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Abstract

Accurate and complete terrain maps enhance the awareness of autonomous robots
and enable safe and optimal path planning. Rocks and topography often create
occlusions and lead to missing elevation information in Digital Elevation Maps
(DEMs). Currently, mostly traditional inpainting techniques based on diffusion
or patch-matching are used by autonomous mobile robots to fill-in incomplete
DEMs. These methods cannot leverage the high-level terrain characteristics and the
geometric constraints of line of sight we humans use intuitively to predict occluded
areas. We propose to use neural networks to reconstruct the occluded areas in
DEMs. We introduce a self-supervised learning approach capable of training on
real-world data without a need for ground-truth information. We accomplish this by
adding artificial occlusion to the incomplete elevation maps constructed on a real
robot by performing ray casting. We evaluate our self-supervised learning approach
on several real-world datasets which were recorded during autonomous exploration
of both structured and unstructured terrain with a legged robot, and additionally in
a planetary scenario on Lunar analogue terrain. We state a significant improvement
compared to the Telea and Navier-Stokes baseline.

1 Introduction

As we empower mobile robots to autonomously navigate to their target, they rely on maps of the
surrounding environment for motion planning. 2.5D Digital Elevation Maps (DEMs) represent a
memory-efficient approximation as they project the 3D structure into two-dimensional grid cells.
To enable safe and optimal path planning, we strive for complete and accurate elevation maps. In
practice, we often encounter occlusions caused by terrain discontinuities such as rocks, obstacles
or convex terrain characteristics which hide an area patch from the sensor’s viewpoint. Further,
depth measurements can be degraded due to reflections, stereo matching failures, dust, or textureless
surfaces which frequently lead to additional missing elevation information in the DEM.

Existing implementations to estimate the elevation of the occluded areas rely on traditional inpainting
methods for photo-realistic images such as Navier-Stokes [1], Telea [2] or on searching terrain patches
with close resemblance in an offline library [3]. Although these methods are able to reconstruct
meaningful information about the occluded areas as we show in Section 3, they were developed and
tuned with applications for inpainting of RGB camera images in mind. Assumptions such as that the
unobserved data is missing randomly do not apply for terrain maps [3].

We are inspired by the application of data-driven methods for inpainting of photo-realistic images [4–
7] even for irregular holes [4] and aim to tailor these methods for the application of filling occlusion
in terrain maps. Our method allows us to exploit prior information about the deployment area such as
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<latexit sha1_base64="U2JZPwrvwu6S9+iIqgzVwOpGrR8="></latexit>

L =

2
4
�MSE,occ

�MSE,nocc

�tv

3
5 ·

2
4

LMSE,occ

LMSE,nocc

Ltv

3
5

<latexit sha1_base64="gS9tjYyWZYhVp08eubKQ/RUWXPw="></latexit>

Loss components:
Pixel-by-pixel MSE
Total Variation loss

Figure 1: Partially occluded DEM are sampled via robot-centric elevation mapping. Artificial occlusion is
added by performing ray casting from a random vantage point which allows a neural network to be trained to
reconstruct the DEM without occlusion. The composed DEM consists of patching the original occluded DEM
with the reconstruction in the occluded area. The ray casting graphic is adapted from Kolter et al. [3].

known terrain characteristics as well as the geometric constraints of line of sight for the reconstruction
of missing elevation information using a neural network. To the best of our knowledge, this paper is
the first to propose the use of neural networks for inpainting of robot-generated DEMs.

Self-supervised learning is essential to enable training on real-world datasets for which complete
ground-truth information is challenging to acquire. Zhan et al. [8] propose a self-supervised approach
for de-occlusion in the framework of scene understanding by overlaying and image with an object
and then training the neural network to remove the object from the scene. Dai et al. [9] uses a
self-supervised learning approach for scene completion of real-world, incomplete RGB-D scans using
a Generative Adversarial Network [10] (GAN) by randomly removing some scans.

