Hybrid Imitative Planning with Geometric and
Predictive Costs in Offroad Environments

Nitish Dashora*', Daniel Shin*!, Dhruv Shah', Henry Leopold?3, David Fan?*
Ali Agha-Mohammadi?, Nicholas Rhinehart!, Sergey Levine!
LUC Berkeley, 2NASA Jet Propulsion Laboratory, 3 University of Waterloo, *Georgia Institute of Technology

Abstract

Mobile robots tasked with reaching user-specified goals in open-world outdoor en-
vironments must contend with numerous challenges, including complex perception
and unexpected obstacles and terrains. Prior work has addressed such problems
with geometric methods that reconstruct obstacles, as well as learning-based meth-
ods. While geometric methods provide good generalization, they can be brittle
in outdoor environments that violate their assumptions (e.g., tall grass). On the
other hand, learning-based methods can learn to directly select collision-free paths
from raw observations, but are difficult to integrate with standard geometry-based
pipelines. This creates an unfortunate “either-or" dichotomy — either use learning
and lose out on well-understood geometric navigational components, or do not
use it, in favor of extensively hand-tuned geometry-based cost maps. The main
idea of our approach is reject this dichotomy by designing the learning and non-
learning-based components in a way such that they can be easily and effectively
combined and created without labeling any data. Both components contribute to a
planning criterion: the learned component contributes predicted traversability as
rewards, while the geometric component contributes obstacle cost information. We
instantiate and comparatively evaluate our system in a high-fidelity simulator. We
show that this approach inherits complementary gains from both components: the
learning-based component enables the system to quickly adapt its behavior, and the
geometric component often prevents the system from making catastrophic errors.

1 Introduction

How can we enable a robot to swiftly traverse open-world environments while minimizing heuristic
and time-intensive hand-engineering, like those depicted in Fig. 1? The robot should receive coarse
goal direction from a human supervisor, and use this direction, along with its sensor suite and prior
experience, to make its own decisions about what actions to take to reach the destination. A solution
to this problem would enable users to direct robots across unfamiliar territory without requiring them
to significantly change or tune components of the system. For example, imagine a rescue worker
tasking a search-and-rescue robot to quickly search a series of locations in an unmapped dense forest.
A major challenge to developing such a system is enabling it to both draw on prior experience and
adapt its behavior to new environments. While learning is a powerful way to deal with open-world
environments, most learning-based methods studied are difficult to integrate with non-learning-based
navigation pipelines. This creates an unfortunate “either-or" dichotomy — either use learning and lose
out on well-understood navigational components, or do not use it, in favor of extensively hand-tuned
geometry-based cost maps. The main idea of our approach is reject this dichotomy by designing the
learning and non-learning-based components in a way such that they can be easily and effectively
combined and created without labeling any data. Fig. 1 depicts this synthesis.

One classic approach is to perform online geometric mapping and traversability estimation and
then use these estimates, along with a hand-tuned cost function, for planning feasible paths [1—

NeurIPS 2021 Workshop on Robot Learning: Self-Supervised and Lifelong Learning, Virtual, Virtual



sqnIys

uorstio) D
1500 42

$5000Ng @

1500) 2MOT

Figure 1: Our approach combines a learning-based method and a geometry-based planner to plan obstacle-free
trajectories for a Husky robot in a deployment area with obstacles (trees, grass, bushes) as seen in (a). An
example navigation task is shown in (b), where the robot (marked in red) must navigate to the goal (marked
in green) while avoiding obstacles on its path. On its path to the goal, the robot often encounters a scenes like
(c) where there are non-traversable elements like shrubs (highlighted in cyan) and novel obstacles like a wall.
Learning-based methods successfully avoid previously seen obstacles but can struggle with novel obstacles,
leading to a collision with the wall (d). While a geometric approach can avoid this by predicting the collision,
it is unable to reason about the traversability of large shrubs that are hard to identify (e). Note that the cyan
markers are shown for illustration only and are not available to the robot. Our approach, HIP, combines attributes
from both these methods and successfully plans a collision-free trajectory (f).

