediction results show a trend from
rotating to walking action. For t ∈ [188, 189], first, knee joint angle is predicted with a rotating
pattern, while later this has been transformed to a walking pattern as the human starts to walk.

5 Conclusions

In this paper, we proposed a novel approach for simultaneous human action and motion prediction
for the short time horizon in the future. The mixture of experts (MoE) notion has been adopted to
solve the two problems together, and the results show the effectiveness of the proposed solution for
real-time applications. In the future, the proposed approach will be scaled to predict the actions and
motion of several subjects, and use the hierarchical version of MoE in order to generalize the solution
to a wider range of human actions.
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