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Abstract

We present an algorithm for Inverse Reinforcement Learning (IRL) from expert
state observations only. Our approach decouples reward modelling from policy
learning, unlike state-of-the-art adversarial methods which require updating the
reward model during policy search and are known to be unstable and difficult to
optimize. Our method, IL-flOw, recovers the expert policy by modelling state-state
transitions, by generating rewards using deep density estimators trained on the
demonstration trajectories, avoiding the instability issues of adversarial methods.
We demonstrate that using the state transition log-probability density as a reward
signal for forward reinforcement learning translates to matching the trajectory
distribution of the expert demonstrations, and experimentally show good recovery
of the true reward signal as well as state of the art results for imitation from
observation on locomotion and robotic continuous control tasks.

1 Introduction

Imitation learning (IL) is an effective class of algorithms for designing and optimizing controllers
for robot systems. While recent advances in Reinforcement Learning have shown it is capable of
producing agents that learn robot controllers from scratch, IL remains a more practical alternative for
cases where it is easier to specify robot behaviours through examples than through rewards. We take
an approach similar to existing work [1, 2] on learning from demonstrations (LfD). We use expert
data to build a reward model to be maximized with existing RL algorithms. Unlike LfD, where an
expert demonstrates which actions to perform at some robot states, we focus on the case where action
supervision is not available: the agent only gets access to a dataset of state/observations sequences – a
setting known as Imitation Learning from Observations (ILfO). While LfD usually requires providing
demonstrations by teleoperation of the robot, ILfO aims to utilize streams of state and observational
data, much like a human can learn to do a task by watching other people.

We formulate the problem of learning from observations as a distribution matching problem: we want
to find the policy parameters that result in observation sequences that are similar to those in a dataset
of expert demonstrations. This is similar to recent work [2, 3, 4] that uses adversarial optimization.
Our approach differs in that we fit a density model on expert observation sequences, which we then
use to produce rewards for policy search with RL optimizers, decoupling the policy optimization from
the reward learning processes. To the best of our knowledge the closest approaches to ours are [5]
where they also use neural density estimators although for occupancy measure estimation and address
state-action imitation instead of state-only. Their formulation requires a discounted infinite horizon
agent however, as opposed to our undiscounted finite horizon RL optimization. And [6], which also
addresses the lack of smoothness of the KL-divergence objectives, by opting to minimize Wasserstein
distance however instead of noise-expanded distributions, although unlike ours their reward signal is
non-stationary. Our imitation signal is non-adversarial, stationary and reusable for downstream tasks.
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2 Background

We formulate our task by an MDP (S,A,P, r, p0) where S is the state space, A is the action space,
P : S × A × S → [0, 1] is the transition dynamics, r : S × A → R is the reward function,
p0 : S → [0, 1] is the initial state distribution. We define a policy π : S × A → [0, 1]. The
probability of a trajectory τ = {s0:T , a0:T } of T + 1 states and actions when following the policy π
is given by: pπ(s0:T , a0:T ) = p0(s0)

∏T−1
t=0 p(st+1|st, at)π(at|st). If we are interested in state-only

trajectories, then we must consider transitions over states, with the effects of the policy integrated
out: pπ(st+1|st) =

∫
p(st+1|st, a)π(a|st)da. It follows that the two quantities of interest are the

probability of a trajectory over states

given a policy π : pπ(s0:T−1) = p0(s0)
∏T−1
t=0 pπ(st+1|st), (1)

and given an expert E : pE(s0:T−1) = p0(s0)
∏T−1
t=0 pE(st+1|st), (2)

where state imitation learning from observations occurs by distribution fitting pπ to match pE .

3 IL-flOw
In this section we derive IL-flOw, an Imitation Learning from Observation algorithm that implements
trajectory matching by maximizing the log probability of the expert transitions. We begin by
reformulating the reverse KL objective as an expression over individual transitions. This suggests a
straightforward approach in which we use an approximation of the log probability of expert transitions
as a reward signal alongside entropy maximization. Secondly, we present our noise regularization
approach for density estimation of expert transitions using normalizing flows.

3.1 Imitation Learning via a Trajectory Matching Objective
Given our objective is matching the distribution of trajectories pπ induced by our current policy π,
and the distribution pE by some expert E, in this section we reformulate the reverse KL (RKL) 1

divergence such that it is more amenable for use in a reinforcement learning context.

