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Abstract

In this paper, we propose an MPC method for robot motion by formulating MPC
as Bayesian Inference. We propose using amortized variational inference to ap-
proximate the posterior with a normalizing flow conditioned on the start, goal and
environment. By using a normalizing flow to represent the posterior, we are able to
model complex distributions. This is important for robotics, where real environ-
ments impose difficult constraints on trajectories. We also present an approach for
generalizing the learned sampling distribution to novel environments outside the
training distribution. We demonstrate that our approach generalizes to a difficult
novel environment and outperform a baseline sampling-based MPC method on a
navigation problem.

1 Introduction
Model predictive control (MPC) methods have been widely used in robotics for applications such
as autonomous driving [1], bipedal locomotion [2] and manipulation of deformable objects [3].
For nonlinear "stochastic" systems, sampling based approaches for MPC such as CEM and MPPI
[4, 1] have proven popular due to their ability to handle uncertainty, their minimal assumptions
on the dynamics and cost function, and their parallelizable sampling. However these methods
struggle when sampling low cost action sequences is unlikely and can become stuck in local minima,
for example when a robot must find a path through a cluttered environment. Previous work has
investigated the duality between control and inference [5, 6] and considered both planning and control
as inference problems [7–9]. Several recent papers have considered the finite-horizon stochastic
optimal control problem as Bayesian inference, and proposed methods of performing variational
inference to approximate the posterior [10–13]. In order to perform variational inference, we must
specify a parameterized distribution which is tractable to optimize and sample while also being
flexible enough to provide a good approximation of the true posterior over low cost trajectories, which
may exhibit strong dependencies and multimodalities. SVI-MPC approximates the posterior as a set
of particles [10], whereas VI-MPC uses a mixture of Gaussians [12]. We propose using a normalizing
flow to approximate the true posterior over trajectories. Normalizing flows have previously been used
to parameterize variational posteriors in [14].

Contributions: We propose a method for learning a start, goal and environment conditioned
distribution over finite horizon action sequences for MPC applied to navigation problems. Our
method is able to generate diverse action sequences which display goal driven behavior for use
downstream in a sampling-based MPC controller and does not require differentiable cost or dynamics.
We also propose a method for generalizing this action sequence distribution to novel environments.
We attempt to find an in-distribution environment from which we can sample high-performing
action sequences evaluated in the actual novel environment. We demonstrate that our approach can
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Figure 1: The overall process for sampling action sequences is shown above. The sampler takes
as input initial & goal states x0, xG, and the environment, converted to a signed distance field
(SDF). The SDF is processed by a normalizing flow g to produce a latent representation γ which is
Gaussian-distributed. p(γ) is used to measure how out-of distribution (OOD) an environment is and
used to project γ in-distribution. (x0, xG, γ) are processed by a CNN h and passed to the conditional
normalizing flow f . Finally, the conditional normalizing flow transforms samples from Gaussian
distributed Z into sequences of actions.

generalize to difficult novel environments outside the training distribution where MPPI fails on a
navigation problem. The outline of our approach is shown in Figure 1.

2 Methods

Finite-horizon Stochastic Optimal Control. We consider a discrete-time system with state
x ∈ Rdx and control u ∈ Rdu and transition probability p(xt+1|xt, ut). We define finite horizon
trajectories with horizon T as τ = (X,U), where X = {x0, x1, ...xT } and U = {u0, u1, ...uT−1}.
The goal is to find U which minimizes the expected cost Ep(X|U)[J(τ)] for cost function J where
p(X|U) =

∏T−1
t=0 p(xt+1|xt, ut). Note that we will use J to mean both the cost on the total trajectory

J(τ) and the cost of an individual state action pair J(x, u). For the purpose of the rest of the paper
we will consider the case of collision-free navigation of an environment, where the cost function J is
parameterized by (xG, E), a goal state and an environment signed distance field (SDF) respectively.

