
ADHERENT: Learning Human-like Trajectory Gen-
erators for Whole-body Control of Humanoid Robots

Paolo Maria Viceconte1,2,∗ Raffaello Camoriano3 Giulio Romualdi1,4 Diego Ferigo1,5
Stefano Dafarra1 Silvio Traversaro1 Giuseppe Oriolo2 Lorenzo Rosasco3,4,6 Daniele Pucci1,5

1Artificial and Mechanical Intelligence, Istituto Italiano di Tecnologia, Genoa, Italy
2DIAG, Sapienza Università di Roma, Roma, Italy

3Laboratory for Computational and Statistical Learning - IIT@MIT, Istituto Italiano di
Tecnologia, Genoa, Italy, and Massachusetts Institute of Technology, Cambridge, MA, USA

4DIBRIS, Università degli Studi di Genova, Genova, Italy
5Machine Learning and Optimisation, University of Manchester, Manchester, UK

6Center for Brains, Minds and Machines, MIT, Cambridge, MA, USA
∗paolo.viceconte@iit.it - viceconte@diag.uniroma1.it

Abstract

Human-like trajectory generation and footstep planning has been a longstanding
open problem in humanoid robotics. Meanwhile, research in computer graphics
kept developing machine-learning methods for character animation based on train-
ing human-like models directly on motion capture data. Such methods proved
effective in virtual environments, mainly focusing on trajectory visualization. This
paper presents ADHERENT, a system architecture integrating machine-learning
methods used in computer graphics with whole-body control methods employed
in robotics to generate and stabilize human-like trajectories for humanoid robots.
Leveraging human motion capture locomotion data, ADHERENT yields a general
footstep planner, including forward, sideways, and backward walking trajectories
that blend smoothly from one to another. At the joint configuration level, AD-
HERENT computes data-driven whole-body postural references coherent with
the generated footsteps, thus increasing the human likeness of the resulting robot
motion. Extensive validations of the proposed architecture are presented with both
simulations and real experiments on the iCub humanoid robot. Supplementary
video: https://sites.google.com/view/adherent-trajectory-learning.

1 Introduction

The general problem of generating trajectories for humanoid robots still remains a challenge for the
robotics community. The complexity of the problem increases considerably when targeting real-time
trajectory generation for different environmental conditions and robot locomotion modes. For instance,
whole-body trajectory generation methods for robot walking soon become numerically intractable due
to the high dimensionality of the problem, especially when the overall generated motion is required to
fulfill a certain degree of human likeness. We propose a system architecture for efficiently addressing
whole-body human-like trajectory generation for humanoid robots. The architecture leverages recent
research in computer graphics (CG) targeting character animation via learning-based methods [1–5]
(see Appendix, Sec. A.2). We focus on Mixture of Experts (MoE) methods such as Phase-Functioned
Neural Networks (PFNN) [1] and Mode-Adaptive Neural Networks (MANN) [2]. We integrate the
latter with state-of-the-art hierarchical whole-body humanoid robot control methods, which proved
effective on a diverse set of real-world humanoids [6–13] (see Appendix, Sec. A.1). Learning-based
methods notably improve generality and human likeness of trajectory generation, while whole-body
hierarchical controllers provide the reliability and robustness required in the real world.

NeurIPS 2021 Workshop on Robot Learning: Self-Supervised and Lifelong Learning, Virtual, Virtual



Dataset Collection (III-A) Retargeting (III-B)
MoCap

data

retargeted
MoCap

data I/O features

Trajectory Generation (III-C)

Trajectory Control (III-D)
trained
weightsnetwork

output

footsteps

DCM desired

contact wrenches, joint/CoM pos/vel

joint positions

CoM desired

postural

Offline
Online

Motion Capture
Acquisition

WBGR and kinematically
feasible base motion retargeting

Footstep and Postural
Extraction

Features Extraction MANN Training

MANN Inference

User Input Processing

Whole-body QP Control

Trajectory OptimizationSimplified Model Control

user input

Figure 1: Block diagram of the overall learning-based ADHERENT architecture proposed in this work.

Main contributions: i) We present ADHERENT (humAn-Driven wHolE-body REference geNerator
and conTroller), the first step towards a comprehensive learning-based architecture for efficient human-
like whole-body trajectory generation and control of humanoid robots, and validate its robustness
with extensive simulations and real-world experiments on the iCub humanoid; ii) We demonstrate
the generality of the learning-based footstep planner incorporated into ADHERENT by showing its
adaptability to diverse walking patterns, facing directions, start and stops, and smooth transitions
among these; iii) We verify the improved human likeness of the whole-body motions exploiting the
data-driven postural references provided by ADHERENT along with the footstep plan.

2 ADHERENT

The proposed ADHERENT architecture consists of four main components: Dataset Collection,
Retargeting, Trajectory Generation and Trajectory Control – see Fig. 1. In the following, we present
the methods implementing each component. In light of ADHERENT’s modularity, specific methods
can be easily replaced by more efficient and effective ones in future instances of the architecture.

2.1 Dataset Collection

The Dataset Collection component is in charge of acquiring human locomotion data. For this, we use
our human wearable data processing framework [14, 15] that fuses data from a sensorized suit by
XSens technologies [16], carrying 17 wireless inertial sensors scattering the entire body. Data span
a wide range of walking motions (forward, backward, lateral, diagonal) performed on a flat terrain
with continuously-changing steering direction. Stops and restarts are included in the sequences,
characterized by steps of variable length. Please refer to the Appendix (Sec. C.1) for further details.