4]. With careful design and incorporation of prior knowledge into the decision-making pipeline,
these approaches, which we term “geometry-based” and “geometric costmap”-based, are a standard
and performant approach. Their main drawback, however, is a general inability to automatically
incorporate the robot’s prior experience and improve its decision-making capability. For example, if
the costmap assumes all densely-populated points correspond to rigid and untraversable obstacles,
traversable tall grass may cause the robot to be too conservative and avoid the grass; if a height
threshold is included to compensate for this effect, then small, untraversable obstacles like rocks may
cause the robot to be too aggressive and get stuck on the rocks. Another approach to robot navigation
is learning-based, e.g. goal-conditioned imitation learning and policy-based reinforcement learning,
yet these are difficult to integrate with real-world robotic systems because they are inscrutable and
directly output actions. Can we build on both lines of work by addressing their drawbacks in a
principled way?

The main insight in our work is that, instead of trying to reconcile conflicting actions commanded by
geometry-based and learning-based components, we can instead utilize both components to contribute
terms to a shared navigational cost function. Essentially, this cost function represents the hypotheses
of both methods about which future trajectories will or will not lead to collisions. Once a shared cost
function combining geometry-based and learning-based reasoning has been produced, a standard
planning method can decide on the best path to take informed by this cost. We summarize this
idea, and the intuition for why the geometry-based and learning-based components might provide
complementary strengths, in Fig. 2. We term our method Hybrid Imitative Planning (HIP), and present
a system diagram in Fig. 3a. We instantiate and comparatively evaluate our system in a high-fidelity
simulator. We show that this approach inherits gains from both components: the learning-based
component enables the system to learn subtle associations between the high-dimensional sensor data
and traversability, and the learning-free component reduces the frequency of catastrophic errors when
the learner fails to generalize.

2 Hybrid Imitative Planning with Geometric and Predictive Costs

In our problem setting, a mobile robot receives high-dimensional sensory observations and global
localization information, and is tasked with using these sources of information to navigate to a
provided goal in an unmapped, offroad environment partly populated with untraversable terrain (e.g.
large and small obstacles, steep hills). Let o; = (i, 1;, x;) denote the observations that are available



High cost

Low cost

Geometry Based  Learning-Based Hybrid

Figure 2: Illustration of example trajectory plan costs: The geometric costmap approach is adept at identify-
ing obstacles like large trees and rocks, but it may fail to assign high costs to terrain with impediments that are
only visually perceivable, since the LiDAR input often misses small obstacles. The learning-based planner uses
its prior experience to reason about the traversability of objects and terrain with which it is experienced, such
as traversable grass, small impassable objects, and trees. However, it may make mistakes when it encounters
drastically novel obstacles, such as painted walls or automobiles. By designing each of these components in a
way that is amenable to combination, the hybrid planner can accrue benefits from each of its components. In
this example, it adeptly identifies large obstacles and incorporates the data-driven experience from the learned
planner to estimate that the direct plan across the small, compliant obstacles is traversable.

to the robot, where x; € R is the robot’s position estimated by odometry, i; € [0, 1]H:*Wix4 jg an
RGB-D image, and 1; € R™+*3 is a point cloud provided by a LiDAR sensor. Let d € R? denote the
provided goal. Let 7 € R?# denote a trajectory of potential future positions: T = X; 1.4 i, and T;
denote x; ;.

o

e \oufs\am 00 " oo’»““”\o‘ ot ggedo™ ™
[Learned ] Fowe e
(a) HIP system diagram: A dataset (b) Normalized success rate of different methods for goal-
of trajectory demonstrations is used to direction navigation: HIP, which provides a simple interface to
learn a model of traversability and be- combine learned costs with a geometric costmap, improves the task
havior. The model is combined with a performance by over 10%. The BC method uses behavior cloning to
geometric costmap into the hybrid plan- learn a successful policy. The “Random” policy uniformly samples
ner, which plans a trajectory towards a actions from a discretized action space. The “Straight” policy drives
received goal. the robot in a straight-line to the goal.

Designing geometric costmaps. We assume the geometry-based component is available as a
costmap: Cy(-) : R? + R. This decision enables interpretable design of geometric heuristics
g(1;) = C, that process the LiDAR into a function of positions. Let us denote the composition of the
costmap generation and evaluation of it at a position x; as Ceostmap (X¢; 0<¢) = g(l¢)(x:). We defer
discussion of how g is implemented to Appendix A.