Variational Inference for Stochastic Optimal Control. We can reformulate the above as an
inference problem as in [9, 15, 12, 10]. First, we introduce a binary ‘optimality’ random variable o
for a trajectory where p(o = 1|τ) ∝ exp (−J(τ)). We place a prior p(U) on U , resulting in a prior
on τ , p(τ) = p(X|U)p(U) and aim to find posterior distribution p(τ |o = 1) ∝ p(o = 1|τ)p(τ). In
general, this posterior is intractable, so we use variational inference to approximate it with a tractable
distribution q(τ) which minimizes the KL-divergence KL(q(τ)||p(τ |o = 1)) [16]. Since we define
the trajectory by selecting the controls, the variational posterior factorizes as p(X|U)q(U). Thus, we
must compute an approximate posterior over action sequences. Minimizing KL(q(τ)||p(τ |o = 1)) is
equivalent to minimizing the variational free energy F (see Appendix A):

F = −Eq(τ)[log p(o|τ) + log p(U)]−H(q(U)) (1)

Where H(q(U) is the entropy of q(U). Note that log p(U) imposes regularization on the control,
and this can be appropriately combined with the cost, i.e. a Gaussian prior can be incorporated as a
squared cost on the control, so will be omitted for the rest of the paper.

Variational Inference for Stochastic Optimal Control using Normalizing Flows. Normalizing
flows can be used as a parameterization of the variational posterior [14]. Normalizing flows are
bijective transformations that can be used to transform a random variable from some base distribution
(i.e. a Gaussian) to a more complex distribution [14, 17, 18]. We use normalizing flows to define our
variational posterior, i.e. q(U) = f(Z) for Z ∼ p(Z) = N (0, I). The variational free energy then
becomes (see Appendix B.2):

F = −Eq(τ) [log p(o|τ)] + Ep(Z)

[
log p(Z)− log

∣∣∣∣det
∂f

∂Z

∣∣∣∣] (2)
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We can then optimize the flow parameters to minimize the free energy. However, this would mean
optimizing a normalizing flow every time we would like to generate a trajectory, which is clearly
too inefficient. Instead, we amortize by training a conditional normalizing flow [19] which is
conditioned on the start, goal and an SDF of the environment, i.e. q(U) = q(U |x0, xG, E) and the
conditional normalizing flow is a function U = f(Z, x0, xG, E) and is invertible with respect to
Z, i.e. Z = f−1(U, x0, xG, E). We then use a dataset D = {E, x0, xG}N and minimize the free
energy via gradient descent. Further details on using normalizing flows for variational inference and
conditional normalizing flows can be found in Appendices B and C, respectively.

Gradient Estimation. Minimizing eq. (2) via gradient descent requires the cost and dynamics to
be differentiable. To avoid this, we estimate gradients, using the method in [12]. At each iteration,
we sample from the normalizing flow and approximate q(U) with K particles and weights {Ui, wi}.
The weights are initially uniform, but are updated according to the following update law:

wi =
q(Ui)

−βp(o = 1|τi)
1
α

1
K

∑K
j=1 q(Uj)

−βp(o|τj)
1
α

(3)

This update law is equivalent to performing mirror descent on the variational free energy, see [12]
for further details. Here {α, β} are hyperparameters which control the trade-off between entropy
and likelihood. We then train the normalizing flow by performing a single gradient step maximizing
the log likelihood of this updated distribution, i.e. we maximize

∑K
i=1 wi log q(Ui). Also, to avoid

mode collapse in the flow, we apply a Gaussian perturbation to Ui after sampling from q(U), this is
demonstrated concretely in Algorithm 1 in Appendix E.
Generalizing to New Environments. A novel environment can be OOD for the conditional flow,
and result in poor performance. This is because we learn over a dataset of environments; other methods
that do not perform learning do not suffer from this issue. We present an approach where we project
the OOD environment encoding in-distribution in order to produce low-cost trajectories when used as
input to the flow. In order to do this, we first need some measure of OOD uncertainty to minimize.
Our approach is to train a latent generative model over environments; in particular, we again use a
normalizing flow to model p(E) using a standard Normal latent distribution; γ = g(E); γ ∼ N (0, I).
We use a multiscale-prior for this flow such that γ = [γ1, γ2]T and γ2 is transformed by additional
flow layers [17]. We pass (γ2, x0, xG) to be processed by a Convolutional Neural Network (CNN)
h before being passed to the conditional flow, so that the conditional flow from above becomes
U = f (Z, h(x0, xg, γ2)). Previous work has demonstrated that the likelihood from generative
models is not necessarily indicative of an input being OOD. In fact, many generative models,
including flows, can assign higher likelihood to OOD data [20–22]. However, it has been noted
that representations which have been trained for a downstream task can yield more reliable OOD
detection due to the presence of semantic information [22]. By training our entire system end-to-end,
γ2 is trained to contain an encoding of the environment relevant for trajectory generation. We thus
define our OOD score as COOD = p(γ2) = N (γ2|0, I). This score measures whether or not the
representation of the environment used for trajectory generation is in-distribution. We can perform
gradient ascent on the above likelihood to find γ̂2, thus projecting the environment to be in-distribution.
Note that this process will trivially drive toward the zero vector without regularization, for which we
use the variational free energy loss from the previous section to ensure high trajectory quality. Using
the normalizing flow, for a given γ̂2 we can sample γ1 and reconstruct an SDF of the environment.
Figures 2 (c,d) show an example of an original OOD SDF and its reconstructed projection.