2.2 Retargeting

The Retargeting component adjusts the human trajectories so as when the modified trajectories are
applied to the robot, its motion turns out to be similar to the human one. We retarget the collected
motion capture (MoCap) data by enhancing the Whole-Body Geometric Retargeting (WBGR)
technique (see Appendix, Sec. B.2) with a kinematically-feasible base motion retargeting that renders
the robot base motion compatible with the retargeted joint trajectories (See Appendix, Sec. C.2).

2.3 Trajectory Generation

We interactively generate trajectories for the robot by exploiting the MANN architecture detailed in
the Appendix (Sec. B.3). The training dataset preparation and network structure are inspired by [2].

Features extraction The input and output vectors for MANN are extracted by preprocessing the
retargeted MoCap dataset. The input xi at time step ti includes the robot state at ti−1 and the ground
base trajectory data at ti, i.e., past and future base trajectory data projected on the ground, subsampled
to obtain 12 data points equally spaced on a 2 s window centered at ti. The output yi at time step ti
includes the robot state at ti, the ground angular base transformation from ti−1 to ti, and the future
ground base trajectory data at ti+1 (consisting of 6 data points equally spaced on a 1 s window starting
from ti). Further details on the input and output vectors are included in the Appendix (Sec. C.3).

2



Network structure The MANN architecture used in this work is composed of a Motion Prediction
Network and a Gating Network with 3 hidden layers of 512 and 32 units each, respectively. ELU
activation [17] is used. The Gating Network receives the full input xi. We use K = 4 experts.

User input processing At inference time, the user provides via joypad two continuous signals to
interactively generate trajectories: i) the motion direction: the direction in which the user wants the
robot to move; and ii) the facing direction: the direction towards which the user wants the robot to
align the mean of its base and torso horizontal pointing directions. At fixed facing direction, varying
the motion direction allows to switch between frontal, sideways, and backward walking. At fixed
motion direction, varying the facing direction allows steering. Moreover, releasing the analog for the
motion direction leads the robot to a stop. A step-by-step description of the user inputs processing,
which is critical for the predictive performances of MANN, is provided in the Appendix (Sec. C.4).

Network output postprocessing The network output yi is used to update the robot configuration. In
particular, the joint position si included in yi becomes the new joint configuration and the ground
angular base velocity ḃai is exploited to update the base orientation. The base position is instead
updated by applying the same kinematic feasibility procedure used at the retargeting stage (Sec. 2.2).

Footstep and postural extractor The desired feet positions and orientations composing the footstep
plan are retrieved from the generated trajectory by the Footstep Extractor. In particular, a new foot
position is added to the plan once the support foot changes. Concerning orientations, in the case of
flat terrain the plan only requires the predicted yaw angle of the support foot, while roll and pitch
angles are set to zero. The joint positions si included in the network prediction yi constitute a
whole-body human-like postural. However, having been trained on a MoCap dataset collected at
60 fps, the network generates references only compatible with such frequency. Still, the whole-body
Quadratic Programming (QP) control layer may require posturals at a different frequency. The
Postural Extractor interpolates the network’s predictions to obtain posturals at the required frequency.

2.4 Trajectory Control

We execute on the robot the walking trajectories by leveraging the three-layer control architecture
described in the Appendix (Sec. B.4). Given the footstep plan provided by the Footstep Extractor, a
reference Divergent Component of Motion (DCM) [18] trajectory is obtained by the planner included
in the Trajectory Optimization layer. In particular, we adopt the implementation from [19], providing
a feasible DCM trajectory even for variable Center of Mass (CoM) height. Given a desired DCM
trajectory, at each control cycle the Simplified Model Control layer computes the desired CoM velocity
ẋ∗ by concatenating Eq.(1) and Eq.(2) from the Appendix (Sec. B.4). Then, the desired CoM position
x∗ is retrieved by Euler integration. A QP problem of the form defined in Eq.(3) from the Appendix
(Sec. B.4) is formulated from the postural returned by the Postural Extractor. The desired feet poses
and CoM trajectory {ẋ∗,x∗} are set as hard constraints. An additional soft constraint aims to zero
the chest roll and pitch angles. Finally, the desired joint velocity ṡ∗ included in the solution of the
QP problem is integrated, and the resulting desired joint position s∗ is sent to the robot.

3 Results

Here, we report the results obtained after training our architecture on the processed MoCap dataset.
MANN is trained in a classical regression setting, minimizing the mean squared error between the
ground truth and the network prediction. The Appendix also includes training details (Sec. D.1) and
additional analyses on the robustness (Sec. D.2) and blending coefficients activation (Sec. D.3).

Trajectory generation The Trajectory Generation component interactively generates walking trajec-
tories. Each prediction requires around 3 ms on a 9-th generation Intel Core i7 CPU @ 2.60 GHz. By
varying motion and facing directions, the user can move the robot forward, backward, and sideways
in a human-like fashion. Changes in the input signals promptly translate into smooth transitions
between different walking patterns. By releasing the motion direction stick, the user can stop the
robot and then restart the motion at will. Fig. 2 (top) shows a complex trajectory, including several
walking patterns and smooth transitions between them. The footstep positions extracted from the
entire trajectory are visualized in red and blue for the right and left foot, respectively. A larger variety
of trajectory generations is reported in the supplementary video.

3



Figure 2: Top: A mixed trajectory including forward (1-3), right-oriented forward (4-6), right-side (7-11), and
backward (12-15) walking, as well as smooth transitions between them, and a final stop (16). Below each frame,
the user inputs interactively shaping the trajectory are plotted from the local viewpoint of the simulated robot
(red: Desired motion direction; blue: Desired facing direction). Bottom: The very same trajectory on iCub.

