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Abstract

Objects are powerful abstractions for representing the complexity of the world, and
many computer vision tasks focus on learning to understand objects and their prop-
erties in images from annotated examples. Spurred by advances in unsupervised
visual representation learning, there is growing interest in learning object-centric
image representations without manual object annotations. We observe that these
existing approaches fail to effectively exploit a long-known key signal for grouping
object pixels, namely, motion in time. To address this, we propose to guide object
representations during training to be consistent with optical flow correspondences
between consecutive images in video sequences of moving objects. At test time,
our approach generates object representations of individual images without requir-
ing any correspondences. Through experiments across three datasets including a
real-world robotic manipulation dataset, we demonstrate that our method consis-
tently outperforms prior approaches including those that have access to additional
information.

1 Introduction

The information content in complex visual scenes often boils down to the properties and configurations
of a small number of objects within them. This makes objects a natural representational basis for
visual perception. Many recent works have focused on unsupervised object discovery, the task of
automatically identifying the objects in a visual domain represented by an unlabeled dataset of
images or videos, and then encoding any new input images from that domain into an object-structured
representation that expresses the presence, configurations, and relations of those identified objects.
This is useful in downstream tasks such as video prediction, which can be most efficiently expressed
in terms of the movements of objects [22–24, 28].

Exciting progress in unsupervised object discovery has come through introducing object structure
into unsupervised visual representation learning approaches. Many works have focused on designing
network architectures to produce object-structured representations [9, 18, 19, 23, 25, 26], and corre-
sponding inference mechanisms [11–13]. Our contribution is orthogonal to these efforts: we focus on
the fundamental problem of identifying useful signals for object discovery, and designing improved
objective functions that correctly exploit those signals. Our technique is simple: we compute optical
flows on unlabeled videos using off-the-shelf approaches. Then, we train our object encoder to
produce representations for nearby frames that are consistent with the optical flow-provided cor-
respondences between those same frames. Our objective function takes the form of a modified
contrastive loss. We call this technique FLOOD (“Flow-guided object discovery”). We evaluate
FLOOD on a variety of synthetic object discovery benchmarks used in previous works. In addition, we
introduce a real-world tabletop robotic object pushing dataset. Our results show that FLOOD yields
reliable improvements over baseline methods based on reconstruction and contrastive losses, and
even an approach that has access to additional information about the forces causing object motions in
video.
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Figure 1: The training setup for FLOOD (Sec 3), applied to object-structured slot representations.

2 Related Prior Work

Video object segmentation from motion and appearance. Our approach for flow-guided object
discovery is related to motion segmentation methods [2, 20, 31, 33, 34, 38–40] in computer vision,
which use optical flow cues to group pixels in video frames which move coherently together.
Since purely flow-based groupings are not persistent and cannot handle static objects, video
segmentation algorithms often combine these motion cues with appearance [3, 7, 17, 33, 36, 37].
However, they commonly rely on access to a full pre-recorded video and the corresponding full
sequences of optical flows. Specifically, FLOOD trains unsupervised appearance-based static
image object segmentation models by using flow-based cues in training videos as a supervision signal.

Neural object discovery. Nearly all neural object discovery approaches targeting general
images or videos are trained by reconstructing the input image [4, 11, 13, 18, 19, 23, 25, 28].
Some approaches use adversarial training: the idea is that object-structured representations can be
modified and recomposed into valid images [6, 41]. Two recent approaches are trained through
contrastive losses to distinguish between distinct images in a dataset [26, 29]. Among these,
slot-contrastive networks (SCN) [29] use temporal continuity in video for object discovery. In
robotics contexts, where motion is attributable to known robot actions, several models, [21, 22, 35]
use action-conditioned future prediction as a training objective for joint object discovery and
environment dynamics modeling. FLOOD replaces robot actions with dense pixel correspondences
from optical flow, which are more general. We compare against SCN [29] and C-SWM [22] in Sec 4.

3 Flow-guided object discovery

First, we introduce the unsupervised object discovery setting. Given a collection of unlabeled training
images D that specify a visual domain, object discovery approaches aim to automatically identify the
objects present among those images. Object discovery is thus closely tied to the object-structured
representation in which the results of such image parsing are expressed. Indeed, training object
discovery approaches amounts to learning unsupervised object-structured representations. Examples
of such representations include keypoints [18, 23], object detection bounding boxes [8], segmentation
masks [13, 22], and skeletons capturing connected keypoints [19].