First, consider the RKL between trajectory distributions:

DKL (pπ||pE) = −Es0:T−1∼pπ

[
T−1∑
t=0

log pE(st+1|st)

]
+ Es0:T−1∼pπ

[
T−1∑
t=0

log pπ(st+1|st)

]
(3)

The first term is the likelihood of policy samples under the expert distribution. The second term
corresponds to the entropy of the state-sequence distribution induced by the policy. Note that, by the
law of iterated expectations, the second term can be written as the expectation of the per-timestep
transition entropies (full derivation in Appendix B)

H(pπ) = −Es0:T−1∼pπ

[
T−1∑
t=0

log pπ(st+1|st)

]
= Es0:T−1∼pπ

[
T−1∑
t=0

H (pπ(·|st))

]
. (4)

If we assume the dynamics are deterministic and invertible2, we can simplify the expression further
by using the change of variables formula3 to express the state sequence entropy in terms of the policy
(full derivation in Appendix B)

H (pπ(·|st)) = −
∫
pπ(st+1|st) log pπ(st+1|st)dst+1 ≈ H (π(·|st)) . (5)

While the assumption of invertible dynamics is restrictive, our experiments show that it is a useful
approximation for robotics tasks. Minimizing the KL divergence objective above is equivalent to
maximizing the following objective:

J(π) +H(pπ) ≈ Eτ∼pπ(τ)

[
T−1∑
t=0

log pE(st+1|st) +
T−1∑
t=0

H(π(·|st))

]
. (6)

1Following convention in imitation learning, the reverse KL is defined as DKL (pπ||pE)
2Given a pair of states st, st+1 we can uniquely determine the action at that produced it
3|p(x)dx| = |p(y)dy| if y = f(x) and f is invertible
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This objective can be optimized with RL algorithms by setting rewards to rt = log pE(st+1|st)
and maximizing the undiscounted return, while penalizing the negative entropy of the policy. This
suggests a practical algorithm where we can use a finite horizon variant of Soft Actor-Critic [7],
which maximizes a reward signal alongside the entropy of the policy.

3.2 Noise Conditioned Normalizing Flows
Our approach requires fitting a model of pE(st+1|st), using a dataset of demonstrations DE . We
use a normalizing flow model to fit pE , a very powerful and expressive type of density estimator.
While well-suited for our purpose, these models are known to overfit with little data, leading to poor
out of distribution generalization [8, 9]. Since we aim to use this density model as a reward model
for an RL optimizer, we also want it to be suitable for policy optimization. This means producing
reasonably low probabilities for observations that are far from the expert data and likely encountered
during policy optimization, while resulting in a smooth optimization landscape. Given that DE only
covers a subset of all possible behaviours that could be encountered during optimization, we have
little control on the predicted log-probability density for non-expert behaviour. This results in a noisy,
and possibly biased signal for policy optimization outside the support of the training dataset4.

To address the issues above, we fit a set of noise conditioned distributions, p̃E(st+1|st, h) where
h ∼ Uniform [0, hmax] represents the noise level – the magnitude of zero-mean noise added to the
training data. At training time, we draw a noise level h and two zero-mean noise samples5 εs and εs′

for each expert transition (sE , s
′
E). We set s̃E ← sE +hεs and s̃′E ← s′E +hεs′ and fit our model

to maximize log p(s̃′E |s̃E , h). At test time, with h = 0 we recover the noise-free fitted distribution
p̃E , while with h = hmax we get a distribution closer in shape to the distribution of the additive
noise, as it then dominates over pE . Any intermediate value for h smoothly interpolates between the
two. Since the sampled noise is zero-mean, transitions close to the dataset DE will have the highest
log-probability, irrespective of the noise level, providing a signal with tunable smoothness that is
useful for policy search. In Appendix 3 we show an example of varying the noise level h. Noise
regularization for density estimators has been studied in [15], and noise-conditioned normalizing
flows have previously been applied to 3D data [16]. Previous work restricts the noise level to h ≈ 0
at test time however, while we actively use the set of noise levels h ∈ [hmin, hmax] to control the
smoothness of our optimization objective, giving the agent a usable signal at all times during policy
optimization.

In the results below, we chose to use Neural Spline Flows [17] for density estimation and Soft Actor-
Critic [7] as the policy optimizer, but our objective and approach are applicable to any combination
of a density estimator and optimizer.

