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Abstract
Sharing autonomy between robots and human operators could facilitate data collec-
tion of robotic task demonstrations to continuously improve learned models. Yet,
the means to communicate intent and reason about the future are disparate between
humans and robots. We present Assistive Tele-op, a virtual reality (VR) system
for collecting robot task demonstrations that displays an autonomous trajectory
forecast to communicate the robot’s intent. As the robot moves, the user can switch
between autonomous and manual control when desired. This allows users to collect
task demonstrations with both a high success rate and with greater ease than manual
teleoperation systems. Our system is powered by transformers, which can provide
a window of potential states and actions far into the future – with almost no added
computation time. A key insight is that human intent can be injected at any loca-
tion within the transformer sequence if the user decides that the model-predicted
actions are inappropriate. At every time step, the user can (1) do nothing and allow
autonomous operation to continue while observing the robot’s future plan sequence,
or (2) take over and momentarily prescribe a different set of actions to nudge the
model back on track. We host the videos and other supplementary material at
https://sites.google.com/view/assistive-teleop.

1 Introduction
Manually teleoperating robots to collect task demonstrations at scale is laborious and challenging.
We present a shared-autonomy-based method using neural networks to forecast robot trajectories that
substantially reduces manual teleoperation time while maintaining a high success rate. Specifically,
we adapt a learned model to do trajectory auto-complete, i.e., given an initial sequence of states
and actions, the network learns to complete the rest of the trajectory. The user can either accept
the model’s suggestions or provide manual corrections while observing their effect on the model
forecast. We leverage transformers [29] for modeling the states and actions through time, which are
well-suited to modeling long sequences of information with complex dependencies (see Fig. 1-left).
Their self-attention mechanism can holistically understand a robot trajectory, rather than emphasizing
adjacent connections between states. When taking as input a sequence of past actions, the transformer
can look far into the future and predict future actions. By integrating this into a robot manipulation
environment with VR, a user can decide if executing the future actions is appropriate, or otherwise
take momentary control of the system to provide a better demonstration.

This work explores transformer model prediction for a set of 7 manipulation tasks involving pick-
and-place across industrial, household, and caregiving robot settings (Fig. 1-right). We train on a
large number of demonstrations (> 500) from the open-source RoboTurk [18] dataset and perform
few-shot learning by fine-tuning on a small number of expert demonstrations (<= 60) and show that
it is able to succeed autonomously for 67.1% of task scenarios during test time. When the model
predicts a wrong sequence of actions, the user takes control and gives the robot a nudge to get it back
on track. This significantly improves performance, and resulting in a 96.1% success rate. Importantly,
our Assistive Tele-op system reduces manual control time to collect demonstrations by a factor of 5.
It is worth stressing that while the use of interventions is similar to DAgger [27], we aid the user by
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Figure 1: Assistive Tele-op using transformers for data collection. Left: Robot motion displaying input past
actions (yellow) and output predicted actions (blue) to the user. Right: We test our method on 7 task scenarios
across industrial (block stacking, nut assembly, kit assembly), household (cabinet drawer and bowl manipulation),
and caregiving (itch scratching and drinking) tasks.

displaying a live forecasting model of the robot trajectory so corrections can be made well before the
robot makes a mistake.

Our transformer embedding has a single state space of fixed length that we can map a variety of
tasks into. Further, by defining the robot state and actions entirely in end-effector space like [19]
and learning a world model [11] in this space, the transformer can be interchanged between robots
and simulation environments. Our transformer is pre-trained on demonstrations collected in a
different physics simulator and robot than what we use in this work. While only the predicted robot
actions are necessary for control, we use an additional loss on object pose states in the scene, which
boosts performance. Transformers are better able to parse sequence information using a positional
embedding vector, which we compute using the cumulative distanced traversed by the end effector in
Euclidean space (similar in spirit to [26]). Finally, by training with a BERT-style zero padding [6] on
the input to the transformer corresponding to future states, we can make an arbitrary number of model
predictions far into the future – which allows the user to understand what the robot is about to do.

In summary, the work makes the following contributions: (1) Evidence that pre-trained transformers
can be fine-tuned for few-shot generalization to new robot manipulation tasks, and (2) Assistive Tele-
op, a VR system with live model forecasting, to assist users with collecting robotic task demonstrations
at a high success rate and with substantially reduced manual control time. As the user collects more
demonstrations, they can be fed back to the model for continual learning.