Slot representation and encoder. Our approach is not tied to any one choice of object-structured
representation, but we ground our discussion and notation using “slot” segmentation masks and
vectors, which we will also use in experiments. An input image x, of sizeH×W pixels, is represented
through a collection of K slot masks m(x) = {m1(x),m2(x), . . . .mK(x)} of size H ×W . All
mask values lie between 0 and 1, i.e., 0 < mk(i, j) < 1 for all masks k, and pixel positions (i, j).
Masks mk(x) are intended to represent segmentation masks for objects in x. Each slot mask is then
summarized as a D− dimensional slot vector zk(x). z(x) represents all K slot vectors combined. In
our work, each slot is free to bind to any object or background in the input image.1

1This is not true in [22], due to the requirement of object-specific actions for each slot.
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We use the popular neural network architecture proposed in [22] to generate slot masks and vectors
from input images. An “object extractor” convolutional neural network F with a sigmoid output
layer produces K convolutional maps constrained to lie in [0, 1]. These represent the slot masks
m(x). Next, a small multi-layer perceptron G processes each flattened slot mask to produce its
corresponding slot vector: zk(x). This compression serves as a representational bottleneck that
encourages the emergence of object-structured representations, as we will discuss below. The second
and third rows of Fig 1 illustrate this procedure.

Optical flow, and how motions can help with object discovery. An important characteristic of
objects is that objects move as coherent wholes. Yet, popular existing approaches for neural object
discovery do not use this information, such as [18, 22, 29]. We propose a novel approach to use
the coherent motions of objects in training videos as training signals to guide object discovery. Our
key insight is that slots (generalizable to other object-structured representations) should satisfy the
following desiderata: 1. Slots should bind to the same set of objects in both frames; 2. Slots should
be sensitive to the small changes in the positions of those objects. In particular, each slot mask mk

should exactly track the displacement of the object that it is bound to.

To frame these desiderata as a mathematical objective, we use optical flows. An optical flow field
ha→b defines a warp between images a and b, such that b = ha→b(a). Now, the desiderata for slots,
stated above, boil down to requiring that the pixel correspondences between neighboring frames x
and x′ are preserved in the correspondences between their slot masks mk(x) and mk(x′). For all slot
indices k:

hx→x′(mk(x)) = mk(x′). (1)

In other words, if mk(x) is a good segmentation mask for some object in image x, then it maps to the
next timestep through the same optical flow warp as the input images themselves.

The FLOOD training objective. Eq (1) permits two degenerate solutions: mk(x) = 0 for all
x, k, (“all-zeros” ), and mk(x) = x for all x (“identity”). We avoid these by defining a contrastive
training objective over the slot vectors z(x) = G(m(x)). Let m(x′) , hx→x′(m(x)) represent the
prediction of the slot mask m(x′) obtained by flow-warping m(x). Note that this is the LHS of
Eq (1), combined over all slot indices k. Now, let z(x′) = G(m(x′)) represent its corresponding
predicted slot vectors. Then, the flow-guided object discovery (FLOOD) objective is:

L = d(z(x′), z(x′)) + max(0, γ − d(z(x′), z(x−))), (2)

where d(·, ·) is a distance function between slot vectors, and x− are negatives for x. We set d to be
the summed `2 error over slots, and the negative frames x− are uniformly drawn from frames that are
more than T = 1 steps away from the current frame x in the training videos. Recall that x and x′ are
temporally nearby frames, yet the positives above are not directly their corresponding slot vectors
z(x) and z(x′). Instead, the slots of x are first warped through the optical flow warp to compute
z(x′).

This contrastive objective trivially precludes the all-zeros degenerate solution above. Avoiding
the “identity” solution is more subtle: it is done by applying the contrastive loss to a compressed
representation z = G(m(x)), computed by a small MLP G. The low capacity of G means that it
should be very easy to extract a small code z that is sufficiently discriminative to minimize Eq 2. This
forces the network to only represent highly processed information in the masks mk, thus avoiding the
identity mapping mk(x) = x.