We propose a new strategy for self-supervised learning for the inpainting of occlusion in terrain
maps based on adding artificial occlusion with ray casting. As non-occluded ground-truth data is
very difficult to acquire, this enables us to use incomplete real-world elevation maps for training
our neural network. We would like to point out that this self-supervised learning approach breaks
ground towards a future where robots can actively improve their performance while they explore their
environment in the line of the connected research on lifelong learning [11].

We would like to emphasize the following contributions of this paper: 1) We adapt state-of-the art
neural network-based inpainting methods for filling-in missing elevation information in occluded
DEMs and show significant improvements in both qualitative and quantitative results on a variety
of real-world datasets compared with the traditional baseline methods. 2) We propose a novel self-
supervised learning method for filling-in occlusion in terrain maps by adding artificial occlusion
with ray casting enabling training on partially occluded real-world datasets. We propose an iterative
algorithm for realistic occluded map data generation.

2 Methodology

First, we give a brief overview of our method as visualized in Fig. 1: we consider partially occluded
2.5D elevation maps and strive to fill-in the missing elevation information to match the less-occluded,
ground-truth DEM as accurately as possible. We propose to use an U-Net [12]-like neural network
to inpaint the occluded DEM with the inputs consisting of the 2.5 DEM and a binary occlusion
mask. Supervised learning requires us to know ground-truth data to compute a training loss and
after back-propagation optimize the neural network weights. As complete and accurate ground-truth
information is rarely available for real-world datasets, we introduce a self-supervised method which
leverages ray casting to further occlude the input DEM. This allows us to compute a Mean Squared
Error (MSE) and Total Variation (TV) loss between the occluded DEM and the less occluded input
DEM.

2.1 Problem statement

We consider a 2.5D DEM mocc ∈ Rn×m of a terrain patch with missing values primarily caused by
occlusion. We create a binary occlusion mask Mocc ∈ [0; 1]n×m which assigns a value of 1 to grid
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Figure 2: Snapshots of inference using the trained neural network on the Gonzen mine dataset recorded with the
ANYmal legged robot. The occluded DEM is marked in color, while the reconstruction is visualized in grey
with a slight opacity. To improve the clarity of presentation, we only inpaint subgrids which are less than 85%
occluded as the neural network requires sufficient input elevation information.

cells with missing elevation information and 0 to grid cells with known elevations. We define our
problem as such, that we want to estimate a reconstructed DEM mrec which matches the ground-truth
DEM mgt as closely as possible.

2.2 Self-supervised learning

We propose a self-supervised learning methodology to train on real-world datasets without ground-
truth to learn to fill-in missing elevation information of DEMs. We reformulate the training setup
by using our partly occluded real-world elevation map as a target and creating additional artificial
occlusion which is used as an input into the neural network. We decided to add artificial occlusion by
ray casting from a randomly sampled vantage point. We employ an iterative algorithm to generate
useful artificial occlusion masks with occlusion ratios between 0.1% and 50% and choose the
elevation offset of the vantage point accordingly.

2.3 Model, training and loss

We adopt an U-Net [12] as the architecture of our neural network which is often used in the literature
for image and video inpainting [4, 6]. The input is composed of two channels: the occluded elevation
map mocc and the binary occlusion mask Mocc. As the occluded DEM contains missing elevation
values represented as NaNs computationally, we replace them similarly to [6] with the floating point
number 0.0 chosen after a selection study. The output mcomp is composed between the original
input mocc for the non-occluded grid cells and the reconstruction mrec of the neural network for
the occluded pixels. We also implement input and output normalization by subtracting and adding
back the mean of DEM respectively. After every training epoch on the training set, a pixel-by-pixel
MSE loss is evaluated for the occluded area as our validation loss. The training is stopped if either a
maximum number of epochs is reached (100) or the validation loss did not improve during a specified
number of epochs (50). We use the Adam [13] optimizer with a learning rate of 0.0001, a weight
decay of 0.001, and the beta coefficients (0.9, 0.999). For training, we enforce a MSE loss between
the ground-truth DEM mgt and the reconstructed DEM mrec as our pixel-by-pixel reconstruction
loss. We separate the MSE loss for the occluded region of the DEM MSEocc and the non-occluded
region of the DEM MSEnocc. A TV loss [14] has shown to be valuable as a smoothing penalty
on the reconstruction of the occluded area. We compute the final loss as a weighted sum of all
loss components with weights of 1 and 10 for the MSE loss of the non-occluded and occluded area
respectively and finally we scale the TV loss with 0.1. More implementation details can be found in
the Appendix.