Trajectory control The generated trajectories are executed on the real-world 32-Degree of Freedom
(DoF) iCub humanoid robot [20], which is 104 cm tall and weighs approximately 33 Kg. The control
architecture composed by the Simplified Model Control and Whole Body QP Control layers runs
at 100 Hz on a 4-th generation Intel Core i7 @ 1.7 GHz. Fig. 2 (bottom) illustrates the successful
execution of the complex trajectory whose generation is shown in the upper part of the same figure.
The footstep sequence performed by the robot is added to the visualization for the sake of clarity. The
execution of this trajectory, along with others, is also presented in the supplementary video.

Human likeness We evaluate the human likeness of the trajectories executed by ADHERENT on the
real-world iCub robot. We compare them with walking trajectories adopting a fixed postural for the
upper body, as is often the case in classical humanoid robot locomotion. A side-by-side comparison in
the case of a forward walking is shown in the supplementary video. As it can be observed, the overall
motion with ADHERENT postural shows an improved human likeness. Additional considerations on
the degree of human-likeness achieved with ADHERENT are included in the Appendix (Sec. D.4).

4 Discussion

ADHERENT is able to generate reference trajectories in real time (3 ms per prediction step), thanks to
efficient neural-network-based feedforward prediction. Therefore, it achieves comparable efficiency
with respect to simplified-model trajectory generators, while being able to produce more general
high-dimensional whole-body trajectories that state-of-the-art methods can only generate offline due
to excessive computational complexity. We also demonstrate that ADHERENT-generated trajectories
can be successfully executed on an advanced humanoid robot whose physical properties significantly
differ from those of the human body. Such successfully-executed trajectories robustly cover a broad
range of motion types and steering capabilities. Improving human likeness of the robot motion is
an additional feature enabled by ADHERENT. We show that learning-driven human-like motions
generated by the network can be successfully transferred to the real robot.

4



References
[1] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural networks for character control. ACM

Transactions on Graphics, 2017.

[2] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive Neural Networks for Quadruped
Motion Control. ACM Transactions on Graphics, 2018.

[3] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. DeepMimic: Example-Guided
Deep Reinforcement Learning of Physics-Based Character Skills. ACM Transactions on Graphics, 2018.

[4] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. DReCon: data-driven
responsive control of physics-based characters. ACM Transactions on Graphics, 2019.

[5] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learning
Agile Robotic Locomotion Skills by Imitating Animals. In Robotics: Science and Systems, 2020.

[6] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G. Atkeson. Optimization based full body
control for the atlas robot. In Humanoids, 2014.

[7] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body motion planning with centroidal
dynamics and full kinematics. In Humanoids, 2014.

[8] Alexander Herzog, Nicholas Rotella, Stefan Schaal, and Ludovic Righetti. Trajectory generation for
multi-contact momentum control. In Humanoids, 2015.

[9] Justin Carpentier, Steve Tonneau, Maximilien Naveau, Olivier Stasse, and Nicolas Mansard. A versatile
and efficient pattern generator for generalized legged locomotion. In ICRA, 2016.

[10] Stefano Dafarra, Gabriele Nava, Marie Charbonneau, Nuno Guedelha, Francisco Andrade, Silvio Traver-
saro, Luca Fiorio, Francesco Romano, Francesco Nori, Giorgio Metta, and Daniele Pucci. A Control
Architecture with Online Predictive Planning for Position and Torque Controlled Walking of Humanoid
Robots. In IROS, 2018.

[11] Giulio Romualdi, Stefano Dafarra, Yue Hu, and Daniele Pucci. A Benchmarking of DCM Based Architec-
tures for Position and Velocity Controlled Walking of Humanoid Robots. In Humanoids, 2018.

[12] George Mesesan, Johannes Englsberger, Gianluca Garofalo, Christian Ott, and Alin Albu-Schäffer. Dy-
namic Walking on Compliant and Uneven Terrain using DCM and Passivity-based Whole-body Control.
In Humanoids, 2019.

[13] N Ramuzat, G Buondonno, S Boria, and Olivier Stasse. Comparison of Position and Torque Whole Body
Control Schemes on the TALOS Humanoid Robot. 2021.

[14] Claudia Latella, Yeshasvi Tirupachuri, Lorenzo Rapetti, Diego Ferigo, Silvio Traversaro, Ines Sorrentino,
Francisco Javier Andrade Chavez, Francesco Nori, and Daniele Pucci. A Human Wearable Framework for
Physical Human-Robot Interaction. In I-RIM, 2019.

[15] Lorenzo Rapetti, Yeshasvi Tirupachuri, Kourosh Darvish, Claudia Latella, and Daniele Pucci. Model-Based
Real-Time Motion Tracking using Dynamical Inverse Kinematics on SO(3). Algorithms, 2020.

[16] Daniel Roetenberg, Henk Luinge, and Per Slycke. Xsens MVN: Full 6DOF Human Motion Tracking
Using Miniature Inertial Sensors. 2013.

[17] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Accurate Deep Network Learning
by Exponential Linear Units (ELUs). ICLR, 2016.

[18] Johannes Englsberger, Christian Ott, and Alin Albu-Schaffer. Three-dimensional bipedal walking control
using Divergent Component of Motion. In IROS, 2013.

[19] Giulio Romualdi, Stefano Dafarra, Giuseppe L’Erario, and Daniele Pucci. Non-Linear DCM Trajectory
Optimization with Variable Center of Mass Height. I-RIM, 2020.

[20] Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Vernon, Luciano Fadiga, Claes von
Hofsten, Kerstin Rosander, Manuel Lopes, José Santos-Victor, Alexandre Bernardino, and Luis Montesano.
The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural
Networks, 2010.