4 Experiments

Baselines. We compare against three recent baselines, representing different types of object
discovery objectives from the literature: 1. Contrastive structured world model (C-SWM) [22]
employs an action-conditioned future prediction objective for object discovery, using knowledge of
object-specific actions. 2. Slot attention (SA) [25] uses a new attention-based architecture for object
discovery through an image reconstruction objective. 3. Slot-contrastive networks (SCN) [29]
use temporal continuity for object discovery with a contrastive loss, but does not reason about
correspondences between nearby frames. SCN directly produces slot vectors without first generating
slot masks, and SA produces slot masks but no slot vectors.
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Figure 2: Sample images from the three datasets
(a) CUBE, (b) SIM, and (c) REAL.

FLOOD(Ours) C-SWM [22] SCN [29] SA [25]

SI
M ARI(%)↑ 96.41 ± 1.60 80.08 ± 1.60 - 29.05 ± 21.03

KLME↓ 616.05 ± 26.45 1403.77 ± 4.31 5258.00 ± 138.48 -

R
E

A
L ARI(%)↑ 97.71 ± 2.99 78.8 ± 5.94 - 17.74 ± 4.33

KLME↓ 1082.19 ± 30.42 1307.04 ± 38.33 4345.46 ± 31.99 -

C
U

B
E ARI(%)↑ 86.47 ± 0.49 94.30 ± 0.39 - 66.98 ± 18.32

KLME↓ 181.24 ± 0.09 177.43 ± 0.44 3787.69 ± 449.54 -

Table 1: Quantitative comparison against pub-
lished baselines. Best performance in bold. We
report mean ± standard error for 3 seeds.
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Figure 3: Examples of masks produced by FLOOD and baselines on SIM. The slot that best predicts
the blue cylinder is outlined in blue, red cube in red, green cube in green, and robot arm in purple.
For our method, each object is consistently represented by one of the slots. When there are more
slots than the number of objects, our method outputs “empty” masks for the extra slots (no specific
image regions are highlighted). For C-SWM where the robot is not represented in any slot, slot 2
minimizes the robot prediction error, even though it actually represents one of the objects, as shown.
In this case, the same slot is the predictor for both the object and the robot. For SA, learned object
representations are not disentangled, thus each slot represents multiple objects. In addition, the slot
that binds to a certain object changes from image to image.

Datasets. We evaluate FLOOD on three video datasets: CUBE, SIM and REAL. The first two are
simulated datasets, and the third is collected in a real-world robotic setup. We will publicly release all
datasets and code. Sample frames from all datasets are shown in Fig 2. Details of these three datasets
are in supplementary material.

Metrics. ARI [14, 30] compares predicted slot masks with ground truth object segmentation masks;
higher indicates a better match. KLME uses slot vectors to measure whether slots consistently binds
to certain objects (details in Supp); lower is better. Note that SA does not produce slot vectors, so we
omit its KLME in our quantitative results. Likewise, SCN does not produce slot masks, so we omit
its ARI.

Results. Table 1 summarizes results for our method and the baselines on all three datasets. Our
method easily outperforms SA and SCN, and performs comparably with C-SWM, which has access
to additional information about object actions at each step. In particular, C-SWM shines on CUBE,
the simplest environment, where object-specific actions are discrete and cleanest.

Fig 3 show examples of masks produced by FLOOD and baselines for two images on SIM dataset.
We label each mask with a colored box if this mask best predicts the 2D coordinates of a certain
object over the validation set — this is also the slot-to-object matching used in computing the KLME
score. More extensive results, including all slot masks produced by each method, are shown in Supp.

4



Bibliography

[1] Jimmy Ba, J. Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv, abs/1607.06450,
2016.

[2] Pia Bideau, Rakesh R Menon, and Erik Learned-Miller. Moa-net: self-supervised motion seg-
mentation. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops,
pages 0–0, 2018.

[3] Pia Bideau, Aruni RoyChowdhury, Rakesh R Menon, and E. Learned-Miller. The best of both
worlds: Combining cnns and geometric constraints for hierarchical motion segmentation. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 508–517, 2018.

[4] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representa-
tion. 2019.

[5] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for
optical flow evaluation. In A. Fitzgibbon et al. (Eds.), editor, European Conf. on Computer
Vision (ECCV), Part IV, LNCS 7577, pages 611–625. Springer-Verlag, October 2012.

[6] Mickaël Chen, Thierry Artières, and Ludovic Denoyer. Unsupervised object segmentation by
redrawing. 2019.