Designing learned costs. In order to combine geometric and learned costs, we must construct
a learner that processes the high-dimensional sensor data to assigns costs to trajectories. Our
learning-based costs aim to predict whether a given trajectory would be collision-free — whether
it corresponds to a traversable path. Formally, we construct the learning-based component as a
conditional probability density function of trajectories T: ¢(T|o<;) : R - R, and learn ¢ from
data that excludes collisions. By satisfying this assumption and training ¢ via a maximum likelihood
objective, ¢ should assign high values to a subset of the traversable trajectories and low values to
this subset’s complement, which will include untraversable trajectories. Given g, we can construct
costs as Cleamed (75 0<¢) = —log g(7|o<;). Note that because ¢ is a function of trajectories, not
positions, it has a higher modeling capacity than if it were parameterized by a costmap. We defer
further discussion of how we learn ¢ to Appendix A.



@|°

®)

©

@

() Grass

® Tree — Wall < Shrub

Figure 4: Example HIP rollouts: We show egocentric rollouts of our method in four challenging scenes
illustrated on the left (note that this view is not available to the robot). (a) The robot navigates through grass and
avoids trees. (b) The robot navigates between trees and shrubs. (¢) The robot avoids a wall and a shrub while
traversing tall grass. (d) The robot traverses grass and between trees.

Designing directive costs. In order to direct the robot to the final desired destination (d), we
incorporate a cost that encourages forward progress towards the final destination. Denote this cost
Clirective (T; 0<¢, d). We defer discussion of how we construct Clirective t0 Appendix A.

Combining geometric costmaps and learned costs. Given our goal of integrating learning-based
and geometry-based planning, we design 7 to use a receding-horizon state-space planner as shown in

Eq. (1):
H
" =argmin Cdirective(7-§ d) + (1 - Qj))cleamed('r; Ogt) +¢ Z Ccostmap (Ti§ Ogt) . (1

H
TER? i—1

Given a planned trajectory, T, we use it to compute a; as a simple position-tracking PID controller,
written as a; = f(7).

3 Experiments

We designed our experiments to answer the following main question: Question 1: Can our combined
approach achieve collision-avoidance and navigation performance superior to its constituent compo-
nents? To answer this question, we measure the rate of navigational success for randomized start-goal
pairs in the simulator (which was described in Appendix A). This success rate metric quantifies the
performance of the model when globally directed to a determined goal; specifically, how often it
succeeds in reaching the goal unharmed. We report a normalized version of this metric relative to
the performance of a planner operating with a coarse-grained global obstacle map, which achieved
a success rate of 0.72. This “oracle” planner violates the problem assumption of deployment to an
unmapped environment, as it has access to a map.

Towards Question 1, we expect the geometric costmap method to struggle with smaller untraversable
obstacles, thus affecting its capability to efficiently navigate given a global direction. We expect
the learner, on the other hand, to be able to generate sequences of movement through areas that are
perceptually similar to traversable scenes in the training data. Since any learned model is susceptible
to errors under distributional shift, we might expect the learner to sometimes fail to produce collision-
free trajectories when it encounters obstacles that are visually very different from those seen in
the training data. Finally, we expect our proposed hybrid approach to harness the strengths of its
components to outperform them with minimal hand-engineering effort. We expect the improvement
to result primarily from superior obstacle-avoidance behavior.

Results analysis. Our primary results are shown in Fig. 3b. The naive baselines — Random and
Straight — illustrate the difficulty of the problem. We find our method to be the most performant. The
Learner significantly outperforms the Behavioral Cloning baseline, as it represents multiple possible
futures and defers goal-conditioning until test time, when the planner can select the most appropriate
trajectory for the given goal. The Costmap outperforms the naive baselines, and performs similarly to
BC. It cannot independently model traversability for rigid objects shorter than grass, such as bushes
or rocks, but is adept at identifying areas with larger, more distinguishable untraversable objects.



References

[1] D. D. Fan, K. Otsu, Y. Kubo, A. Dixit, J. Burdick, and A.-A. Agha-Mohammadi, “Step:
Stochastic traversability evaluation and planning for safe off-road navigation,” arXiv preprint
arXiv:2103.02828, 2021.

[2] R. Thakker, N. Alatur, M. Paton, K. Otsu, O. Toupet, and A.-a. Agha-mohammadi, “Au-
tonomous off-road navigation over extreme terrains with perceptually-challenging conditions,”
in Experimental Robotics: The 17th International Symposium. Springer Nature, p. 161.