FlowMPPI. We present a method for using the flow for a control task. The flow specifies an action
sampling distribution q(U) and can be used alongside many sampling based MPC approaches. We
propose a way to use our method with MPPI [1]. MPPI iteratively perturbs a nominal trajectory with
Gaussian noise and performs a weighted sum of the perturbations to find a new trajectory. We can run
MPPI in the latent space of the flow, i.e. perturbing a nominal vector Z with Gaussian noise. Note
that by perturbing a nominal vector we quickly leave the region of high density under p(Z), so rather
than sample perturbations to a nominal trajectory we instead sample trajectories directly from p(Z).
We then apply a perturbation cost on the distance of the sampled trajectory from the nominal in latent
space. We found that the best results were produced by perturbing half of the samples in action space
(as in standard MPPI), and half in the flow latent space. Additionally at each timestep we perform
one gradient step to project the environment toward being in-distribution as described in the previous
section. This is detailed in Algorithm 4 in Appendix E.
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Figure 2: a,b) Rollouts of sampled action sequences. The entropy of the sampling distribution
increases in the presence of obstacles. c, e) The SDF for a novel environment and the sampled
trajectories. Despite the presence of an obstacle, the entropy of the sampling distribution is narrow
and no collision free trajectories are generated. d,f) SDF after performing the projection. The entropy
of the sampled trajectories has increased to account for the presence of the wall, and there are some
collision-free sampled trajectories. g, h) Traversed trajectory of FlowMPPI in an OOD environment
without (top) and with (bottom) using projection.

3 Evaluation
Environments We evaluate our proposed approach on a simple simulated experiment of controlling
a double integrator system in the presence of obstacles (see Appendix G). Our training environment
consists of spherical obstacles, where the size, location and number of obstacles is randomized. These
environments and the outputs from the trained flow are shown in Fig. 2 (a,b). We define a testing
environment which consists of four rooms with narrow entrances shown in Fig. 2 (e,f). This is a
challenging environment for all sampling-based methods due to the narrow passages, and is also
OOD for the proposed learned flow. From each environment we get a (64× 64) SDF which we use
to evaluate the cost. For each environment, the task is to successfully execute a trajectory from the
start to the goal within 100 timesteps. The task is considered a failure if the point robot fails to get
to a goal region defined by XG = {x : ||x − xG||2 < 0.1}, or if the point robot collides with an
obstacle (C(xt) = 1) at any point during the executed trajectory. We define the trajectory cost as
J(τ) = 100||xT − xG||2 +

∑T−1
t=0 10||xt − xG||2 + 1000C(xt), where T is the MPC horizon. The

prior on actions is p(U) = N (0, I) which induces a cost on the squared magnitude of the actions.

Training & Data For training, we use 10000 randomly generated environments consisting of
spherical obstacles. The algorithm for training is shown in Appendix E. At each epoch, for each
environment, we randomly select one of 100 start and goal pairs. We train the Action flow f , the
conditioning CNN h and the Environment Flow g end-to-end using Adam for 500 epochs with a
learning rate of 1e−4.

Spherical Obstacles Narrow Passages
In-Distribution Out-of Distribution

Method Success Rate Av. Cost Success Rate Av. Cost
MPPI 0.89 1.0 0.26 1.0

FlowMPPI 0.96 0.81 0.52 0.86
FlowMPPI + proj. 0.97 0.84 0.87 0.72

Table 1: Comparison of methods on 100 randomly generated Spherical Obstacles and Narrow Passage
environments with random starts and goals.

