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Abstract

Robots operating in human-centered environments need to understand how to
interact with them: what can be done with each object, where this interaction
may occur, and how the object is used to achieve a goal. To this end, we pro-
pose a novel approach that extracts a self-supervised visual affordance model
from human teleoperated play data and leverages it to enable efficient policy
learning and motion planning. We combine model-based planning with model-
free deep reinforcement learning (RL) to learn grasping policies that favor the
same object regions favored by people, while requiring minimal robot interac-
tions with the environment. We evaluate our algorithm, Visual Affordance-guided
Policy Optimization (VAPO), with both diverse simulation manipulation tasks
and real world robot tidy-up experiments to demonstrate the effectiveness of our
affordance-guided policies. Code, pretrained models and dataset are available at
http://vapo.cs.uni-freiburg.de.

Figure 1: Real-world setup for a tidy up task: our self-supervised visual affordance model guides the
robot to the vicinity of actionable regions in the environment with a model-based policy. Once inside
this area, we switch to a local reinforcement learning policy, in which we embed our affordance
model to favor the same object regions favored by people and to boost sample-efficiency.

1 Introduction

Humans have the ability to effortlessly recognize and infer functionalities of objects despite their large
variation in appearance and shape. For example, we understand that we need to pull the handle of a
drawer to open it or grasp a knife by the handle to use it. This capacity to focus on the most relevant
behaviors in a given situation enables efficient decision making by limiting the choices of action that
are even considered. Gibson’s theory of affordances [1] provides a way to reason about object function.
It suggests that objects have “action possibilities”, e.g., a mug is “graspable” and a door is “openable”
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and has been extensively studied in both the robotics and the computer vision communities [2].
However, the abstract notion of “what actions are possible?” addressed by current affordance learning
methods is limited. A robot needs to know where are actionable regions in an environment, the
specific points on the object that need to be manipulated for a successful interaction, what it can
achieve with it and how the object is used to achieve a goal. Current affordance learning methods have
two major problems. First, they are limited by requiring heavy supervision in the form of manually
annotated segmentation masks [3, 4, 5, 6] or expensive interactive exploration [7, 8], restricting their
scalability and applicability in practical robotics scenarios. Second, current affordance-augmented
robotic systems are limited in the complexity of the actions they model by relying often on predefined
action templates [7, 8, 9, 10]. Together, these limitations naturally restrict the scope of affordance
learning systems to a narrow set of objects and robotics applications.

In light of these issues, we propose a method for sample-efficient policy learning of complex
manipulation tasks that is guided by a self-supervised visual affordance model. Therefore, we call our
algorithm Visual Affordance-guided Policy Optimization (VAPO). Towards overcoming the issues of
expensive manual supervision and exploration, we propose to learn affordances that are grounded in
real human behavior from teleoperated “play” data [11]. Play data is not random, but rather structured
by human knowledge of object affordances (e.g., if people see a drawer in a scene, they tend to open
it). Moreover, affordances discovered from unlabeled play are functional affordances, priming a robot
to approach an object the way a human would. We hence leverage this visual affordance model to
guide a robot to perform complex manipulation tasks. Our approach decomposes object manipulation
into a sample-efficient combination of model-based planning and model-free reinforcement learning,
inspired by a recent line of work that aims to combine classical motion planning with machine
learning [12, 13, 14]. Concretely, we first predict object affordances and drive the end-effector from
free-space to the vicinity of the afforded region with a model-based method. Once inside this area,
the model cannot be trusted and we switch to a reinforcement learning policy in which the agent is
rewarded for interacting with the afforded regions. This way, the local policy has a “human prior” for
how to approach an object, but is free to discover its exact grasping strategy. The contribution of our
visual affordance model to boost sample-efficiency is two-fold: 1) driving the model-based planner
to the vicinity of afforded regions, 2) guiding a local grasping RL policy to favor the same object
regions favored by people.