3 Experiments and Results

3.1 Datasets

We evaluate our proposed self-supervised learning approach on several real-world datasets. As
complete ground-truth DEM are hard to acquire in the real world, we run inference on the test
set with artificial occlusion created using ray casting. In the following section, we go into more
details about each of the datasets. ANYmal datasets: We consider multiple datasets recorded using
the ANYmal [15] legged robot in three different terrains. The ANYmal robot is equipped with a
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Table 1: Results for real-world datasets evaluated using artificial occlusion generated with ray casting on the test
set averaged over five random seeds. The chosen unit of elevation is meters.

Method Terrain `1,occ MSEocc PSNRocc

Telea [2]
ETH Stairs

0.09581 0.04980 26.45
Navier-Stokes [23] 0.09563 0.05339 26.14
Our method 0.071± 0.004 0.018± 0.001 30.9± 0.3

Telea [2]
Obstacle course

0.28733 0.35048 23.72
Navier-Stokes [23] 0.28005 0.34751 23.76
Our method 0.173± 0.002 0.166± 0.003 26.97± 0.07

Telea [2]
Gonzen mine

0.20346 0.16535 14.29
Navier-Stokes [23] 0.20203 0.16787 14.23
Our method 0.081± 0.002 0.026± 0.001 22.3± 0.2

Telea [2]
Tenerife Lunar

0.08978 0.02714 40.58
Navier-Stokes [23] 0.08812 0.02705 40.60
Our method 0.0502± 0.0009 0.0110± 0.0002 44.51± 0.09

dome LiDAR sensor and an IMU to perceive 3D point clouds of its environment and odometry
information respectively. 2.5D DEMs of size 300× 300 px are derived using robot-centric elevation
mapping [16, 17]. The datasets encapsulate a staircase and an obstacle course at ETH Zürich, and
the subterranean exploration of the Gonzen [18] mine in Switzerland. For the ANYmal datasets,
we use approximately 80% of the subgrid DEMs for the training set and approximately 10% each
respectively for the validation and test sets. The ETH stairs, ETH obstacles course, and Gonzen mine
datasets contain in total 26,233, 37,274 and 16,459 samples. We divide the 300× 300 px DEMs
into 16 subgrids that is 75× 75 px each, to increase generalization capabilities, reduce the GPU
memory requirements and exclude empty parts. We uploaded a video of the inference of our method
on the Gonzen mine dataset [18] to YouTube2. Tenerife Lunar Analogue dataset: We evaluate our
methods on a lunar analogue dataset which was collected during a field test campaign in June 2017 at
Minas de San José on the Teide Volcano on the island of Tenerife using the HDPR [19], a lab rover
testbed with resemblance to the Rosalind Franklin rover [20] used in the ExoMars mission. The
dataset contains GNSS recordings, the rovers raw inertial data, and images from three stereo cameras
during several traverses over the duration of several days and under different lighting conditions on
different pre-planned paths. We apply the GA SLAM [21] technique to extract DEMs from the raw
dataset. We divide the 600× 600 px DEMs into 64 subgrids à 75× 75 px. We exclude subgrids if
they are more than 50% occluded. This policy results in 42,600 samples for the training set, 1,000
samples for the validation set and 7,950 samples for the test set.

3.2 Results

Similar to other publications on the topic of image inpainting such as [4, 22], we state the `1 loss, the
MSE, and the Peak signal-to-noise ratio (PSNR). The PSNR is a function of the total MSE loss of the
occluded area and the maximum dynamic range of all DEMs. We only report the evaluation metrics
for the occluded area as we argue that a composed DEM incorporating the non-occluded parts of
the input DEM can be easily created. Evaluating quantitatively on real-world datasets containing
artificial occlusion generated with ray casting, we state a decrease of 37%, 38%, 40%, and 46% in
`1 error compared to the Telea [2] baseline approach using self-supervised learning as listed in Table 1.
Similarily, hhe MSE and derived PSNR metrics also show consistent and significant improvements
using our method instead of the baseline methods.