[7] Jingchun Cheng, Yi-Hsuan Tsai, Shengjin Wang, and Ming-Hsuan Yang. Segflow: Joint learning
for video object segmentation and optical flow. In Proceedings of the IEEE international
conference on computer vision, pages 686–695, 2017.

[8] Minsu Cho, Suha Kwak, Cordelia Schmid, and Jean Ponce. Unsupervised object discovery and
localization in the wild: Part-based matching with bottom-up region proposals. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[9] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with con-
volutional neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 3412–3420, 2019.

[10] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. v.d. Smagt, D. Cremers,
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5 Supplementary Material

5.1 Network implementation details

In our experiments, the object extractor F is a four-layered convolutional neural network. The first
three convolutional layers are followed by a relu and a batchnorm layer. The last convolutional layer
is followed by a sigmoid, so that the predicted slot masks m(x) lie in [0, 1]. The object encoder G is
a small multi-layer perceptron consisting of three layers, with a LayerNorm [1] between the second
and the third MLP layer. We use the Adam optimizer and train this network on a single 2080Ti GPU
with batch size of 1024. For both our method and C-SWM [22], we trained the models for 200 epochs
for all three datasets.

5.2 Implementation details for datasets

• CUBE is a 3D blocks dataset, adopted from [22]. This is a grid-world environment with discrete
actions applied to selected blocks, such as “move object 1 one step forward” and “move object 2
one step left”). We use the authors’ code to collect a video dataset with a random action policy,
using identical settings as in [22]. We train on 1000 training videos of length 100 frames each, and
evaluate on 10,000 videos of length 10. All frames are 50x50 RGB images. The robot executes a
new action in each frame. For C-SWM, object-specific actions are provided as a four-dimensional
one-hot vector(if an action is applied to that object) or a vector of zeros for each object slot.

• SIM is collected in a custom new simulated robotic manipulation environment. We use Mu-
JoCo [32] to render a tabletop with three simple object shapes (a green cube, a red cube, and a
blue cylinder) and a Fetch robot. We collect 1000 training videos and 1000 testing videos, all of
length 15 frames, involving 15 separate robot motions. In each episode, the robot randomly picks
one object and a direction to push it to. All frames are 128 x 128 RGB images. For C-SWM,
object-specific actions are provided as a two-dimensional vector(if an action is applied to that
object) or a vector of zeros for each object slot.

• REAL is analogous to SIM, but collected on a real robot arm, and with more complex objects and
dynamics. We use a WidowX 200 robot arm and three deformable toys. The videos involve the
robot performing random end-effector motions in each frame, colliding frequently with the objects
and displacing them. We collect 350 training videos, and evaluate on 50 videos, all of length 30.
All frames are 128 x 128 RGB images. For C-SWM, object-specific actions are provided as a
five-dimensional vector(if an action is applied to that object) or a vector of zeros for each object
slot.

5.3 Evaluation metrics

• ARI: To evaluate the slot masks as object segmentation masks, we adopt a widely used metric for
multi-object segmentation: Adjusted Random Index(ARI) [14, 30]. ARI measures the similarity of
two groupings of pixels, and is invariant to the permutation of groupings. We compare the set of
slot masks produced by slot encoder with ground truth object segmentation masks.

• KLME: While ARI evaluates slot masks, it does not directly evaluate the slot vectors. To do this,
we define a new metric as follows. We train NK linear regression models fnk, one to regress each
of the K slot vectors to each of N ground-truth 2D object coordinates in the scene, corresponding
to specific keypoints on N objects. For each object n, we select the slot k that best represents that
object over a validation dataset. This is by calculating mink MSEn(fnk) as a score that captures
how well that keypoint is represented, where MSEn is the linear regression mean squared error
on held-out data. This corresponds to finding the closest-matching slot for each keypoint, and
measuring how well they match. Averaging this score over all N keypoints produces our keypoint
location matching error (KLME) metric for slot vectors.