2 Approach

Our approach consists of three steps. First, we train a network to discover and learn object affordances
in unlabeled play data (Sec. 2.1). Second, we divide the space into regions where a model-based
policy is reliable and regions where it may have limitations handling perception errors or physical
interactions. We leverage the learned affordance model to drive the end-effector from free-space to
the vicinity of the afforded region with a model-based policy πmod. Third, once inside this area we
switch to a local reinforcement learning policy πrl, in which we embed our affordance model to favor
the same object regions favored by people and to boost sample-efficiency (Sec. 2.2). Thus, our final
policy is defined as a mixture π(a|s) = (1−α(s)) ·πmod(a|s) +α(s) ·πrl(a|s). We use an estimate
of the distance between the robot’s gripper and the affordance region α(s) to switch between the
policies. An overview of the system is given in Figure 1.

2.1 Learning Visual Affordances from Play

We decouple the affordance prediction task into different components. First, the affordance model
Fa learns to transform a grayscale image I into a binary segmentation map F ∈ RH×W , indicating
regions that afford an interaction. Second, similar to Xie et al. [15] it estimates 2D pixel coordinates
of the affordance region centers by predicting a vector V ∈ RH×W×2 from each affordance pixel
towards the center. Estimating the center points of the afforded regions is a key component in order
to disambiguate affordances from multiple objects in a scene. In order to discover affordances in
unlabeled data we make use of the gripper action as a heuristic to detect human-object interactions,
see 2. From the play data we get a tuple Ot = (f tcam, p

t
robot, a

t
gripper) for each timestep t. We

denote f tcam as the current image frame, ptrobot as the cartesian coordinates of the robot’s end-effector
and atgripper as a binary gripper open/close command. Intuitively, if the gripper closes during play,
it is indicative of a possible interaction that will start at that position. Thus, we can project the
gripper’s 3D point ptgrip to a camera image pixel utgrip and label the pixels within a radius r for
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Figure 2: We leverage a self-supervised signal of a robot’s gripper opening and closing during human
teleoperation to project the 3D tool-center-point into the static and gripper cameras. We label the
neighboring pixels within a radius around the afforded region with a binary segmentation mask and
direction vectors from each pixel towards the affordance region center.

the past n frames as an afforded region. Similarly, if the gripper transitions from being closed to
open, it means that we ended an interaction with an object at the 3D position pti. As the frames are
labeled, new interaction points are discovered until we get a set of points P kfixed, which represent
the world coordinates of where interactions have ended until timestep k. Finally, we define the set
of discovered object positions for a timestep k as P kactive = P kfixed ∪ ptgrip for k = t − n, · · · , t.
Each 3D point inside P kactive is projected to a camera image pixel uki to create the affordance mask
label by marking neighboring pixels. The pixel coordinates of the projected points are used as the
affordance region centers Uk. In order to disambiguate affordances from multiple objects in a scene,
we let the network predict 2D pixel coordinates of the affordance region centers by predicting a vector
V ∈ RH×W×2 from each affordance pixel towards the center. To train the full affordance model Fa
we apply two different loss functions on the affordance segmentation F and the direction prediction
V , more training details are found in the Appendix.

2.2 Affordance-guided Reinforcement Learning Grasping

We consider the standard Markov decision process (MDP) M = (S,A, T , r, µ0, γ), where S and
A denote the state space and action space respectively. T (s′|s, a) is the probability of transitioning
from state s to state s′ when applying action a. The actions are drawn from a probability distribution
over actions π(a|s) referred to as the agent’s policy. r(s, a) is the reward received by an agent for
executing action a in state s, µ0 the initial state distribution, and γ ∈ (0, 1) the discount factor. The
observation space is composed of two parts: 1) the proprioceptive state including the 3D world
coordinates of the end effector, the orientation euler angles and the gripper width. 2) The visual inputs
consisting of the current RGB image observed by the gripper camera, the corresponding depth image
and the binary affordance mask predicted from the gripper camera based affordance model. We use a
7-DOF Franka Emika Panda robot with a parallel gripper both in simulation and in the real-world.
We leverage the visual affordance model to guide the agent to get close to the affordance centers by
reward Raff . Additionally if the agent goes outside the neighborhood, it receives a negative reward
Rout and if it successfully lifts an object it receives a positive reward of Rsucc, i.e. the immediate
reward is defined as r(s, a) = λ1Rsucc + λ2Raff + λ3Rout.

