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Abstract

Semantic segmentation networks are usually pre-trained and not updated during de-
ployment. As a consequence, misclassifications commonly occur if the distribution
of the training data deviates from the one encountered during the robot’s operation.
We propose to mitigate this problem by adapting the neural network to the robot’s
environment during deployment, without any need for external supervision. Lever-
aging complementary data representations, we generate a supervision signal, by
probabilistically accumulating consecutive 2D semantic predictions in a volumetric
3D map. We then retrain the network on renderings of the accumulated seman-
tic map, effectively resolving ambiguities and enforcing multi-view consistency
through the 3D representation. To preserve the previously-learned knowledge while
performing network adaptation, we employ a continual learning strategy based on
experience replay. Through extensive experimental evaluation, we show successful
adaptation to real-world indoor scenes both on the ScanNet dataset and on in-house
data recorded with an RGB-D sensor. Our method increases the segmentation per-
formance on average by 11.8% compared to the fixed pre-trained neural network,
while effectively retaining knowledge from the pre-training dataset.

1 INTRODUCTION

Acquisition of large datasets for training neural networks is costly, time-intensive, and error-prone.
Furthermore, a dataset captured at a fixed point in time cannot fully cover every possible data point in
the future for complex tasks in unknown environments, leading to a distribution mismatch between
the available labeled dataset and the actual data of interest. While this calls for the need of performing
network adaptation in new environments, a straightforward adaptation is hindered by the lack of a
ground-truth supervision signal during deployment.

Fortunately, mobile robots can usually observe the same area of their deployment environment from
different viewpoints, which thus potentially provides the means to resolve ambiguities in the task
of semantic segmentation. Misclassifications of small, occluded, or partially observed objects may
be corrected in consecutive frames with different viewpoints. We explicitly leverage multi-view
consistency by fusing individual 2D semantic predictions into a 3D map and generate a new training
signal for the network by reprojecting the fused semantic information back into 2D pseudo-labels.

To mitigate catastrophic forgetting [17] we use an experience replay continual learning strategy,
which regularizes the training procedure, to adapt the neural network according to the generated
pseudo-labels. To the best of our knowledge, we are the first to propose adapting a neural network
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according to a supervision signal generated by explicitly transforming network predictions between
2D and 3D. Through extensive experimental evaluation, we show that the multi-view consistency
enforced by this supervision signal allows the network to reliably increase its accuracy with respect
to a fixed network. Contrary to the other methods that explore semantic segmentation in a continual
learning setting, our approach is suited for online deployment, exploits a 3D representation to enforce
multi-view consistency, and only requires an RGB-D sensor and the associated camera poses. We
evaluate our method on the indoor, ScanNet [8] dataset, showing a remarkable increase of the
semantic segmentation performance on average by 11.8% relative to the static network. Additionally,
we provide qualitative deployment experiments with a handheld RGB-D sensor.

2 RELATED WORK

Prior work focuses on accumulation of 2D semantic network predictions in a global 3D representation
to enhance the semantic predictions [18, 12, 25, 3]. However, they rely on a fixed network which is
not updated with the semantic information collected in the generated map. A limited number of works
has explored semantic segmentation in continual learning [20, 30, 6, 10, 9, 19]. In contrast to our
work, these approaches are not designed for online scenarios, tackle segmentation purely in 2D on a
per-frame basis, and rely on the availability of ground-truth supervision. Recently, multiple works
showed successful online adaptation on robot systems. [4] use continual learning strategies to adapt
the binary segmentation and localization capability of a construction robot. [28] use reinforcement
learning to fully autonomously learn navigation and manipulation on a robotic system. Additionally,
[13] show the effectiveness of enforcing view consistency in 3D as a prior for 2D representations.

3 APPROACH

Figure 1: Overview of the architecture.