2 Related Work

Task demonstrations for robot manipulation can be collected using automatic methods such as
trajectory optimization [3, 15] and reinforcement learning [28, 16, 27], as well as manual methods
of kinesthetic teaching and teleoperation [2]. The former require carefully tuned reward functions,
while the latter can be laborious to collect. Virtual reality [7, 31] can help, but the human effort
remains considerable for complex tasks, and when many demonstrations are required. Shared
autonomy [12, 9, 25, 14] offers a better solution to collecting large-scale data. These works blend
robot and user intent using optimization [9], reinforcement learning [25], and learned coarse-to-fine
user precision [14], while ours lets the user look far into the future to understand the autonomous
prediction. A similar forecasting method was proposed by Liu et al. [17], but it is used in a behavior
cloning loss function, rather than for communicating intent to the user. We take some insight from
Pérez-D’Arpino and Shah [22], who overlay a series of robot configuration renderings through time
to show planned motions. Later, they used this feature for human robot teaming to allow an operator
to either accept a suggested motion plan or momentarily intervene [21].

Transformers have only recently gained traction in robotics. Janner et al. [13] reframed RL as
sequence modeling, and used transformers to control humanoid walking. Chen et al. [5] concurrently
explored this in the context of a game environment. Common transformer implementations have
used sinusoidal positional embeddings to better model the order of words [29]. However, Chen et
al. [5] used an episodic timestep positional embedding and Press et al. [23] added a linear bias to
each attention score. We take inspiration from these and use a cumulative distance embedding to
provide information for how far the end effector has traversed.
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Figure 2: The transformer takes as input a past history of Tp states, actions, and positional embeddings, and
outputs predicted states and actions. The user can observe predictions far into the future (e.g. Tf = 300
timesteps) and may choose to execute Te <= Tf of those predictions. The input for future states is padded with
zero, forcing the model to learn future predictions only from past inputs.

3 Methods
The transformer takes as input a trajectory of states and actions τx = {sx, ax} and positional encoding
vector n, and outputs a predicted trajectory τ̂y = {̂sy, ây}. As shown in Fig. 2, the input consists of Tp
past timesteps of information, while the output contains additional information on future predictions
up to timestep Tf . The state at each timestep st is a vector consisting of a global robot end effector
pose sr,t ∈ R7, continuous gripper state sg,t ∈ R1, and the local pose of J objects in the environment
{so1,t . . . soJ,t} ∈ R7×J relative to the robot end effector. Each 7D pose contains a position and
quaternion. At the input, this is fed into a state embedding function Fs which we represent with
a single fully connected network layer: semb,t = Fs(st), where semb,t ∈ R128. The action at
each timestep at is a vector consisting of the local target pose of the robot end effector ar,t ∈ R7

and the binary gripper command ag,t ∈ R1. At the input, this is fed into an action embedding
function Fa, which we represent with a single fully connected network layer: aemb,t = Fa(at),
where aemb,t ∈ R128. Additionally, the network contains a positional embedding to measure the
distance and rotation the end effector has traversed at each timestep along the trajectory from
timestep 1 . . . t. The positional embedding nt ∈ R1 is an integer token computed at each timestep as:
nt =

∑t
t′=2

∑8
j=1 ||cr,j,t′ − cr,j,t′−1||2 where each cr is coordinate of a corner of a 3D bounding box

around the end effector at a given timestep, and is a function of end effector position pr and quaternion
qr in the global frame [1]. We chose this pose representation because it casts rotation in position
space, which mitigates the problem of combining heterogenous terms in the same function. The
token nt is fed into a learned positional embedding layer, Fn: nemb,t = Fn(nt), where nemb,t ∈ R128.
This is added to each state and action embedding. At each timestep the transformer receives the
input vector computed as xt = LN

(
(semb,t + nemb,t)⊕ (aemb,t + nemb,t)

)
where xt ∈ R256 and LN

represents layer normalization. The transformer outputs predicted vector ŷt ∈ R256, which is then
decoded with linear layers on the output mirroring those on the input, represented by gs and ga for
the states and actions. The output of these decoding layers contain predicted states and actions, the
sequence of which forms trajectory τ̂y. The robot is controlled with the predicted end-effector pose
actions by using Riemannian motion policies [24]. See Appendix A for training details.