5



Appendix
A Related Work Details

A.1 Humanoid Robot Locomotion

State-of-the-art architectures for humanoid locomotion simplify the whole-body trajectory generation
problem by hierarchically decomposing it into several layers [1]. Layers’ functionalities can be
categorized [2] in: i) Trajectory optimization, providing a high-level footstep plan given user input;
ii) Simplified model control, computing feasible CoM trajectories given the footsteps; and iii) Whole-
body QP control, producing dynamically-feasible joint trajectories. Instead of directly optimizing
over large configuration spaces, the first two layers tend to use simplified models to compute solutions.
For instance, the unicycle planner [3] employs a unicycle model to produce footstep plans at the
trajectory optimization layer, constraining the plan to simple directed walking on a plane [4], [5].

In recent years, this class of hierarchical architectures has been successfully applied to produce
robust walking on a diverse range of complex humanoids [1, 6–8, 3, 2, 9, 10], also allowing for the
integration of reactive strategies [11, 12]. However, simplified models do not fully represent the
complex humanoid mechanical structure in order to reduce computational cost and allow for on-line
operation. As a result, they restrict the attainable solutions set and the resulting behaviors with respect
to those achieved by humans. In particular, they cannot efficiently compute walking patterns with
unconstrained footstep placement. Moreover, whole-body human likeness is hard to explicitly encode
and optimize for with respect to other attributes such as feasibility, stability, and robustness, and is
therefore usually neglected in such schemes.

Data-driven models of human trajectories have recently been explored to enable human-like behavior
in robotics [13, 14]. Applications include anticipatory trajectory generation for human-robot collabo-
ration [15]. Still, such methods are focused on overall path planning (i.e., CoM trajectory), and do
not target human likeness at the joint or footstep level.

A.2 Character Animation in Computer Graphics

It is important to note that the problem of human-like trajectory generation is not limited to robotics
research. Indeed, it is a prominent topic in CG research too, especially due to applications to realistic
character animation, and has witnessed several recent breakthroughs based on the introduction of
machine-learning methods. The core of the problem can be framed as the kinematic prediction of
the whole-body joints configuration in the next time step, given the current configuration and the
high-level target trajectory to be followed (i.e., obtained from human input).

Many works approach this problem by modeling it as a nonlinear autoregressive model with exoge-
nous inputs. They employ powerful learning-based predictive models able to capture the motion’s
complexity in high dimensions. In PFNN [16], the predictive model is a phase-weighted mixture of
neural networks trained on human motion capture data. At prediction time, the network weights are
blended according to a cyclic phase function encoding the periodicity of the walking motion. This
resulted in a significant breakthrough for character control, enabling remarkably natural motion and
smooth transitions. However, training data need to be annotated with phase function values, which
can be costly or unfeasible for complex and non-periodic motions. In MANN [17], the latter problem
is solved by substituting the fixed phase function with a gating network, which learns end-to-end
how to effectively blend the network weights. Note that both PFNN and MANN are limited to
trajectory generation for kinematic rendering only. In fact, their target applications are in settings in
which natural visual appearance, rather than dynamic control of a real-world system, is the primary
requirement (i.e., videogames).

In [18], Motion Matching is employed alongside reinforcement learning (RL) to retrieve motions
from a MoCap dataset and provide them as references to train a policy in simulation. Improvements in
terms of memory usage were proposed in [19]. DeepMimic [20] employs MoCap data to guide policy
training via an imitation reward component. However, although having demonstrated remarkable
capabilities in simulation and on real quadrupeds [21], RL approaches are severely limited by
substantial inefficiencies and are yet to be successfully applied to real-world humanoids.

6



B Background

B.1 Notation

Please refer to the following notation for the quantities introduced in the remaining of the Appendix:

• I and B denote the inertial frame and the base frame of the robot. In the specific case of
iCub [22], B is positioned at the level of the waist, in between the two legs, with the X axis
pointing backward and the Z axis upwards.

• Given two frames A and C, ARC ∈ SO(3) represents the rotation matrix between the
frames, i.e., given two vectors Ap, Cp ∈ R3 respectively expressed in A and C, the rotation
matrix ARC is such that Ap = ARC

Cp.
• Superscripts ·H and ·R indicate quantities referring to the human and the robot, respectively.
• The m×m identity and zero matrices are denoted by Im and 0m, respectively.
• When referring to network inputs x, outputs y, weights α̂, and blending coefficients θ or to

their elements, subscript ·i indicates quantities of the i-th time step ti.
• The vec(·) operator vectorizes matrices by rows.
• Given a, b ∈ R3, we define a∧ = A ∈ R3×3 as the skew-symmetric matrix such that
a∧b = a× b.

• n denotes the robot’s DoFs.
• ν = (I ṗB,

IωB, ṡ) ∈ R6+n is the generalized velocity of the complete floating-base
system, where IωB is the angular velocity of the base frame w.r.t. the inertial frame, whose
coordinates are expressed in the inertial frame, i.e., IṘB = Iω∧

B
IRB.

B.2 Whole-Body Geometric Retargeting

Among the various approaches to human motion retargeting (see, e.g., [23–26]), WBGR is a recent
method that is easily adaptable to different robot models and human subjects [27]. Assuming a degree
of topological similarity between the human’s and the robot’s mechanical structures, WBGR makes
use of m correspondences between the frames associated with m human and robot links at a reference
configuration. Then, given the human link orientations IR i

H, i ∈ 1, ...,m to be retargeted onto the
robot, WBGR allows to retrieve the robot joint angles by solving the inverse kinematics problem with
the robot orientations IR i

R = IR i
H

HR i
R as targets: each HR i

R is a proper constant rotation matrix
accounting for possible human-robot frame misalignment.