The architecture of our approach is illustrated in
Figure 1. Images from an RGB-D camera are
provided to a segmentation network (yellow).
The pose estimation (green) additionally utilizes
the depth information to estimate camera poses.
Individual 2D semantic estimates are accumu-
lated in a 3D voxel map, which is ray traced to
create 2D pseudo-labels, as explained in Sec-
tion 3.1. These pseudo-labels are used to adapt the network using an experience replay continual
learning strategy (red), which can access previously stored samples in a memory buffer (dark blue)
to regularize the training, as explained in Section 3.2. The continual learning strategy trades-off
adaptation to the new data and preserving previously learned (stability-plasticity dilemma [1]).

3.1 Pseudo-Label Generation

A pre-trained semantic segmentation network fθ predicts initial semantic estimates Y pred
n from a

provided video sequence consisting of individual key frames In, where n denotes the index in the
sequence of lengthN . We create a dense semantic map of the robot’s environment using a voxel-based
truncated signed distance function (TSDF). In addition to the TSDF volume, a semantic voxel volume
stores the probability of each voxel belonging to a semantic class. The camera extrinsics Hn, and
depth map Dn are used to integrate the predicted semantics Y pred

n into both volumes. The TSDF is
calculated following [22]. For each voxel close to the TSDF surface, the semantic label probability is
updated following recursive Bayesian estimation [25]. The mapping procedure is performed for each
camera trajectory within a scene individually. After integration of all N measurements, Marching
Cubes [16] is used to estimate a high-resolution mesh. We ray trace the mesh for each camera pose
Hn to determine for each pixel in the camera plane the first intersection of the corresponding ray
with the mesh. Each of the resulting 3D locations is then used to index the semantic voxel volume
in O(1) time to retrieve the semantic label probabilities for the associated pixel. We refer to the
resulting re-projected semantic segmentation label as Y pseudo

n as pseudo-label. The pseudo-labels
aggregate information from multiple viewpoints and enforces multi-view consistency. At the same
time, gathering information from multiple viewpoints allows filtering out semantic segmentation
errors induced by bad lighting, motion blur, and outlier predictions in individual frames. This allows
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us to generate a learning signal of higher accuracy that can be used to adapt the network in the
absence of ground-truth supervision. In the Appendix, we provide further details for the network and
dataset (Appx. A.1), pre-training (Appx. A.2), and pseudo-label generation (Appx. A.3).

3.2 Continual Learning

While it would be possible to directly replace the single-frame prediction of the segmentation network
with the pseudo-labels, we instead use the pseudo-labels to train the network and adapt it to the
scene. This has two reasons. First, the accuracy gain of the pseudo-labels cannot be transferred to a
different environment, since the map is bound to the geometry of the scene. The (adapted) network
on the other hand has the ability to transfer the gained knowledge to any future frame from any
environment. Second, the network training has the potential to filter out undesirable artifacts from
the voxel rendering (Figure 4). Finally, as the pseudo-labels themselves require sufficient prediction
accuracy of the network, improving the prediction accuracy is beneficial for all similar environments.
For training, we one-hot encode the pseudo-labels according to the most likely class per pixel.
This experimentally outperformed probabilistic pseudo-labels and reduces storage and computation
needed. To update the model parameters θ we use an experience replay strategy, which has shown
promising results in prior works [5, 24, 4]. For this, a small subset of NM randomly selected samples
of pre-training dataset is stored in a memory buffer M , which can be accessed to replay samples
(i.e., feed them again to the network) when adapting the parameters θ to the current scene. The
standard cross-entropy loss lCE is used for both the new samples annotated with the pseudo-labels
and the replayed samples with ground-truth annotations. Stochastic gradient descent (SGD) is used
to optimize the objective. We can explicitly distinguish between the loss induced by samples stored
in the memory buffer and the pseudo-labels in the SGD update:

θt+1 = θt −
µ

npseudo + nrep

d

dθ

npseudo∑
i=1

lCE(fθ(xi), yi) +

nrep∑
j=1

lCE(fθ(xj), yj)