4 Evaluation
We evaluated the transformer and Assistive Tele-op system across tasks representing industrial [18,
30], household [4, 8], and caregiving [7, 10] task scenarios. For this, we used both existing data from
RoboTurk [18] and new data that we collected with VR. See Appendix B for details.
Automatic model prediction. First, we evaluated the pretrained model. We trained it for > 2
days on raw RoboTurk data with the Baxter robot in MuJoCo, and evaluated it in a reconstructed
environment with the Franka robot in NVIDIA Omniverse. We evaluated the pretrained model on
both 50 scenes from the training data and on 50 test scenes. The training data evaluation provides a
measure of the sim2sim transfer between simulators. The test data evaluation shows generalization to
previously unseen initial item locations. We conducted more tests in tasks A-G in Omniverse (see
Table 1). For each, we fine-tuned a transformer from the pretrained model and trained a transformer
from scratch (no pretraining). We used a fixed-time budget for this comparison. Each model is tested
on 50 new object configurations, except itch scratching, which is tested on 57.
Assistive Tele-op: We evaluated the human-in-the-loop Assistive Tele-op system using both task
success rate and manual demonstration time elapsed. A researcher used the HTC Vive VR system to
communicate with the transformer prediction when controlling the robot, as shown in Fig. 3. For
each task, the model began in automatic mode, and the user clicked a button on the interface to stage
an intervention when the robot moved in an inappropriate direction (e.g. away from the bowl rather

3



Table 1: Success rate and demonstration time for models trained from scratch and pretrained models.
No. Success rate Manual demonstration time (s)

training Manual Auto Auto Assistive Manual Auto Assistive
Task demos tele-op no pretr. w/pretr. Tele-op tele-op Tele-op
RoboTurk pick/place [18] 533 - 0.84 / 0.66† - - - - -

A. Block stacking 35 1.00 0.60 0.74 1.00 14.5 0.0 3.5
B. Round nut assembly [18] 50 1.00 0.38 0.70 0.94 72.3* 0.0 7.9
C. Assembly kit - hexagon [30] 35 1.00 0.00 0.10 0.92 38.5 0.0 5.6
D. Cabinet drawer opening 35 1.00 0.98 1.00 1.00 14.0 0.0 N/A
E. Put bowl in drawer 50 1.00 0.52 0.64 1.00 28.3 0.0 4.5
F. Humanoid itch scratching 57 1.00 0.46 0.70 0.93 23.0 0.0 4.2
G. Humanoid drinking 35 1.00 0.68 0.82 0.94 18.8 0.0 7.7
Overall (A-G average) - 1.000 0.517 0.671 0.961 29.9 0.0 5.5
*Based on approximate RoboTurk data frequency of 15 Hz. †Results on training data / results on test data. All results collected in NVIDIA Omniverse with Franka.

than toward it when picking it up). We score Assistive Tele-op success as the ability to complete a
demonstration on a new task scenario – either with fully automatic prediction, or with intervention
assistance. Assistive Tele-op can only improve the demonstration success rate. For all Assistive
Tele-op scenarios, we used the transformer with pretraining. Time taken for manual demonstration
is compared among manual, automatic, and assistive modes. In manual mode, this is the average
time to collect each full demonstration. In automatic, it is 0, because no human effort is required. In
Assistive Tele-op mode, it is the average intervention time for all demonstrations per task.