3 Experimental Results

We evaluate our method with both diverse simulation manipulation tasks and real world robot tidy-up
experiments. To test the sample efficiency of the affordance-guided RL policy, we compare against
a sparse-reward SAC agent, local-SAC. Unlike our method, in which we make use of the gripper
camera affordances to guide the RL policy, the baseline only takes an RGB-D image as input and its
corresponding reward function is r(s, a) = λ1Rsucc + λ3Rout. In both the baseline and our method,
the model based policy moves the robot towards the vicinity of the afforded region.

3.1 Simulation Experiments

We evaluate two tasks in simulation: a grasping task and opening a drawer. The grasping task consists
on lifting different objects in a PyBullet simulated environment. The policy is trained over 20 different
objects with varying degrees of complexity, such as hammers, teapots, knifes and power drills, as
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(a) Simulated pick-up task. Shaded regions
depict the standard deviation.
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(b) Real-world tidy-up task.

Figure 3: VAPO vs. local-SAC in (a) simulated pick-up tasks and (b) a real-world tidy-up task. Mean
episode success over the last ten episodes is shown. Our method is able to successfully lift the most
amount of objects as compared to the baseline.

shown in the Appendix. After the policy executes a close-gripper action, the gripper attempts to
lift the object and wait in the air for two seconds. If the object is still in the gripper at the end of
this time, we define the grasp as being successful. VAPO is not exclusive to a grasping task. To
show this, we train a policy to open a drawer in a simulation as shown in Figure 5b. Every episode
consists of the drawer on a closed position and the robot in a neutral position. To complete the task,
the robot must open the drawer at least 15cm. To train the affordance models we teleoperate the robot
using a virtual reality (VR) controller to collect unscripted play data. We gather around two hours of
human interaction which amounts to 100K images for each environment to train the static camera
and gripper camera affordance models. For the grasping task, we train all policies over the 20 objects
using the same configuration. The learned policies are tested on grasping the set of all the training
objects, the quantitative results are shown in Figure 3a. Our method is able to lift significantly more
objects than the baselines as it has a strong prior on how objects should be interacted with. For the
opening-drawer experiment we report a success rate of 84% for VAPO over 100 episodes and of
52% for the baseline. The results indicate that the affordances boost the performance and the sample
efficiency of the reinforcement learning agent.

3.2 Real World Experiments.

For the real world experiment, we setup the environment using a seven DOF Franka Emika Panda
robot. The full setup can be seen in Figure 1. Similar as in simulation, we collect play data by
teleoperating the robot using a VR controller as shown in Figure 2. We accumulate around 1.5 hours
of human interaction, which results in 70K images and use this to train both the gripper camera and
static camera affordance models. We evaluate our approach on a real-world tidy-up experiment. We
show the learning curves for this experiment in Figure 3b. We use a 7-DOF Franka Emika Panda
robot and run our policy at 20 Hz. We train all methods to pickup four objects: a plastic banana,
a screwdriver, a table tennis racket and a paint roller. After two hours of training VAPO is able to
consistently “functionally” grasp all the objects, e.g., grasping the objects by the handles, while the
SAC baseline very rarely achieves to lift any object, despite the agent starting at the same robot pose
as our method. This is due to the low number of samples that sparse-reward SAC is trained on, since
most success stories of RL in the real world require several orders of magnitude more data [16].
Overall, our results demonstrate the effectiveness of our approach to learn sample-efficient policies
by leveraging self-supervised visual affordances.