B.3 Mode-Adaptive Neural Networks

MANN is a recently-proposed neural network architecture for responsive character motion generation
specifically designed for multi-modal and unlabeled data [17]. In particular, assume that xi encodes
the previous configuration of the controlled character as well as the desired future motion specified
by the user. Then, MANN predicts a new configuration yi for the character that achieves the
user-specified motion. The next user input is combined with yi, forming the next autoregressive
network input xi+1. This enables MANN to iteratively generate trajectories following the MoCap
data distribution while being responsive to the user. The main characteristic of this architecture, which
builds upon the Mixture of Experts paradigm [28], is that of being composed of two subnetworks:

• The Motion Prediction Network: given xi, it predicts yi;
• The Gating Network: given xi or a subsampled input x̂i, it predicts the blending coefficients

vector θi = [θi1, ..., θiK ]⊤ used to dynamically compute the weights vector α̂i of the
Motion Prediction Network from the K expert network weights vectors {α1, ...,αK}.

In an end-to-end training procedure from unstructured MoCap data, both the weights µ of the Gating
Network and the K expert weights {α1, ...,αK} are learned. At runtime, the weights α̂i of the
Motion Prediction Network at time step i are dynamically computed by linearly combining the K
experts {α1, ...,αK} with the blending coefficients θi predicted by the Gating Network, that is,
α̂i =

∑K
j=1 θijαj .

7



Table 1: Breakdown of the MoCap data.

Walking motion Duration [min] Frames Stops

Forward 8.2 29.500 25
Backward 9 32.450 25

Side 9.45 34.000 27
Diagonal 4.2 15.125 16

Mixed 30.48 109.710 75

B.4 A Three-layer Control Architecture for Humanoid Robot Locomotion

A state-of-the-art control architecture for humanoid robot locomotion relevant for this work is
composed of three nested layers that exploit both simplified and complete robot models [2]. Given
the footsteps, in the outer trajectory optimization loop, an exponential interpolation technique is used
to plan a desired DCM trajectory, smoothed via a third-order polynomial during the double support
phases. Then, the central simplified model control loop is in charge of stabilizing the DCM dynamics
by using the Zero Moment Point (ZMP) position rzmp ∈ R2 as control input. The tracking of the
desired DCM position and velocity ξref , ξ̇ref ∈ R2 is guaranteed by the instantaneous control law
given by:

rzmp
ref = ξref − ξ̇ref

ω̄
+Kξ

p(ξ − ξref ) +Kξ
i

∫
(ξ − ξref )dt, (1)

where Kξ
p > I2, Kξ

i > 02, ω̄ =
√
g/z0, g is the gravitational constant and z0 denotes the constant

CoM height assumed for the Linear Inverted Pendulum (LIP) model [29]. The desired ZMP position
rzmp
ref is then stabilized along with the reference ground CoM position and velocity xref , ẋref ∈ R2

by means of the control law given by:

ẋ∗ = ẋref −Kzmp(r
zmp
ref − rzmp) +Kcom(xref − x), (2)

where Kcom > ω̄I2 and 02 < Kzmp < ω̄I2. Finally, the inner whole-body QP control loop computes
the robot velocity ν as the solution to a stack of tasks formulation with hard and soft constraints, cast
as a QP problem of the form:

min
ν

1

2
νTHν + gTν s.t. Acν = bc, ṡ− ≤ ṡ ≤ ṡ+, (3)

where H and g are evaluated from a low-priority postural task (soft constraint), while Ac and bc
are retrieved from the chosen high-priority tasks (hard constraints) and the final inequalities encode
constraints on the maximum joint velocity. The joint velocity from the solution of the above problem,
obtained via standard QP solvers, is directly integrated to get joint positions for position control.

C ADHERENT

C.1 Dataset Collection Details

As detailed in Table 1, each kind of motion in the collected dataset is performed for several minutes in
a row. Then, plenty of transitions between different motions are collected in a long mixed sequence.
Our final dataset comprises around 1 h of unlabeled MoCap data at 60 fps. We then double it by
mirroring, i.e., for each data point the base orientation is mirrored with respect to the world X-Z
plane, while the left and right link orientations for the limbs are switched and mirrored with respect
to the human model’s mid-sagittal plane, resulting in a total of 441570 data points.

C.2 Kinematically-feasible Base Motion Retargeting

WBGR in [27] does not address the base motion retargeting, i.e., the retargeted base position and
orientation may not be compatible with the robot kinematics, thus possibly leading to a robot moving
forward faster than what its walking pace entails. In other words, a swaying effect arises when
dynamic motions are retargeted to robot models structurally different from the human subject [27].

8



While in CG generating models which fit the collected data is a viable workaround [17] [18], base
motion retargeting for actual robots requires special attention.

First, assume that: i) the robot makes at least one known contact with the environment; and ii) each
foot is modeled as a rectangular patch. Then, we propose the following approach for kinematically-
feasible base motion retargeting:

1. The contact point Ipc is identified as the lowest among the 8 vertices of the feet’s rectangular
approximations;

2. The retargeted base orientation IRB is directly retrieved from the MoCap data;
3. The retargeted base position Ipb is computed by forward kinematics from Ipc, constrained

to remain fixed between two consecutive retargeting steps, via Ipb =
Ipc+

IRC
Cpb, where

C is the frame attached to the contact point (i.e., the frame placed in the lowest vertex and
oriented as the support foot) and Cpb is the base position, expressed in C, computed by
forward kinematics in the updated joint configuration returned by the latest WBGR iteration.

As a result, we obtain retargeted motions that resemble human ones at the links level and are
kinematically feasible at the base level, as shown in the supplementary video.