5 Results and Discussion
Pre-trained transformers can be used for few shot generalization to new tasks. For each task,
we compared models trained from scratch to those fine-tuned starting with a pre-trained model. The
pre-trained and fine-tuned models performed better across all tasks (Table 1). Testing scenarios were
successful in most cases, except Task C. See Appendix C for details.
Models trained with our method can transfer between different simulators and robots. The
RoboTurk dataset was collected in MuJoCo using a Baxter robot. However, we tested the transformer
model using a Franka robot in the Omniverse [20] simulator. These environments have a different
robot configuration, control method, data collection rate, and simulation method, but the model
performs well, showing good sim2sim transfer. Task B, also from RoboTurk, provides further
evidence for this. Formulating the model in end effector space is key to this transfer, by obviating the
configuration space representation that is different between Baxter and Franka.
Human interventions can get the model back on track. When a human intervenes in the event of
failure to nudge the robot back on track, success increases from 67.1% to 96.1%. See Fig. 3.
Collecting Assistive Tele-op demonstrations with model prediction is easier. For purely manual
teleoperation, the average demonstration time is 29.9 seconds. For Assistive Tele-op, the average
human demonstration time to get the robot back on track is 5.5 seconds across task scenarios that
otherwise cannot be completed with fully automatic model prediction.
Auxiliary object pose loss boosts performance. We ablated the auxiliary loss on the objects in
the scene, and found that for the round nut assembly (Task B) success for the pretrained model,
performance drops from 70% to 58%.

Figure 3: Assistive Tele-op in VR. When the user detects future actions that are inappropriate, they click a
button to take over control. After a momentary nudge, they return control to the transformer.
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Assistive Tele-op: Leveraging Transformers to Collect
Robotic Task Demonstrations

**APPENDIX**

Henry M. Clever1,2, Ankur Handa∗ 1, Hammad Mazhar1, Kevin Parker1, Omer Shapira1,
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Appendix A: Network Training

During training, a sub-sequence of length Ts = 400 from is sampled from a task demonstration of
trajectory length Td, where Td > Ts (recall Fig. 2). The network takes input of sequence length Ts
of state and action pairs, τx, associated with each time-step. Inspired by BERT [2] masking, we only
keep the first Tp time-steps and mask the remaining Ts − Tp time-steps with zeros. The network is
trained to predict the corresponding state and action pairs, τy, at masked out time-steps. The input
length Tp is chosen at random during training to force the transformer to make future predictions of
an arbitrary horizon length. It is sampled from a uniform distribution Tp ∼ U(1, 350), such that the
future prediction length is at least 50 timesteps.

We denote sr,t = [pr,t, qr,t] to be the state of the robot end-effector composed of position and
orientation and time t and art = [prtarget,t, qrtarget,t] as the action composed of target end-effector
position and orientation. Similarly, we define current gripper state sg,t ∈ [0, 1] and target gripper
state ag,t ∈ [0, 1]. Object i in the scene is also represented by its state vector soi,t = [poi,t, qoi,t]
composed of its position and orientation and there is no action associated with it. The network
takes an input sequence of states sx={sr,t, so1,t · · · soJ,t, sg,t}kt=0 composed of robot end-effector state,
gripper state and states of J objects in the scene and actions ax={ar,t, ag,t}kt=0 associated with the
robot end-effector and predicts the future sequence of states sy={sr,t, so1,t · · · soJ,t, sg,t}Tt=k+1 and
corresponding actions ay={ar,t, ag,t}Tt=k+1. We predict the future states and actions given the current
states and actions using a GPT-style transformer: ŝy, ây = GPT(sx, ax).

A.1 Loss Function

The loss function used to train the transformer model has many different components that induce
different properties on the learned model. We compute two loss functions related to end-effector state
and action, two for gripper state and action prediction, and one loss function on the state for each
object in the scene.

It is worth noting that since the state and actions are composed of positions and orientations, com-
puting the loss function by weighting rotation and translation with a hyper-parameter is not ideal.
Instead we compute the loss directly in euclidean space by representing 3D locations of the 8 corners
of a cube with corresponding position and orientation and computing the loss function as euclidean
distance between predicted and ground truth 3D positions [1].

We compute the end-effector state loss by mapping its position and orientation to 8 corners of the
rigid cube both for the predictions and ground truth:

∗corresponding author: ahanda@nvidia.com
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ĉsr = CORNERS(p̂sr , q̂sr) (1)
csr = CORNERS(psr , qsr) (2)

where csr ∈ R8×3 are the 3D positions of the 8 corners of the bounding box extents of the end effector.
The loss function is the L2 distance of the corresponding 8 corners of ground truth and predictions:

Lsr =

Ts∑
t=Tp

||̂csr,t − csr,t||2 (3)

Similarly, we can define the loss function on the action space where the predictions are end-effector
target positions and orientations as well as loss function object state predictions which also involve
the position and orientations.