4 Conclusion

This work proposes a self-supervised learning approach for filling occlusion in 2.5D terrain maps.
The method leverages artificial occlusion generated with an iterative ray casting algorithm to train
a neural network on real-world data with an incomplete ground-truth. Evaluating quantitatively
on real-world datasets, we state a decrease of between 37% and 46% in `1 error compared to the
Telea [2] baseline approach. It is crucial to explore uncertainty estimation methods such as dropout for
model uncertainty in future work to enable the passing of elevation variance estimates to downstream
navigation tasks such as motion planning.

2https://youtu.be/2Khxeto62LQ
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APPENDIX

4.1 Ray casting

We rely on ray casting to generate artificial occlusion in the framework of self-supervised learning.
We developed a lightweight C++ component with Python bindings to perform fast ray casting of an
entire grid map from a given vantage point3. The ray casting algorithm (see Algorithm 1) takes a grid
map (e.g. DEM) and a vantage point xv in Cartesian coordinates as inputs. The vantage point is
specified relative to the center of the DEM (e.g. image coordinates (u2 ,

v
2 )). It iterates with a nested

for loop through every cell in the grid and subsequently checks whether the cell is visible from the
vantage point. This is done by tracing a ray in 3D from the vantage point into direction dray of the
cell xgc. We initialise the grid cell as not occluded. We step along the ray with a step length of half of
the grid resolution rg ∈ R2. After each step, we evaluate the current corresponding pixel and extract
the elevation of the pixel from the DEM. If we have stored an elevation information for the pixel in
the DEM, we check if the elevation is higher than the current vertical offset of the ray. If that is the
case, we break the loop and designate the grid cell, which we are ray casting, as occluded. Otherwise,
we continue stepping along the ray until we reach the target grid cell where we break and designate
the grid cell as not occluded. We also break when we are past the grid cell by checking if the distance
of the vantage point to the current ray position is larger or equal to the distance from the vantage point
to the grid cell as we sometimes do not directly reach the grid cell because of numeric inaccuracies.

4.2 Self-supervised learning

We propose a self-supervised learning methodology to train on real-world datasets without ground-
truth to learn to fill-in missing elevation information of DEMs. We reformulate the training setup
by using our partly occluded real-world elevation map as a target and creating additional artificial
occlusion which is used as an input into the neural network. We considered a dilation of the already
occluded area in addition to randomly occluding pixels. However, this approach does not render
realistic and diverse occlusion masks. We decided to add artificial occlusion by ray casting from a
randomly sampled vantage point.

We employ an iterative algorithm to generate useful artificial occlusion masks with occlusion ratios
between 0.1% and 50% and choose the elevation offset o of the vantage point accordingly. First, we
sample a random vantage point from the grid with a uniform distribution. Then, we sample a random
elevation offset for the vantage point o ∼ U (omin, omax), perform ray casting for the chosen vantage
point and evaluate the resulting occlusion ratio (e.g., number of occluded grid cells over number of
total grid cells).

We require that the occlusion ratio rocc lies within the interval [rocc,min, rocc,max]. If that is not the
case, we sample a new elevation offset. This time, we adjust the range of the uniform distribution: if
rocc > rocc,max, we increase omin to the previously sampled elevation offset o, and if rocc < rocc,min,
we decrease omax to the previously sampled elevation offset o. If ‖omax − omin‖ < 0.05m, we
enforce a minimal sampling range by respectively decreasing omin by 0.05m or increasing omax
by 0.05m. We repeat this algorithm until either we have satisfied our occlusion ratio constraint
[rocc,min, rocc,max] or we have reached the maximum number of iterations (15). We reformulate our
loss function to only consider the areas of artificial occlusion and ignore the already occluded areas
in the target DEM.