[3] K. Otsu, G. Matheron, S. Ghosh, O. Toupet, and M. Ono, “Fast approximate clearance evaluation
for rovers with articulated suspension systems,” Journal of Field Robotics, vol. 37, pp. 768-785,
2020.

[4] P. Papadakis, “Terrain traversability analysis methods for unmanned ground vehicles: A survey,”
Engineering Applications of Artificial Intelligence, vol. 26, no. 4, pp. 1373-1385, 2013.

[5] N. Rhinehart, R. McAllister, and S. Levine, “Deep imitative models for flexible inference,
planning, and control,” in International Conference on Learning Representations, 2020.

[6] A.Filos, P. Tigas, R. McAllister, N. Rhinehart, S. Levine, and Y. Gal, “Can autonomous vehicles
identify, recover from, and adapt to distribution shifts?” in International Conference on Machine
Learning (ICML), 2020.

[7] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 4510—4520.

[8] N. Rhinehart, K. M. Kitani, and P. Vernaza, “R2p2: A reparameterized pushforward policy for
diverse, precise generative path forecasting,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 772-788.

[9] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng et al., “Ros:
an open-source robot operating system,” in ICRA workshop on open source software, vol. 3, no.
3.2. Kobe, Japan, 2009, p. 5.

[10] J. Lee, C. Pippin, and T. Balch, “Cost based planning with rrt in outdoor environments,” in
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1EEE, 2008, pp.
684-689.

[11] S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo vision and rover navigation software
for planetary exploration,” in IEEE Aerospace Conference. 1EEE, 2002.

[12] A. Hait, T. Simeon, and M. Taix, “Algorithms for rough terrain trajectory planning,” Advanced
Robotics, vol. 16, no. 8, pp. 673-699, 2002.

[13] S. Ghosh, K. Otsu, and M. Ono, “Probabilistic kinematic state estimation for motion planning
of planetary rovers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,
2018, pp. 5148-5154.

[14] M. McCullough, P. Jayakumar, J. Dasch, and D. Gorsich, “The next generation nato reference
mobility model development,” Journal of Terramechanics, vol. 73, pp. 49-60, 2017.

[15] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the future,” 2017.

[16] F. Codevilla, M. Miiller, A. Lépez, V. Koltun, and A. Dosovitskiy, “End-to-end driving via
conditional imitation learning,” 2018.

[17] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel, “Goal-conditioned imitation learning,” arXiv
preprint arXiv:1906.05838, 2019.

[18] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine, “ViNG: Learning Open-World
Navigation with Visual Goals,” in IEEE International Conference on Robotics and Automation
(ICRA), 2021.



[19] L. P. Kaelbling, “Learning to achieve goals,” in IJCAI. Citeseer, 1993, pp. 1094—-1099.

[20] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal Value Function Approximators,” in
International Conference on Machine Learning (ICML), 2015.

[21] F. Sadeghi and S. Levine, “CAD2RL: Real Single-Image Flight Without a Single Real Image,”
in Robotics: Science and Systems (RSS), 2017.

[22] I. Kostavelis, L. Nalpantidis, and A. Gasteratos, “Supervised traversability learning for robot
navigation,” in Towards Autonomous Robotic Systems, R. GroB3, L. Alboul, C. Melhuish,
M. Witkowski, T. J. Prescott, and J. Penders, Eds.  Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 289-298.

[23] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti, “Learning ground
traversability from simulations,” IEEE Robotics and Automation Letters, vol. 3, no. 3, p.
1695-1702, Jul 2018. [Online]. Available: http://dx.doi.org/10.1109/LRA.2018.2801794

[24] A.Howard, M. Turmon, L. Matthies, B. Tang, A. Angelova, and E. Mjolsness, “Towards learned
traversability for robot navigation: From underfoot to the far field,” J. Field Robotics, vol. 23,
pp- 1005-1017, 2006.

[25] D.D. Fan, A.-a. Agha-mohammadi, and E. A. Theodorou, “Learning risk-aware costmaps for
traversability in challenging environments,” arXiv preprint arXiv:2107.11722, 2021.

[26] A.Francis, A. Faust, H. T. L. Chiang, J. Hsu, J. C. Kew, M. Fiser, and T. W. E. Lee, “Long-Range
Indoor Navigation With PRM-RL,” IEEE Transactions on Robotics, 2020.