To compute loss on the gripper state we use binary cross entropy

Lsg =

Ts∑
t=Tp

BCE(̂sg,t, sg,t) (4)

Lag =

Ts∑
t=Tp

BCE(âg,t, ag,t) (5)

The total loss is sum of the individual losses:

LTOTAL = Lsr + Lar +

J∑
i=1

Lsoi + λ(Lsg + Lag) (6)

Appendix B: Evaluation Details

B.1 Data collection

Existing data - Roboturk. The Roboturk simulation dataset was collected in the Mujoco [3]
simulator with a Baxter robot, but we found that many demonstrations played back successfully in
the NVIDIA Omniverse simulator with a Franka robot when controlling the robot in end effector
space. This dataset consists of over 6000 crowd-sourced human demonstrations for pick and place
tasks with 4 objects (cereal box, milk jug, bread, and coke can) and nut assembly tasks. Of these, we
selected 533 pick and place demonstrations for pretraining the transformer. We chose the first 533
demonstrations that had an overall time of less than 900 timesteps, because we observed that shorter
demonstrations had better quality. We hand-selected demonstrations for the round nut assembly (Task
B) by choosing the first 50 that played back smoothly in our recreation of the scene in Omniverse
with the Franka robot.

New data. An HTC Vive virtual reality headset was used by a researcher to collect data in Omniverse
with Franka. To create variation in each scene, we sampled initial scene object poses from the
following uniform noise distributions for both training and testing scenes: (A) block stacking - blue
picked block from ±5cm planar translation and ±45◦ rotation, orange stacked block from ±5cm
planar translation. (C) assembly kit - pink hexagon from ±7.5cm planar translation and ±180◦
rotation. (D) cabinet, ±45◦ rotation. (E) put bowl in cabinet, cabinet from ±45◦ rotation, green bowl
from ±10cm uni-directional translation relative to the cabinet. (F) itch scratching, scratch tool from
±5 cm unidirectional translation, humanoid root pose from ±5 cm planar translation, and 19 unique
itch scratching locations on the humanoid. 3 manual demonstrations are collected for each location
(57 total). (G) humanoid drinking, mug w/straw from ±5cm unidirectional translation and ±30◦
rotation over the table, and humanoid/wheelchair root from ±7.5cm planar translation.

B.2 Transformer hyperparameters

The input sequence length was set to Tp = 250 and the future prediction length to Tf = 150. Each
time a forward pass runs on the transformer, the simulator executes Te = 10 actions, which are
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Figure 4: Task examples that the transformer completes successfully. (A) the blue block is stacked
upon the orange block (B) the round nut is placed on the round peg. (C) the pink hexagon is fit into
the assembly kit board. (D) the bottom cabinet drawer is opened. (E) the green bowl is put in the top
cabinet drawer. (F) an itch scratching tool is picked up and used to scratch an itch on the bottom of
the left foot. (G) a mug with a straw is picked and brought to a person in a wheelchair.

fed back into the transformer. Predicted actions are fed directly back to the transformer, while real
simulator states resulting from the actions are input to the model. The transformer contains 6 layers,
8 heads, a hidden layer size of 256, and it is trained with a batch size of 128. During pre-training, we
used a learning rate of 1e-4 that linearly decreased to 5e-5, and a learning rate of 5e-5 for training on
other task data.

Appendix C: Results

We present additional qualitative results in Fig. 4 showing success during automatic model prediction
on new task scenarios. This provides further evidence for the success of few-shot learning with
transformers. All examples in the figure are for the pretrained model that was fine-tuned on individual
tasks.

C.1 Limitations

The transformer model has poor generalization performance for precision tasks with few (<= 50)
examples. The Assembly Kit from TransporterNets consists of five precisely fitting shapes into a
board. The performance is low for a single precisely fitting shape (the Hexagon, at 10%), as shown in
Table 1 of the main paper. However, if the goal criteria is set more loosely (i.e. the shape is next to
the goal but not quite in the slot), then performance is 46%. It also has some difficulty picking the
hexagon, because the hexagon is almost as wide as the open gripper max width.

Most failures happen largely due to imprecise grasping and the robot unable to recover from these
failures. In some cases, the robot grasps the object but stops midway and never reaches the goal
or stays frozen after grasping. This may be to due to out of distribution errors due to limited
demonstrations.
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