4 Conclusion

In this paper, we introduced the novel approach VAPO (Visual Affordance-guided Policy Optimiza-
tion) as a method for sample-efficient policy learning of manipulation tasks that is guided by a
self-supervised visual affordance model. The key advantage of our formulation is the extraction of
visual affordances from unlabeled human teleoperated play data to learn a strong prior about where
actionable regions in an environment are. To the best of our knowledge, this work is the first one to
demonstrate the effectiveness of visual affordances to guide model-based policies and closed-loop
RL policies to learn robot manipulation tasks in the real-world.
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A Implementation Details

Teleoperated play data During the unscripted teleoperated interactions we record images from two
cameras: a static camera that can capture the global scene, and a camera mounted on the robot’s
gripper. We label of the images of the static camera with a radius r = 10 of pixels around p,
p ∈ Pactive and the the gripper camera images with r = 25.

Affordance model For the affordance segmentation loss F , we use a weighted sum be-
tween a cross entropy `ce and a dice loss `dice to account for class imbalance. For
the direction prediction we optimize a weighted cosine similarity loss given by `dir =∑
i∈O αi(1− V T

i V̄i) + λb

|B|
∑
i∈B

(
1− V T

i

[
0
1

])
,

where Vi, V̄i are the predicted and ground truth unit directions of pixel i respectively. B,O are the sets
of pixels belonging to the background and affordance region classes. The total loss for the affordance
model is given by wce`ce + wdice`dice + wdir`dir. We use a U-net [17] architecture followed by
two parallel branches of convolutional layers that produce the affordance mask and center directions.
Similar to Xiang et al. [18], we use a Hough voting layer to predict the 2D object centers during
inference. The Hough voting layer takes the affordance mask and the direction vectors as input to
compute a score for every pixel. This score indicates the likelihood for a pixel of being an affordance
region center. Each pixel in the image casts a vote for image locations along the predicted direction
from the network, then the object center is selected as the location with the maximum score.

We define a two-stage affordance detection by training separate models for the two cameras. One
model is trained with images from a static camera and predicts a spatial interaction hotspots map,
indicating actionable regions. Similarly, we train an affordance model with images from a gripper
camera, which gives a finer-grained spatial interaction map about where humans tend to interact
with each object. The images are converted to gray-scale before being fed to the networks. As the
affordance models are intended to be used in the reinforcement learning policy, we follow the same
pre-prossessing steps for obtaining the affordances during the policy learning.

Both affordance models are trained with stochastic gradient descent (SGD) using a fixed learning rate
of 1e-5. We take a batch size of 128 and set the loss weights wce = 1, wdice = 5, wdir = 2.5. For
the static camera we use an image resolution of H = 200, W = 200 and train it for 150 epochs. For
the gripper camera we use an image resolution of H = 64, W = 64 and train it for 100 epochs.

Affordance-guided Reinforcement Learning Grasping

We train the policy using soft actor critic [19] and visualize our architecture in Figure 4. First we
concatenate the RGB image to the corresponding depth image and affordance mask to use this as
input for a convolutional neural network. The CNN is composed by three convolutional layers with
kernel size [8,4,3] respectively and one linear layer to obtain a feature representation of size 16.
Then we concatenate the obtained representation to the robot state and the distance to the affordance
center. Finally this is passed through three fully connected layers. All the network layers use ReLU
activations. The critic and actor are implemented following the same architecture but they do not
share the network.

CNN

+

Distance to
affordance center

+

FCN
Proprioceptive

state

Actor

Critic

SAC

Reinforcement Learning

Figure 4: Architecture of the actor-critic networks. The inputs to the policy consist of the current
RGB gripper image, its corresponding depth image and affordance binary mask as well as the robot
state and the distance to the affordance center.
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For the simulation experiments, we train a single policy for all the objects with an episode length
of 100 steps during 600K episode steps. This amounts to around 20hrs of learning experience. We
train for 3 seeds initializations. In the reward function we set λ1 = λ2 = λ3 = 1 and the rewards
Rsucc = 200, Rout = −1. For the grasping simulation task we perform curriculum learning in order
to train a single policy that can lift all 20 objects. Concretely, we divide the objects into classes and
when the policy gets good at grasping an object, we replace it with a different object from the same
class. Finally, we keep track of class specific success rates in order to bias the exploration towards
hard to lift objects.

(a) Tidy-up task. (b) Drawer opening task.

Figure 5: Visualization of the simulated environments.
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