[27] D. Singh Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta, “Neural topological slam for
visual navigation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[28] D. Shah, B. Eysenbach, N. Rhinehart, and S. Levine, “Rapid Exploration for Open-World
Navigation with Latent Goal Models,” Proceedings of the Conference on Robot Learning, 2021.


http://dx.doi.org/10.1109/LRA.2018.2801794

A Instantiating the System

Implementing learned costs. As previously discussed, our learned costs are designed to be a
conditional probability density function of future trajectories, ¢(T|o<;) fit to data that excludes
collisions. We implement ¢ as a “Deep Imitative Model” [5]. We adapted the open-source PyTorch
implementation of imitative models released in Filos et al. [6] and adapted the input to use RGB-D.
This model uses a MobileNetV2 encoder [7]. During training, we follow the method of Rhinehart
et al. [8] to induce an upper-bound, 7, on ¢ by perturbing the training trajectories with a Gaussian.
We defer further data-dependent implementation details, including a full table of hyperparameters, to
Section 3.

Implementing geometric costmaps. We use a LiDAR sensor to produce a local point cloud, from
which a terrain traversal cost is computed. We use the “costmap_2d” implementation provided
by ROS to compute a discrete 2D costmap for the ground plane, denote Cc’oslmap [9]. We ap-

ply a nonlinear transformation to Cf,gy,, S0 that its maximum value corresponds to 7/m. This

ensures Zfil Ceostmap(Ti) < max, q(T|o<¢), which makes tuning the ¢ parameter simpler, as
the costs are roughly in the same range. This transformation is given by Ceosimap((2,y)) =
« - SXP C(;oslmap((w7y))/zm/1y/ exp C:m[map((:c',y/)).

Implementing directive costs. Similar to the region goals described by Rhinehart et al. [5], we
designed a directive cost that penalizes T with cost d if it does not end within a particular region a
short distance away from the robot, in the direction of d. We construct this region as a rectangle with
width 2m, center axis in the direction of d, offset towards d by 3m.

Fast planning. In order to quickly solve the optimization problem in Eq. (1), we employ a trajectory
library with size with K = 200. The future trajectories (described in Section 3, were clustered using
k-means, and the centroid, 7%, of each cluster was appended to a library, K = {f‘k}le. During
inference, we perform approximation optimization of Eq. (1) using argmin, .y L(7;0<¢,d).

System and environment overview. We instantiate our system on a Clearpath Husky UGV deployed
in a photorealistic outdoor navigation simulator. The default sensor suite on the Husky includes a
6-DoF IMU, a GPS unit for approximate global position estimates and wheel encoders to estimate
local odometry. We added a forward-facing wide field-of-view RGB-D camera and a LiDAR sensor.
During data collection and evaluation, we heuristically detect collisions using IMU and odometry data.
The simulator consists of a Unity backend and is tightly integrated with the ROS stack on the robot.
The environment consists of an obstacle-rich, enclosed geofence where dense rigid trees, bushes,
and traversable tall grass are scattered throughout. While the geometric costmap may correctly
identify trees as hazardous, it can fail to disambiguate traversable grass and untraversable bushes.
Furthermore, it does not reason about other terrain properties that may lead to collision, such as the
terrain slope. In order for the robot to succeed, it must carefully navigate through dense obstacles
over traversable terrain.

B Related Work

Geometry-based goal-directed navigation. Existing methods for traversability estimation include
geometry-based, appearance-based, and proprioceptive systems, as categorized by Papadakis [4].
Geometry-based methods build a 2.5D or 3D terrain map that is used to extract features, such as the
maximum, minimum, and variance of the height and slope of the terrain [10, 11]. Planning algorithms
for such methods can take into account the stability of the robot on the terrain [2, 12]. Since sensor
and localization uncertainty can play a large role in the construction of environment maps, various
methods exist for estimating the probability distributions of states based on the kinematic model of the
vehicle and the terrain height uncertainty [3, 13]. For example, Fan et al. [1] construct distributions
of traversability costs for risk-aware planning. These approaches rely on hand-crafted models to
determine risks to the robot when traversing over various terrains. However, these models often rely
on simplifying assumptions, and may not consider the compressibility or compliance of geometric
features, especially with respect to vegetation [14]. In contrast, our hybrid approach allows us to
leverage geometry-based goal-directed navigation in tandem with a learned model, which enables our
approach to overcome misspecifications of the geometry-based heuristics.