C.3 Features Extraction Details

In this work, the input vector xi for MANN is defined as follows:

xi = {vec(Pi), vec(Di), vec(Vi), li,︸ ︷︷ ︸
Base trajectory

si−1, ṡi−1︸ ︷︷ ︸
Robot state

} ∈ R137, (4)

where Pi = {p1
i , ...,p

12
i } ∈ R2×12 are ground base positions, Di = {d1

i , ...,d
12
i } ∈ R2×12 are

ground facing directions (i.e., mean of base and chest pointing directions, projected on the ground),
Vi = {v1

i , ...,v
12
i } ∈ R2×12 are ground base velocities, li =

∑12
j=7

∥∥∥pj
i − pj−1

i

∥∥∥ ∈ R is the length

of the future ground trajectory and si−1, ṡi−1 ∈ R32 are joint positions and velocities at ti−1.

The output vector yi is instead defined as follows:

yi = {vec(Pi+1), vec(Di+1), vec(Vi+1)︸ ︷︷ ︸
Future base trajectory

, si, ṡi︸ ︷︷ ︸
Robot
state

, ḃai︸︷︷︸
Base

transf.

} ∈ R101, (5)

where Pi+1 = {p1
i+1, ...,p

6
i+1} ∈ R2×6 are future ground base positions, Di+1 =

{d1
i+1, ...,d

6
i+1} ∈ R2×6 are future ground facing directions, Vi+1 = {v1

i+1, ...,v
6
i+1} ∈ R2×6

are future ground base velocities, si, ṡi ∈ R32 are joint positions and velocities at ti, while
ḃai = βi/∆ti ∈ R, with ∆ti = ti − ti−1, and βi denoting the angle between the ground fac-
ing directions at ti and ti−1 (i.e., d6

i and d6
i−1, respectively).

All the ground base trajectory data in xi and yi are expressed in the bidimensional local reference
frame defined by the ground base position at ti (i.e., p6

i ) and the ground facing direction at ti (i.e.,
d6
i ) along with its orthogonal vector. By stacking all the input and output vectors resulting from the

processing above, we obtain the input and output matrices X ∈ R441570×137 and Y ∈ R441570×101

which, normalized to have zero mean and unit variance, constitute our training set.

C.4 User Input Processing Details

The desired motion and facing directions specified by the user are visualized in Fig. 3 (left), from the
local viewpoint of a robot proceeding forward while steering left. Details on how these inputs are
actually transferred to the network follow, since the user inputs represent an external factor, never
seen by the network during training but directly shaping its input xi at runtime.

The user-specified motion and facing directions are smoothly interpolated to generate a desired future
ground base trajectory {P ∗

i+1, D
∗
i+1, V

∗
i+1} whose components are defined as in Eq.(5). In particular,

the user-specified motion direction is used to define the last point of a quadratic Bézier curve starting
from p6

i and constrained to end on the asymmetric shape shown in black in Fig. 3. We obtain P ∗
i+1

9



Figure 3: The desired motion and facing directions from the joypad (left) define the desired future ground base
trajectory (center). On the right, the user-specified future trajectory (grey) is blended with the future trajectory
from the previous network prediction (magenta), leading to the desired future ground base trajectory (green)
actually included in the next input to the network.

by subsampling 6 data points from this Bézier curve. As a result of the asymmetric constraint, P ∗
i+1

is longer for forward rather than sideways or backward walking. The user-specified facing direction
is instead mapped into a series of facing directions D∗

i+1 progressively driving the current value to
the desired one. V ∗

i+1 is obtained by differentiating P ∗
i+1. Fig. 3 (center) provides a visualization,

from the local robot’s viewpoint, of P ∗
i+1 (red dots) and D∗

i+1 (blue vectors) generated from the
user-specified inputs (left).

As a last step, {P ∗
i+1, D

∗
i+1, V

∗
i+1} is blended with the {Pi+1, Di+1, Vi+1} retrieved from the previous

output yi in order to obtain the ground base trajectory data for the next input xi+1. For the blending,
an example of which is shown in Fig. 3 (right), we follow the method proposed in [16]. For instance,
the desired future ground base positions P ∗

i+1 are blended with the future ground positions outputed
by the network Pi+1 via:

Blend(Pi+1, P
∗
i+1, t, τp) = (1− tτp) Pi+1 + tτp P ∗

i+1 (6)

where t goes from 0 to 1 as ground base positions go towards the future (i.e. towards the limit of the
considered 1-second future window) and τp = 1.5 controls the responsiveness of the character to the
user-specified inputs. The very same procedure is employed to blend the future facing directions and
base velocities, with τp in Eq. (6) respectively replaced by τd = 1.3 and τv = 1.3.

Note that user-specified inputs may result in a desired motion which is absent or rare in the training
dataset. In such case (e.g., when the user requests too abrupt steering) the network may generate
unexpected motions. We solve this issue by limiting the local variation of facing direction that the
user can require to 45◦ and 20◦ for forward and backward/sideways walking, respectively.

C.5 Network Output Postprocessing Details

When the user tries to stop the robot, a small in-place rotation persists. Indeed, given an xi corre-
sponding to a desired stop, the network predicts a yi whose ḃai component is slightly different from
zero. We solve this issue by imposing ḃai = 0 once a stop by the robot is detected. Here, we are
referring to stops at the network level, which can occur several time instants after the user releases
the joypad. We detect such stops by searching for almost-identical consecutive network outputs. In
our case, a stop is detected if ∥yi − yi−1∥ < τstop, with τstop = 0.05.

D Results

D.1 Training Details

We train the MANN architecture using the Adam optimizer with warm restart (AdamWR), configured
as in [17] (i.e., Ti = 10, Tmul = 2, η = 1.0 · 10−4, λ = 2.5 · 10−3). Around 25 hours on an
NVIDIA GeForce GTX 1650 GPU are required for 150 training epochs on the whole dataset, using
mini-batches of 32 randomly selected samples. The Dropout keep probability is set to 0.7.