5.4 Sample episodes from training datasets

We evaluate our method and corresponding baselines on three datasets: SIM, REAL and CUBE.
Fig 4 shows examples of sample episodes from each dataset. In both SIM and REAL, there are
diverse contacts dynamics between the robotics manipulator and the objects and heavy occlusions.
Thus these two datasets are especially challenging for any methods to learn robust object-centric
representations from.
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C
U

B
E FLOOD(Ours) dynamics modeling temporal continuity reconstruction

ARI(%)↑ 85.51 95.09 14.35 15.21

KLME↓ 181.24 ± 0.09 177.43 ± 0.44 460.25 428.46

Table 2: Quantitative comparison of flow-guided (ours) vs. other training objectives on CUBE
SI

M

FLOOD(Ours) dynamics modeling temporal continuity reconstruction

ARI(%)↑ 93.56 70.93 7.89 33.35

KLME↓ 100.86 99.61 455.04 396.82

Table 3: Quantitative comparison of flow-guided (ours) vs. other training objectives on SIM

5.5 Ablation experiments on training objectives

FLOOD inherits the object extractor and object encoder of C-SWM, which is also used in SCN, making
it particularly well-suited for comparison. To enable a more controlled comparison of object discovery
approaches with a fixed architecture, we create two ablations of our method that use an SCN-like
“temporal continuity” objective, and another that uses an SA-like image “reconstruction” objective.
Since C-SWM already shares the same architecture, it doubles up as the third ablation, representing
a “dynamics modeling” objective. We report the results of this ablation on three environments
in Table 2, 3, 4. Once again, we easily outperform the baselines,illustrating that the flow-guided
objective is important to our method’s overall performance.

5.6 Ablation experiments on optical flow algorithm

For all the main experiment results presented in this paper, we use FlowNet2.0 [16], which is trained
on four large synthetic datasets of animated object videos [5, 10, 15, 27]. We perform an additional
experiment to test how robust our method is with respect to different optical flow algorithm. We tested
the performance of our method using an unsupervised optical flow algorithm, Dual-TV-L1[5][6],
on the SIM dataset. The results are as follows: The KLME of FLOOD with Dual-TV-L1 is 952.9,
compared to 616.05 of FLOOD with Flownet2. Although there is a performance gap between FLOOD
with classical optical flow estimation approaches and learned Flownet2, this is still considerably
better than the other baselines(1403.77 for C-SWM and 5258.00 for SCN, shown in Table 1). The
ARI of FLOOD with Dual-TV-L1 is 93.10, compared to 96.41 of FLOOD with FlowNet2. The ARI
of C-SWM is 80.08, while SA only has an ARI score of 29.05(shown in Table 1). This shows that
our method is robust against flow noises. It’s reasonable to assume that, with ground-truth flow, our
method would achieve better performance. However the accuracy of flow would not largely affect the
performance of our method.

5.7 Additional examples of slot masks

In Fig 3, Fig 5 and Fig 6, we show examples of masks produced by FLOOD and baselines for two
images per dataset. We visualize all masks for each method. C-SWM requires the number of slots
to be equal to the number of objects. For our method, we used 6 slots for REAL, and 7 slots for
SIM and CUBE. We tuned this hyperparameter by searching over 4, 5, 6, and 7 slots for each dataset.
For SA, we retained the slots hyperparameter setting (=7) from the authors’ public code. We label
each mask with a colored box if this mask best predicts the 2D coordinates of a certain object over
the validation set — this is also the slot-to-object matching used in computing the KLME-OB score
above.

R
E

A
L FLOOD(Ours) dynamics modeling temporal continuity reconstruction

ARI(%)↑ 16.86 15.97 0.011 5.56

KLME↓ 1082.19 ± 30.42 1307.04 ± 38.33 5558.44 5307.13

Table 4: Quantitative comparison of flow-guided (ours) vs. other training objectives on REAL
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Figure 4: Examples of videos from SIM, REAL and CUBE datasets
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Figure 5: Examples of masks produced by FLOOD and baselines on REAL. The slot that best
predicts the pink octopus is outlined in pink, blue whale in blue and brown bear in brown. For both our
method and C-SWM, the robot is not represented by any of the slots. For SA, object representations
learned are not disentangled, as each mask often represents several objects. In both our method and
C-SWM, slots bind to the same object throughout the entire validation dataset. However, for SA,
there is not a fix mapping from slots to objects.
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Figure 6: Examples of masks produced by FLOOD and baselines on CUBE. The slot that best
predicts each colored cube is outlined in the same color corresponding to the cube. For both our
method and C-SWM, all objects are consistently represented by some slot. Since our method predicts
more slot masks than the number of objects available in the scene, slot masks 6 and 7 are empty
masks. For SA, there is no consistent mapping from slots to objects.
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