Learning-based goal-directed navigation. A variety of learning-based methods have studied the
acquisition of goal-directed behavior, broadly classed as imitation learning (IL) [13, 15-18] and
reinforcement learning (RL) [19-21]. Goal-conditioned IL typically requires goals to be specified
during training and do not extend well beyond demonstrations. A drawback to these more general
IL and RL systems is that they are difficult to interpret and incorporate into existing geometry-
based goal-directed navigation pipelines. Planning and navigation in unstructured environments
can be greatly improved by learning environment traversability using prior experience, but previous
approaches to explicitly representing environment traversability require expensive human supervision
or traversability heuristics [22-25]. Recent progress in using topological graphs to implicitly reason
about traversability [18, 26-28] gives a promising way to learn from prior experience but has not
been demonstrated for long-range navigation in complex, unstructured environments. In contrast, our
hybrid approach employs a form of self-supervised learning-based explicit trajectory traversability
estimation in tandem with geometry-based positional traversability estimation, which enables our
approach to more robustly deal with previously-unseen complex obstacles and terrains.

C Supplementary experiments

In addition to Q1 presented in the main text, we also investigated: Question 2: How does varying
input modality and component weighting affect HIP?

HIP (Ours) Learned Cost Geometric Costmap

,:. ) A
Gl

gher Cost Lower Cost Higher Cost Lower Cost
|

Trajectory Predictions Costmap Overlay

Figure 5: Qualitative results on six example scenes: We visualize the trajectory library for the different
methods and highlight the plans from each component in green. Methods which utilize a geometric costmap have
an overlaid map where black represents high cost and gray represents low cost as shown in the right color map.
All trajectories are color coded by their geometric cost as shown in the left color map. The left three scenes are
out-of-distribution while the right three scenes are in-distribution. Since the geometric costmap cannot forecast
the future, it may sometimes lead into obstacles just outside the planning horizon. When out of distribution, the
learned planner fails to recognize unseen obstacles and can cause collision. Our hybrid planner combines the
benefits of each component to navigate successfully.

Experimental setup.

Towards Question 2, we first investigate the effect of ¢, which controls the importance of the
component costs on the planning criterion (Eq. (1)). By varying ¢ to identify the optimal value, ¢*,
we determine if they complement each other (¢* € (0, 1)), or whether one dominates (¢* € {0,1}).
Furthermore, through the ablation, we can understand the importance of each sensor; we expect the
learner’s performance to be maximized when all sensor modalities are included.

Baselines. Beyond the components of our method, we include three other baselines to further
contextualize our system’s performance. Behavior Cloning (BC) baseline: We trained a goal-
conditioned BC baseline using the same data the learner used, as well as a nearly identical neural-



Method Normalized Success Rate

Learned Cost-only, RGB-D input 0.76
Learned Cost-only, RGB input 0.60
Learned Cost-only, Depth input 0.65

Table 1: Ablation results: We observe that both RGB and Depth information are helpful to the Learner.

network architecture to that of the learner. The BC baseline is trained to directly predict a control
given a provided goal, rather than a probability density function over trajectories. Straight baseline:
In order to contextualize the importance of reactivity to perceptual cues, we include a baseline that
plans an action to track the straight-line segment from the robot to the goal. This baseline does not
process the perceptual data, and therefore cannot react to obstacles. Random baseline: Finally, we
include a baseline that uniformly samples a random action from the robot’s discretized action space,
which further contextualizes the difficulty of the problem.