3.3 Soft Actor-Critic in time-limited MDPs and adaptive noise conditioning

Operating in a finite horizon setting, we augment the state with a time-to-horizon variable tH ,
representing the number of timesteps to go in an episode, therefore making the actor and critic
networks both time-aware. We also augment the action by one additional dimension representing the
noise level h at which to sample our density function, thus letting the agent interact with the entirety
of the log probability reward signal. We know however that the highest log density is achieved by the
training dataset, at the noise-free level hmin = 0. The agent should learn to choose a low value of h
when close to the expert, while as we move away from the expert support the appropriate value of h
smoothly increases, expanding the support of the density function.

4 Experiments and Results
We collect n = 150 demonstration trajectories on three Mujoco [18] simulated environments: Hopper-
v2, Walker2d-v2, and HalfCheetah-v2, using a SAC expert trained for 1M timestep, using n random
seeds. To evaluate the performance with varying amounts of demonstrations, we use a subset of 40,
20 or 10 trajectories (respectively (40, 20, 10) · 103 data points) as the training dataset Dexpert for
the density estimator. We compare IL-flOw to the three variants of the f-IRL [4] algorithm, as well as
a state only version of MaxEnt IRL [1], using the implementations provided by [4]. MaxEnt IRL

4This same issue is encountered in GAN training [10, 11] and prompted solutions such as label smoothing
[12], and Wasserstein critics [13]; too sharp a learning signal leads to poor training signals for the generator. It is
also discussed in [14] in the context of probability distillation.

5e.g. Normal or Cauchy distributed
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Figure 1: Learning curves for IL-flOw and 4 other baselines: f-IRL (FKL, RKL, JS), and MaxEntIRL with 40
expert demonstrations across 3 random seeds. The shaded area represents half a standard deviation.

(a) Hopper (b) Walker2d (c) HalfCheetah

Figure 2: Log probability as a function of environment rewards for Hopper, Walker2d, and HalfCheetah.
Trajectory-wise (top row) and step-wise (bottom row). The expert demonstration validation dataset (black) has
highest log probability (and environment reward), while a randomly initialized policy (green) gets assigned a
very low log probability. See description of the noisy expert dataset in Appendix 4.

minimizes forward KL divergence in trajectory space under the maximum entropy RL framework.
f-IRL is an imitation learning from observation algorithm that operates by state marginal distribution
matching, through optimization of the analytical gradient of any f-divergence (JS, FKL, RKL). It also
learns a stationary reward that is reusable, although the imitation agent still faces a moving reward
function in training through their iterative training process, while for IL-flOw the reward learning and
the RL process are sequential, to convergence.

We report our results in Table 1 and Figure 1. IL-flOw outperforms all the baselines on all three
studied environments, even with limited amounts of expert demonstrations. Notably it learns much
faster than baseline algorithms. Figure 2 shows the relationship between the learnt reward signal and
the environment reward. Our reward function is positively correlated with the environment reward
and increases monotonically as we get closer to the expert behavior.

Dataset Hopper Walker2d HalfCheetah
Expert Return 3420.40± 33.97 4370.09± 110.23 11340.38± 80.61
# Expert Traj. 10 20 40 10 20 40 10 20 40

FKL (f -IRL) 3107.84 2772.57 3091.51 1811.41 2063.37 1663.67 8053.23 8432.35 7603.88
RKL (f -IRL) 3187.05 3012.27 3086.18 1858.60 1519.23 1369.33 8039.80 8293.91 7843.24
JS (f -IRL) 2459.27 3081.98 3161.76 1854.65 1844.41 1561.83 8123.40 8163.25 7931.70
MaxEnt IRL 3171.23 3115.95 2376.16 1655.11 1787.43 1828.38 7853.19 8023.26 8197.89
Our Method 3307.32 3139.89 3312.64 4066.02 4254.20 4202.62 8043.43 11552.30 11710.86

Table 1: Final performance of different ILfO algorithms, using 10, 20, 40 expert demonstration trajectories, after
1M timesteps. All results are averaged across 3 seeds, with 10 evaluation rollouts per seed.
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A Datasets Descriptions

For visualization purposes we also collect for each environment a "noisy expert" dataset, which we’ll
refer to as DEnoisy, consisting of 1000 trajectories from the expert policies with a fixed amount of
additive Gaussian action noise sampled throughout each trajectory. Hence for a given trajectory in
this dataset, we first sample a noise level L ∼ U(0, 1.5), and we add to the expert actions at each
timestep noise ω ∼ N (0, L). We find that a standard deviation L = 1.5 is enough to bring the expert
policy to a random policy level of performance. This dataset allows us to inspect our learnt reward
signal for trajectories in the environment generated by behaviors closer (L ↓) or further to the expert
(L ↑) in policy space, the additive noise being on the actions. Further policies naturally translates to
further state space explored in this noisy dataset as well. DEnoisy is shown in the ‘Flare’ yellow to
purple colormap on Figure 2.