4.3 Model architecture

We adopt an U-Net [12] for our neural network architecture as used by many publications in the
past few years on the topic of image and video inpainting [4, 6, 24–27]. The input is composed
of two channels: the occluded elevation map mocc and the binary occlusion mask Mocc. As the
occluded elevation map contains missing values represented as NaNs for the grid cells which are
occluded, we need to replace those NaNs with a floating point number. We treat this replacement
value as a hyperparameter and select 0.0 after a selection study. We also implement input and output
normalization: we compute the mean of the non-occluded elevation values of a DEM and subtract

3https://github.com/mstoelzle/grid-map-raycasting
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Algorithm 1: Perform ray casting from vantage point xvp and with grid resolution rg for DEM
mgt and return occluded DEM mocc

Result: mocc
u← 0 ;
v ← 0 ;
while u < n do

xgc,x ← (−n
2 + u) ∗ rg,x;

while v < m do
xgc,y ← (−m

2 + v) ∗ rg,y;
xgc,z ←mgt;
if isNan(mgt) then

mocc,uv = True;
continue

end
dray ← xgc−xvp

‖xgc−xvp‖2 ;
occ← False;
xrc ← xvp;
while occ == False do

xrc ← xrc + 0.5 · dray ·min(rg,x, rg,y);
urc ← round(n2 +

xrc,x

rg,x
);

vrc ← round(m2 +
xrc,y

rg,y
);

if u == urc and v == vrc then
break

end
if ‖xrc − xvp‖2 > ‖xgc − xvp‖2 then

break
end
if isNotNan(mgt,rc) then

if mgt,rc > xrc,z then
occ← True;

end
end

end
mocc,uv ← occ;
v ← v + 1 ;

end
u← u+ 1 ;

end

this mean from each elevation value in the grid. After receiving the output of the model, we add this
mean back to each elevation value before computing the loss. We adapt our model from the vanilla
U-Net [12] architecture and make slight adjustments to the number of max-pooling steps because
we are dealing with smaller input images (64× 64 px instead of 572× 572 px) than in the original
paper [12] and we want to keep the network as lightweight as possible. Thus, we limit the number of
max-pooling operations to 3 (instead of 5 in the original paper) and treat the number of channels in
each hidden dimension as a hyperparameter for which we select 64, 128, and 256 channels for our
hidden dimensions. Analogue to the original paper [12], we use double convolutions with kernel 3
and padding 1 at every hidden dimension for the contracting path. Every convolution is followed by
2D batch norm and a Rectified Linear Unit (ReLU). After the encoder, we directly enter the expansive
path without a latent space. Bilinear up-sampling with a scale factor of two is used for every decoding
step with subsequent concatenation with the skip connection data. Analogue to the encoder, every
double convolution is followed by a 2D batch norm and a ReLU. Ablation study experiments showed
that skip connections are absolutely essential for decent reconstruction performance. We visualize
the adapted U-Net architecture in Figure 3.
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Figure 3: U-Net [12] as implemented in this work. We input the occluded DEM mocc and a binary occlusion
mask Mocc and output the reconstructed DEM. mrec

4.4 Evaluation metrics

Similar to other publications on the topic of image inpainting such as [4, 22], we state the `1 loss, the
MSE, and the PSNR. We use the separated test set for all evaluation results.

`1,occ =
1

Nocc

∑

(i,j)∈Rocc

‖mgt,ij −mrec,ij‖1 (1)

The PSNR is a function of the total MSE loss of the occluded area and the maximum dynamic range
of the pixel-values L determined by computing the delta between the highest and lowest elevation of
the ground-truth DEMs mk

gt of the entire test dataset.

PSNRocc = 20 · log10(L)− 10 · log10(LMSE,occ)

L = max(mk
gt)−min(mk

gt)
(2)

It is important to mention that the PSNR is not linearly accumulated over mini-batches, but rather
computed as a function of the MSE loss over the entire dataset. We only report the evaluation metrics
for the occluded area as we argue that a composed DEM incorporating the non-occluded parts of the
input DEM mcomp can be easily created and thus the reconstruction capability of the non-occluded
area by the model is not essential.
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