Data collection and model learning. We performed the following steps to automatically collect
training data in the simulator. First, we created a geofence and a generated a set of random starting
poses within it. Next, we randomized the robot’s starting pose among this set and drove it with “sticky”
(executed for multiple frames) random actions. As per our method’s data requirements described
in Section 2, we automatically removed sequences that resulted in collisions. Although the explicit
collision data could be employed to refine the model, we found this method to be effective even when
the collision data was discarded entirely. Collisions were heuristically identified in three different
ways, and the robot was randomly respawned after any collision. The first heuristic is a stuck collision,
which triggers when the robot is stationary for over 4 seconds. The second is a trapped collision,
which triggers when the robot does not move over 3m over a 10s period, which prevents tight circular
movement or very slow motion. The final heuristic is a capsized collision, which uses the IMU
to identify when the robot is capsized. As part of each recorded positional trajectory, RGB-D and
odometry data was recorded. To create the set of examples for training, the data was postprocessed
by subsampling at SHz. Each example uses 10 past timesteps and a one RGB-D visual input, and is
trained to predict H = 10 timesteps of future positions via a maximum likelihood objective. Over
> 200k examples were collected, with which our Learner was trained to maximize the likelihood
of the ground truth odometry positions conditioned on the past odometry and visual information:
maxg E¢,_, - log go(7T|0<;). Table 2 summarizes the hyperparameters of our method.

The simulator we employed in our experiments was described in Appendix A. To measure success

rate, sﬁgﬁ, the robot was randomly spawned 300 times in the geofence with a goal at least 10m away.

A constant seed was utilized for generating start and goal points across each method.

Table 1 contains the result of the ablation analysis. The RGB-D Learner outperformed both RGB
and Depth alone, thus illustrating the significance of both modalities in determining traversability.
In Fig. 6, the results of the ¢ hyperparameter sweep are presented. These results affirm the efficacy
of both components of our method, show that multiple ¢ values are performant. In Fig. 4, we
show example rollouts from our method navigating dense obstacles; we observed that it is capable
of winding through complex areas with many obstacles if an open path exists. In Fig. 5, a set of
qualitative examples for our method, the Learner, and the Costmap are depicted. In these examples,
we often observe the Costmap to identify a subset of the impassable obstacles, while the Learner
refines the remaining viable paths to account for previous odometer positions and objects perceived in
the RGB-D image (which may be undetected by LiDAR). This results in the most effective navigation
around visually perceivable obstacles.

D Discussion

We proposed HIP, a method designed to flexibly incorporate learning-based and geometry-based
components into a single cost function for goal-directed navigation in open-world off-road environ-
ments. We evaluate HIP in a high-fidelity simulator, and find that HIP shows significant improvement
over both of its constituent components, as well as baselines. Ablations of sensory inputs confirm
the efficacy of both RGB and depth data to the system. A hyperparameter sweep of the primary



Hyperparam. Value Meaning
fsim 30Hz Simulator framerate
|D| ~ 200k Dataset size

fr 5Hz Trajectory framerate

H 10 Learner’s prediction horizon
Hpot 10 Learner’s input horizon
H;, xW; 100 x 100  Cropped RGB-D image dimensionality
B 32 Minibatch size

€ 0.001 Learning rate

o 0.01 Scale of the training perturbation

n 64 o-induced upper-bound of ¢(7|o<)

e 6.4 Costmap scaling parameter

o* 0.75 Final planner cost balance

K 200 Trajectory library size

fr 1Hz Replanning frequency

Table 2: Hyperparameters used in our experiments.

0.9

0.8 Fo i - \‘q
@ L8
i) -
= O =0 \
é 0.7 LY
\
@06 \
. Q
= 05 ~
E @ Learned Cost ~
[=]
Z 044 @ HIP (Ours) b
O Geometric Costmap
0.3
0 0.5 0.67 0.75 0.8 0.83 1

o value

Figure 6: Success rate on varying ¢: When no cost is incorporated (¢ = 0), our method purely relies on
learning; when the learned component is removed (¢ = 1), our method purely relies on the costmap. Empirically
analyzing a range of ¢ suggests that combining the components with ¢ = 0.75 results in the best performing
system.

parameter illustrates the existence of multiple performant values. The effectiveness of our approach
illustrates that both learning-based and geometry-based components for autonomous navigation
can be integrated effectively if they contribute distinct but complementary terms to a shared cost
function. That is, instead of sharing control between different types of methods, we simply add their
contributions to a cost function used by a standard model-predictive control method. This approach
suggests promising directions for future work, integrating other types of learned models, as well as
additional sensory modalities. Furthermore, since our learned costs can be integrated with arbitrary
goal representations into a standard planner, a promising direction is to further study other types of
objectives that can be accomplished with our method.

10



	Introduction
	Hybrid Imitative Planning with Geometric and Predictive Costs
	Experiments
	Instantiating the System
	Related Work
	Supplementary experiments
	Discussion