10



0.2 0.4 0.6 0.8 1

1

2

3

4

Footstep Scaling Factor
Sl

ow
-d

ow
n

Fa
ct

or

Forward

0.2 0.4 0.6 0.8 1

1

2

3

4

Footstep Scaling Factor

Backward

0.2 0.4 0.6 0.8 1

1

2

3

4

Footstep Scaling Factor

Left

Figure 4: Simulated and experimental results for different combinations of slow-down and footstep scaling
factors considered in our robustness analysis. Each figure refers to a different kind of walking motion.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0.5

1

Time [s]

θ
pr

ofi
le

s

Figure 5: Blending coefficients θ profiles with K = 4 experts for an articulated trajectory including standing
(0-1s), straight (1-4s) and steered (4-6s) forward walking, right-side (6-10s), and left-side (10-15s) walking.

D.2 Robustness Analysis

We evaluate the robustness of ADHERENT to a challenging range of step sizes and walking speeds
compatible with the locomotion capabilities of iCub. We carry out our analysis both in simulation and
on the real robot. We apply a slow-down factor to the generated trajectories in the range {1, 2, 3, 4}.
A footstep scaling factor in the range {0.2, 0.4, 0.6, 0.8, 1} is instead applied to the footstep positions.
The analysis is repeated for forward, backward, and left-side walking. Concerning simulations, Fig. 4
illustrates the results for all parameter combinations, with the successful trials and failures represented
by the green and the red areas, respectively. For each considered motion, most combinations are
successful. No matter the slow-down factor, the maximum admissible footstep scaling for successful
backward and left-side walking is 0.8 and 0.6, respectively. As regards real experiments, the solid
green line in Fig. 4 connects the most challenging parameter combinations resulting in successful
outcomes. We observe that higher speed can be traded off with larger step sizes.

D.3 Blending Coefficients Activation

We analyze how the experts specialize in different motions by plotting the profiles of the corre-
sponding blending coefficients θ in Fig. 5. Note that θ activations show distinctive periodic patterns
characterizing each motion type. For instance, in both the straight and steered forward walking phases,
only θ1 (green) and θ2 (yellow) are active, and specialize in left and right swing motions, respectively.
Moreover, θ3 (red) and θ4 (blue) become active during right- and left-side walking, respectively. The
real-time evolution of expert activations for different motions is shown in the supplementary video.

D.4 Human-likeness Analysis Details

In order to evaluate the human likeness of the trajectories executed using ADHERENT, we compare
them with trajectories exploiting a fixed postural for the upper body. For both cases, Fig. 6 shows
reference and measured joint trajectories for a representative set of upper-body joints during forward
walking. When using a fixed postural, the measured joint positions oscillate in proximity of the
constant reference. With the ADHERENT postural, the measured joint positions closely track the
references produced by the network, despite the lower-level action of the Whole Body QP Controller.
This demonstrates that reference motions produced by generators trained on human data can actually
be realized on the real robot. Note that the learning-driven motion of the representative joints
discussed above considerably contributes to the improvement in terms of human likeness that can be
seen in the supplementary video.

11



0 10 20 30

−10

0

10

time [s]

jo
in

tp
os

iti
on

[d
eg

]

Torso Yaw

0 10 20 30

−10

0

10

time [s]

Left Shoulder Pitch

0 10 20 30

−10

0

10

time [s]

Left Shoulder Yaw

0 10 20 30

20

30

time [s]

Left Elbow

Figure 6: Joint trajectory control with ADHERENT postural vs. fixed postural for four representative upper-body
joints. Green: ADHERENT postural reference trajectory. Blue: Measured trajectory with ADHERENT postural.
Black: Fixed postural reference trajectory. Red: Measured trajectory with fixed postural.

E Future Work

In this work, we presented an implementation of the ADHERENT architecture employing instanta-
neous controllers for trajectory control. Possible future work includes investigating, comparing, and
integrating ADHERENT with more advanced control architectures (i.e., MPC- or RL-based).

From a machine-learning perspective, ADHERENT must be retrained from scratch whenever new
motion skills need to be added. This could be tackled by integrating recent continual/lifelong learning
methods in the architecture.

Finally, an extension of our work for the navigation of uneven ground could be pursued by including
perceptual terrain features in the network input. Enhancing the ADHERENT architecture with
perception could indeed represent another significant step towards the development of general and
human-like trajectory generation.

F Acknowledgments

D. Pucci acknowledges the support by the SoftManBot project under grant agreement No. 869855
and the An.Dy project under grant agreement No. 731540, which have received funding from the
European Union’s Horizon 2020 Research and Innovation Programme. L. Rosasco acknowledges
the support by the European Research Council (grant SLING 819789), the Center for Brains, Minds
and Machines, funded by NSF STC award CCF-1231216, the AFOSR projects FA9550-18-1-7009,
FA9550-17-1-0390 and BAA-AFRL-AFOSR-2016-0007 (European Office of Aerospace Research
and Development), the EU H2020-MSCA-RISE project NoMADS - DLV-777826, and the NVIDIA
Corporation for GPUs donations.

References
[1] Siyuan Feng, Eric Whitman, X Xinjilefu, and Christopher G. Atkeson. Optimization based full body

control for the atlas robot. In Humanoids, 2014.

[2] Giulio Romualdi, Stefano Dafarra, Yue Hu, and Daniele Pucci. A Benchmarking of DCM Based Architec-
tures for Position and Velocity Controlled Walking of Humanoid Robots. In Humanoids, 2018.

[3] Stefano Dafarra, Gabriele Nava, Marie Charbonneau, Nuno Guedelha, Francisco Andrade, Silvio Traver-
saro, Luca Fiorio, Francesco Romano, Francesco Nori, Giorgio Metta, and Daniele Pucci. A Control
Architecture with Online Predictive Planning for Position and Torque Controlled Walking of Humanoid
Robots. In IROS, 2018.