Drandom is the dataset containing transitions from the RL agent’s warmup/exploration phase, using
a uniform random policy πrdm(a|s) ∼ U(Amin, Amax), with Amin, Amax the environment action
bounds. Drandom is shown in green on Figure 2.

B Derivations for Eqns. 4 and 5

Eq. 4

H(pπ) = −Es0:T−1∼pπ(τ)

[
T−1∑
t=0

log pπ(st+1|st)

]
(7)

=

T−1∑
t=0

−Es0:T−1∼pπ(τ) [log pπ(st+1|st)] (8)

=

T−1∑
t=0

−Es0:t+1∼pπ(τ) [log pπ(st+1|st)] (9)

=

T−1∑
t=0

Es0:t∼pπ(τ) [H (pπ(·|st))] (10)

= Es0:T∼pπ(τ)

[
T−1∑
t=0

H (pπ(·|st))

]
. (11)

Eq. 5

H (pπ(·|st)) = −
∫
pπ(st+1|st) log pπ(st+1|st)dst+1 (12)

= −
∫
π(at|st) log

(∣∣∣∣ dat
dst+1

∣∣∣∣π(at|st))dat (13)

= −
∫
π(at|st) log π(at|st)dat −

∫
π(at|st) log

∣∣∣∣ dat
dst+1

∣∣∣∣dat (14)

= H (π(·|st)) + Eat∼π
[
log

∣∣∣∣dst+1

dat

∣∣∣∣] (15)

If the dynamics are approximately linear in the support of π(at|st), then the second term becomes a
constant and may be ignored for policy optimization.

C Extra Experiments

C.1 Noise Regularized Normalizing Flow

We need to ensure this density model is representative of the expert demonstration state distributions.
By using the generative capabilities of normalizing flows, which are the inverse operation of their
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Figure 3: pe(s′|s) density distributions for the 10th dimension of Hopper-v2, for the expert transition training
dataset in black, and the normalizing flow model learnt noise conditional distribution in blue. Higher values of h
correspond to regularized versions of the training dataset distribution, smoothly extending its support.

density estimation mode, we can inspect the effect of the noise regularization process, as well as fit of
our density model.

Moreover, we should ensure that the expert dataset samples have the highest log likelihood , and that
samples away from the expert trajectories are assigned sensible log likelihoods. We can probe the
trained transition density function anywhere and examine the sample’s log probabilities.

Single step sampling : For each dataset DE , DEnoisy, given a sample s, we sample next state
predictions s′expert given conditioning variables s and a noise level h ≤ hmax. We can visualize the
noise regularization process this way. See Figure 3.

Reward calibration plots : For each datasetDE , DEnoisy, Drandom we compare the environment
ground truth reward with the learnt reward function. See Figure 2.

D Hyperparameters

D.1 Soft Actor Critic

Parameter Value

Entropy regularization coefficient α 0.1
Automatic entropy tuning False

τ 5e-4
Actor network architecture (hidden) [512, 512]
Critic network architecture (hidden) [1024, 1024]

Actor LR 3e-4
Critic LR 3e-4
Optimizer Adam

Actor non linearity Tanh
Critic non linearity ReLU

Table 2: SAC Hyperparameters
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D.2 Neural Spline Flows

Parameter Value

Training epochs 1000
LR 5e-4

Spline bins 8
Network size (hidden) [8, 8]

Transform type Rational quadratic coupling
Mask type Alternating binary

Number of flow layers 3
Base distribution Conditional Diagonal Normal

Optimizer AdamW
Weight Decay 1e-4

hmin 0.0
hmax 4.5

Non linearity Sine(ω0 = 2π)
Spectral Normalization True

Table 3: Neural Spline Flow Hyperparameters
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