 , (1)

where µ, nrep and npseudo denote the learning rate, number of replayed and pseudo-labels samples
respectively. On one side, minimizing the loss of the replayed samples motivates preservation of
previously learned information: the diversity of the samples in the memory buffer favors generalization
and mitigates overfitting to the small pseudo-label dataset. On the other side, the loss of the pseudo-
labels encourages the learning of new knowledge. Additionally, since the samples in the memory
buffer are annotated with ground-truth labels, common patterns of the ground-truth annotations
may be transferred to the pseudo-labeled samples and act as a regularization mechanism. Finally,
storing a subset of NM samples significantly reduces the memory needed with respect to the full
pre-training dataset size Npre and proven successful even for small NM [7]. The chosen strategy
similar to [5] performs well, is simple, and needs less compute compared to more complex experience
replay strategies, which e.g. explicitly utilize the gradient induced by stored samples [7, 2, 11] or are
designed for online learning [15]. The detailed training routine is elaborated in Appendix A.4.

4 EXPERIMENTS

The pseudo-label generation procedure is evaluated by comparing the segmentation accuracy
achieved by the pre-trained network to the resulting pseudo-labels. An example segmentation for
the pre-trained network, pseudo-label generation, and continually trained network is provided in
Figure 4. The pseudo-labels include minor artifacts induced by the voxel discretization and the
ray tracing process, but are consistent over multiple viewpoints. Moreover, these artifacts are not
reflected in the adapted network predictions and do not prevent the signal from being beneficial
for improving the prediction accuracy. In the Appendix B.1 (Fig. 5) we provide four additional
example frames for the ScanNet dataset which illustrate disagreeing pre-trained network predictions
for the same location over consecutive frames. This highlights the need for multi-view consistent
adaptation. We compute an upper bound for the pseudo-label generation procedure by using the
ground-truth segmentation to generate pseudo-labels. As expected, given the artifacts contained in the
pseudo-labels the accuracy slightly decrease for all scenes as illustrated in Table 1, but still results in
a nearly perfect estimate of 92.5% accuracy. As shown in Table 1, the pseudo-labels (1-Pseudo, AVG
57.5%) generated based on the pre-trained network predictions (1-Pred, AVG 50.9%) improve the
accuracy for all scenes with an average gain of 6.6% (relative 11.8%). We illustrate the reconstructed
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Scene 1-Pred 1-Pseudo 2-Finetune 2-Pred (CL)

Gen Adap Adap GT Gen Adap Gen Adap

1 43.0 60.5 70.2 94.3 36.1 71.7 37.6 71.2
2 43.0 48.5 53.7 94.9 35.7 51.6 37.2 52.9
3 43.0 30.5 38.0 88.7 34.7 36.7 36.3 36.8
4 43.0 74.6 81.6 96.0 27.3 81.3 31.8 80.6
5 43.0 40.3 44.0 88.7 24.5 41.0 32.4 42.7

AVG 43.0 50.9 57.5 92.5 31.7 56.7 35.1 56.9

Table 1: Segmentation accuracy of pre-trained
(1-Pred), fine-tuned (2-Finetune) and continually-
learned (2-Pred (CL)) network, as well as pseudo-
labels (1-Pseudo) and their upper bound (GT). We
measure Adaptation performance on the novel
scenes 1-5 of ScanNet and Generalization perfor-
mance on the pre-training test dataset.

Consistency of 1-Pred Consistency of 2-Pred

Figure 2: Multi-view consistency per-voxel
confidence for the first ScanNet scene. Left:
Confidence mapping the pre-trained network
predictions (1-Pred). Right: Confidence map-
ping the adapted network prediction in the
second iteration (2-Pred).

1-Pseudo GT-Pseudo

Figure 3: Mapping results for the first
ScanNet scene. Color-coded semantic
classes using the ScanNet color schema.