[4] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: Modelling, Planning
and Control. Springer, 3rd edition edition, 2008.

[5] Tan-Viet-Anh Truong, David Flavigne, Julien Pettrée, Katja Mombaur, and Jean-Paul Laumond. Reactive
synthesizing of human locomotion combining nonholonomic and holonomic behaviors. In BioRob, 2010.

[6] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body motion planning with centroidal
dynamics and full kinematics. In Humanoids, 2014.

[7] Alexander Herzog, Nicholas Rotella, Stefan Schaal, and Ludovic Righetti. Trajectory generation for
multi-contact momentum control. In Humanoids, 2015.

12



[8] Justin Carpentier, Steve Tonneau, Maximilien Naveau, Olivier Stasse, and Nicolas Mansard. A versatile
and efficient pattern generator for generalized legged locomotion. In ICRA, 2016.

[9] George Mesesan, Johannes Englsberger, Gianluca Garofalo, Christian Ott, and Alin Albu-Schäffer. Dy-
namic Walking on Compliant and Uneven Terrain using DCM and Passivity-based Whole-body Control.
In Humanoids, 2019.

[10] N Ramuzat, G Buondonno, S Boria, and Olivier Stasse. Comparison of Position and Torque Whole Body
Control Schemes on the TALOS Humanoid Robot. 2021.

[11] Michael Bombile and Aude Billard. Capture-point based balance and reactive omnidirectional walking
controller. In Humanoids, 2017.

[12] Milad Shafiee, Giulio Romualdi, Stefano Dafarra, Francisco Javier Andrade Chavez, and Daniele Pucci.
Online DCM Trajectory Generation for Push Recovery of Torque-Controlled Humanoid Robots. In
Humanoids, 2019.

[13] Katja Mombaur, Anh Truong, and Jean-Paul Laumond. From human to humanoid locomotion—an inverse
optimal control approach. Autonomous Robots, 2010.

[14] Alessandro Vittorio Papadopoulos, Luca Bascetta, and Gianni Ferretti. Generation of human walking paths.
In IROS, 2013.

[15] Isabelle Maroger, Noelie Ramuzat, Olivier Stasse, and Bruno Watier. Human Trajectory Prediction Model
and Its Coupling With a Walking Pattern Generator of a Humanoid Robot. IEEE Robotics and Automation
Letters, 2021.

[16] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural networks for character control. ACM
Transactions on Graphics, 2017.

[17] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive Neural Networks for Quadruped
Motion Control. ACM Transactions on Graphics, 2018.

[18] Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard Forbes. DReCon: data-driven
responsive control of physics-based characters. ACM Transactions on Graphics, 2019.

[19] Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. Learned motion matching.
ACM Transactions on Graphics, 2020.

[20] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. DeepMimic: Example-Guided
Deep Reinforcement Learning of Physics-Based Character Skills. ACM Transactions on Graphics, 2018.

[21] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan, and Sergey Levine. Learning
Agile Robotic Locomotion Skills by Imitating Animals. In Robotics: Science and Systems, 2020.

[22] Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Vernon, Luciano Fadiga, Claes von
Hofsten, Kerstin Rosander, Manuel Lopes, José Santos-Victor, Alexandre Bernardino, and Luis Montesano.
The iCub humanoid robot: An open-systems platform for research in cognitive development. Neural
Networks, 2010.

[23] N.S. Pollard, J.K. Hodgins, M.J. Riley, and C.G. Atkeson. Adapting human motion for the control of a
humanoid robot. In ICRA, 2002.

[24] Christian Ott, Dongheui Lee, and Yoshihiko Nakamura. Motion capture based human motion recognition
and imitation by direct marker control. In Humanoids, 2008.

[25] Kanako Miura, Mitsuharu Morisawa, Shin’ichiro Nakaoka, Fumio Kanehiro, Kensuke Harada, Kenji
Kaneko, and Shuuji Kajita. Robot motion remix based on motion capture data towards human-like
locomotion of humanoid robots. In Humanoids, 2009.

[26] L. Penco, B. Clement, V. Modugno, E. Mingo Hoffman, G. Nava, D. Pucci, Nikos G. Tsagarakis, J. B.
Mouret, and S. Ivaldi. Robust Real-Time Whole-Body Motion Retargeting from Human to Humanoid. In
Humanoids, 2018.

[27] Kourosh Darvish, Yeshasvi Tirupachuri, Giulio Romualdi, Lorenzo Rapetti, Diego Ferigo, Francisco
Javier Andrade Chavez, and Daniele Pucci. Whole-Body Geometric Retargeting for Humanoid Robots.
Humanoids, 2019.

[28] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive Mixtures of
Local Experts. Neural Computation, 1991.

[29] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. The 3D linear inverted pendulum mode: a
simple modeling for a biped walking pattern generation. IROS, 2001.

13


	Introduction
	ADHERENT
	Dataset Collection
	Retargeting
	Trajectory Generation
	Trajectory Control

	Results
	Discussion
	Related Work Details
	Humanoid Robot Locomotion
	Character Animation in Computer Graphics

	Background
	Notation
	Whole-Body Geometric Retargeting
	Mode-Adaptive Neural Networks
	A Three-layer Control Architecture for Humanoid Robot Locomotion

	ADHERENT
	Dataset Collection Details
	Kinematically-feasible Base Motion Retargeting
	Features Extraction Details
	User Input Processing Details
	Network Output Postprocessing Details

	Results
	Training Details
	Robustness Analysis
	Blending Coefficients Activation
	Human-likeness Analysis Details

	Future Work
	Acknowledgments