L
abdata

B
.3

ScanN
etB

.1

1-Pred 1-Pseudo 2-Pred (ours) GT

Figure 4: Comparison of pre-trained network (1-Pred),
generated pseudo-label (1-Pseudo), adapted trained
network (2-Pred) and ground-truth label (GT).

mesh used to generate 1-Pseudo and GT-Pseudo in Figure 3. All objects can be clearly identified
in the GT-Pseudo map. In 1-Pseudo only few misclassifications (desk, top right; toilet top left) and
artifacts (sofa bottom middle, bed top middle) cannot be resolved. We conclude that the pseudo-label
generation process significantly improves the accuracy of the semantic segmentation and therefore is
suitable as a learning signal to adapt the network.

The continual learning strategy is compared with a naïve fine-tuning approach. To evaluate the
generalization performance we measure the accuracy on the test set of the pre-training dataset
and calculate the adaption performance using the accuracy on scene 1-5 of the ScanNet dataset
as explained in the Appendix A. As shown in Table 1, the experience replay strategy outperforms
fine-tuning for all scenes on the pre-training dataset (+3.4%). Moreover, the average accuracy on the
adaptation scene is slightly higher (+0.2%) than finetuning. This strongly suggests that the replay of
highly accurate ground-truth data does not prohibit adaptation to the pseudo-labels. The predicted
semantic segmentation of the continually-learned network for the selected key-frames of the first
scene are illustrated in Figure 4 and Appendix B.1. As evident in the column (2-Pred), the predictions
align with the pseudo-labels but filter out noise and artifacts, resulting in smooth boundary regions.
We evaluate the multi-view consistency of the network predictions before and after adaptation. When
integrating disagreeing network predictions in the same voxel, the uncertainty of the specific voxel
increases. Figure 2 shows these voxel uncertainties after integrating predictions from the pre-training
network (1-Pred) and from the adapted, continually-learned network (2-Pred). Clearly, our adaptation
procedure increases the certainty and therefore multi-view consistency of 2-Pred over 1-Pred.

5 CONCLUSION

We showed that leveraging complementary 2D-3D data representations creates a useful learning
signal for semantic segmentation without any external supervision. We further show the benefits of
applying a continual learning strategy to adapt the multi-class semantic segmentation network in
a robotic mission scenario. To the best of our knowledge, this is the first ready-to-deploy domain
adaptation approach that does not require prior knowledge of the scene or any external supervision
and can simultaneously retain knowledge of previously seen environments.
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A IMPLEMENTATION DETAILS

A.1 Network and Dataset

We use Fast-SCNN [23] as a semantic segmentation network. During inference it runs at over 250 fps
using a resolution of 320× 640 pixels with 1.1M parameters. For quantitative evaluation, we use
the ScanNet [8] dataset. It consists of 1513 Microsoft Kinect camera trajectories recorded at 30 fps
within 707 distinct indoor spaces. For each scan, the dataset provides a dense 3D map, which is
manually annotated with NYU40 classes [26] and per-frame labels generated by 2D re-projection.
The pre-training dataset consists of every 100th frame of scene 11-707 resulting in ∼25 k frames.
From this we use 20 k frames for the actual pre-training and 5 k for testing the performance on the
pre-training dataset. All scans recorded in scenes 1-5 are used to evaluate the adaptation performance
of our proposed method. For each scene, up to 3 separate video sequences are provided in the dataset.
We chain these sequences into a single long sequence for each scene, from which the first 80% of the
frames are used for pseudo-label generation and continually training the network. The final 20% of
the frames are only used for testing the adaptation performance. Despite the strict training-test split,
the same objects may be observed within the same scene in both datasets. We stress that the created
benchmark mimics a real robotic scenario, in which a large dataset of annotated data is commonly
available, but adaptation during a mission has to be performed in an unsupervised manner.

A.2 Network Pre-Training

We train the network on the pre-training dataset using Adam [14] with a batch size of 8. The starting
learning rate is set to 10−3 and polynomially decayed over 150 epochs to 10−6 with a rate of 0.9. We
stop the training procedure early after 65 epochs (∼ 200.000 optimization steps) given convergence
on a test set. During training, we apply standard data augmentation, including color jitter, horizontal
flipping, and random cropping.

A.3 Pseudo-Label Generation

To construct the semantic map, we use Kimera Semantics [25], which builds on VoxBlox [22], a
mapping framework based on voxel grids. We set the voxel resolution to 3 cm, which we found
to provide a good balance between level of semantic detail captured and computational efficiency.
Kimera Semantics tracks the full posterior probability for all 40 NYU40 labels per voxel. Integration
of a single measurement into the TSDF and semantic volume on a Ryzen 5900X CPU takes 330ms at
a resolution of 320× 640. For typical room-sized scenes 10−20m2 the mesh produced by Marching
Cubes has a size of 5MB. The voxel volume storing the full uncompressed semantic posterior has a
size of ∼500MB for 4.1m× 3.6m× 1.5m volume (Fig. 3). The high-performance CPU-based ray
tracing implementation [29] infers pseudo-labels at a rate of 30 fps.

A.4 Continual Learning

We retrain the network on the generated pseudo-labels for a total of 50 epochs. SGD is used with
a 1cycle learning rate schedule [27] and a batch size of 16 to adapt the parameters. The scheduler
linearly increases the learning rate from 10−6 to 0.05 over the initial 5 epochs and successively
decays it to 10−3 over the remaining 45 epochs. Starting with a slow learning rate is important to
avoid strongly perturbing the model parameters within the first iterations of training. We empirically
found that storing 10% of the pre-training dataset in the memory buffer (resulting in a memory size
NM of 2000) is capable of representing the training dataset adequately. During training the samples
of each mini-batch are randomly chosen with a ratio of 4:1 from the pseudo-labels and memory
buffer. We experimentally found this ratio to provide a good trade-off between integrating new
knowledge and preserving the performance on the pre-training dataset. During training the same data
augmentation used for pre-training is applied to the replayed and pseudo-labeled samples. We found
data augmentation to be particularly beneficial for small buffer sizes, which aligns with the findings
reported in [5].
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B EXPERIMENT DETAILS

B.1 Examples ScanNet

1-Pred
1-Pseudo

2-Pred
(ours)

G
T

Figure 5: Segmentation of the first scene in the ScanNet dataset, using ScanNet color coding. First
row: Pre-trained network predictions (1-Pred). Second row: Generated pseudo-labels leveraging
multi-view consistency (1-Pseudo, black areas indicate no semantic estimate available given missing
depth data). Third row: Our adapted network predictions after training on 1-Pseudo with a continual
learning strategy (2-Pred). Fourth row: Ground-truth labels

B.2 Iterative Operation

Scene 1-Pred 1-Pseudo 2-Pred 2-Pseudo 3-Pred 3-Pseudo

1 60.5 70.2 71.6 73.6 72.1 73.2
2 48.5 53.7 52.9 49.4 47.5 40.7
3 30.5 38.0 36.8 39.4 36.7 37.9
4 74.6 81.6 80.6 80.9 79.7 80.2
5 40.3 44.0 42.7 42.3 40.1 39.1

AVG 50.9 57.5 56.9 57.1 55.2 54.2

Table 2: Network prediction and pseudo-label accuracy for scene 1-5 of the ScanNet dataset. Pred
denotes network predictions (1: pre-trained network, 2: first iteration adapted network, 3: second
iteration adapted network). Pseudo denotes pseudo-label. Underlined numbers indicate the best
performing pseudo-labels; bold numbers the best performing network.

The process of generating pseudo-labels and adapting the neural network using continual learning can
also be performed for multiple steps within the same scene, by iteratively generating pseudo-labels
and retraining the network on these. We hypothesized that iterative adaptation by consecutively
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transforming between data representations from 2D to 3D could increase the performance further
given that the labels used to generate the 3D map are more accurate. We report the accuracy achieved
for each of the five adaption scenes. The pseudo-label generation and network training is performed
strictly following the procedure elaborated in Appendix A.4 for all iterations.

As shown in Table 2, after the first adaptation step the network accuracy does not improve for four of
the five scenes tested. We reason that after the first iteration the adapted network already aligns with
the multi-view consistency constraint. Therefore, remapping the multi-view consistent labels into 3D
cannot resolve disagreeing semantic estimations and potentially introduces discretization artifacts.
This leads us to the conclusion that a single iteration of mapping and continual learning is the most
effective for achieving a positive network adaptation.

B.3 Deployment on Handheld Device

To test our proposed method in the wild, we capture data of multiple scenes with a hand-held Azure
Kinect RGB-D sensor in different office spaces. The network pre-trained on ScanNet is used to
estimate an initial semantic segmentation of the captured data. We use the open-source RGB-D
SLAM system ORB-SLAM2 [21] to retrieve the camera poses after bundle-adjustment and loop
closures. We then build the volumetric map using these poses.

1-Pred
1-Pseudo

2-Pred
(ours)

G
T

Figure 6: Comparison of semantic segmentation performance of in-house recorded conference room
scene. First row: Pre-trained network predictions (1-Pred). Second row: Generated pseudo-labels
leveraging multi-view consistency (1-Pseudo). Third row: Our adapted network predictions after
training on 1-Pseudo with a continual learning strategy (2-Pred). Fourth row: Ground-truth labels
annotated by us. In 1-Pseudo black regions indicate that no depth measurements are present for the
corresponding regions.

The Azure Kinect sensor cannot measure depth for reflective and light-absorbing surfaces and is
limited to a maximum distance of 5.45m. Figure 6 shows examples of the resulting pre-training,
pseudo-label and adapted network predictions. As clear from the top row, the pre-trained network
misclassifies multiple objects (table, floor). This evidence is in line with the significant distribution
mismatch between the recorded data and the pre-training dataset, which does not include scenes
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with conference rooms and was recorded with a different sensor given the good supervision signal
available. The generated pseudo-labels (1-Pseudo) correctly classify the desk in all frames.

Figure 7: Resulting mesh in the pseudo-label generation of the lab data conference room scene.

The estimated segmented map of the conference room is shown in Figure 7. Given the light-
absorbing carpet and reflective television, no depth measurement can be integrated into the volumetric
map, leading to a semi-dense mapping, which induces undefined semantics when ray tracing the
pseudo-labels. When training the network, we default to the 1-Pred predictions for these pixels
with undefined semantics in the pseudo-labels 1-Pseudo. This allows effectively avoiding training
on a sparse supervision signal, which would lead the network to wrongly classify not mapped
regions (floor, television) with the label of the closest mapped pixels. We conclude that our method
generalizes well to this less controlled deployment scenario, showing the suitability of our approach
for real-world robotic applications.

B.4 Failure Cases

Our method is strongly limited by the available supervision signal. As elaborate previously, we only
make use of the multi-view consistency constraint and therefore encode the prior knowledge that
the same objects observed from various viewpoints belong to the same semantic class. Our method
cannot resolve failure cases where an object is misclassified over all viewpoints by the pre-trained
neural network. We can observe this failure for the data recorded within the lab as well as the ScanNet
dataset. E.g in Figure 6 we can observe that the whiteboard is associated with the incorrect class
(wall) over all frames. The pseudo labels (1-Pseudo) and therefore the adapted network (2-Pred)
cannot resolve these failure cases. To overcome this we suggest applying higher level semantic
understanding methods or providing further supervision by a human annotator.
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