Results Our results in Table 1 demonstrate that our approach marginally outperforms MPPI in the
training environments, but drastically outperforms MPPI in the challenging OOD test environments.
Our proposed method of projecting the environment in-distribution leads to large further improvement.
Further experimental and network architecture details are shown in Appendices G and F respectively.
For future experiments we intend to evaluate our approach with more complex dynamics, higher
dimensional state and action spaces, and with a 3D representation of the environment.
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A Variational Inference for Finite-Horizon Stochastic Optimal Control

The variational posterior over trajectories is defined by the dynamics and the variational posterior over actions:

q(τ |x0) = q(X,U |x0) = p(X|U, x0)q(U) =

T∏
t=0

p(xt+1|xt, ut)q(ut) (4)

We will omit the dependence on the initial state x0 for convenience.

KL (q(τ)||p(τ |o = 1)) =

∫
q(τ) log

q(τ)

p(τ |o = 1)
dτ (5)

=

∫
q(X,U) log

p(X|U)q(U)p(o = 1)

p(o = 1|X,U)p(X|U)p(U)
dXdU (6)

Since p(o = 1) on the numerator does not depend on U, when we minimize the above divergence it can be
dropped. The result is minimizing the below quantity, the variational free energy F .

F =

∫
q(X,U) log

q(U)

p(o = 1|X,U)p(U)
dXdU (7)

= −Eq(X,U) [log p(o = 1|X,U) + log p(U)− log q(U)] (8)
= Eq(X,U) [J(X,U)] +KL(q(U)||p(U)) (9)

= Eq(X,U)

[
Ĵ(X,U) + log q(U)

]
(10)

For the last two expressions we have used our formulation that the p(o = 1|X,U) = exp(−J(X,U)), where J
is the trajectory cost, and we have incorporated the deviation from the prior into the cost function. For example,
a zero-mean Gaussian prior on the controls can be equivalently expressed as a squared cost on the magnitude of
the controls.

B Variational Inference with Normalizing Flows

B.1 Normalizing flows

We closely follow the exposition given in [14]. Consider a random variable z ∈ Rd and with known pdf p(z). If
we define a bijective function f : Rd → Rd and define a random variable x such that x = f(z) and x = f−1(x).
According to the change of variable formula, we can define p(x) in terms of p(z) as follows:

p(x) = p(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣−1

(11)

log p(x) = log p(z)− log

∣∣∣∣det
∂f

∂z

∣∣∣∣ (12)

p(z) can be chosen to be a simple distribution such as a Normal or Uniform distribution. By choosing an
appropriate f we can represent complex and multi-modal densities p(x).

B.2 VI using normalizing flows

By selecting a base pdf p(z) and a family of functions parameterized fθ , we specify a potentially complex set of
possible densities qθ(x). Suppose that we want to approximate some distribution p(x) with some distribution
qθ(x). The variational objective is to minimize KL(qθ(x)||p(x)). This is equivalent to:

KL (qθ(x)||p(x)) =

∫
qθ(x) log

qθ(x)

p(x)
dx (13)

= Eqθ(x)[log qθ(x)− log p(x)] (14)

= Ep(z)
[
log p(z)− log

∣∣∣∣det
∂fθ
∂z

∣∣∣∣− log p(x)

]
(15)

Thus we can optimize parameters of θ of the bijective transform f in order to minimize the variational objective.
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C Conditional Normalizing Flows

We use a modification of the conditional normalizing flow detailed in [19]. We first note that we use the invertible
transforms described in [17] to define the flow. For defining invertible flow x = f(z) (x, z ∈ Rd) we define:

x1: d
2

= z1: d
2

(16)

x d
2
:d = z d

2
:d ◦ s(z1: d

2
) + t(z1: d

2
) (17)

Where x1: d
2

denotes the first d
2

elements of x and ◦ denotes the hadamard product, and s, t are neural networks.
This defines an invertible transform on half of z. By chaining these transforms together with suitable permutation
or masking we can develop complex invertible transforms on the full vector. These transforms can be made
conditional on context vector C ∈ Rn by the following:

x1: d
2

= z1: d
2

(18)

x d
2
:d = z d

2
:d ◦ s(z1: d

2
, C) + t(z1: d

2
, C) (19)

Which preserves the invertibility while allowing the addition of contextual information. While the original paper
[19] makes use of conditional priors where the latent z ∼ p(z|C). We do not do this as we found that this prior
becomes extremely peaked, and this presents difficulty for searching in the latent space for action sequences
during control.

D Gradient-free updates

Minimizing eq. (10) via gradient descent requires gradients of the cost and dynamics functions with respect
to the state and actions. This may not be always available, particularly when the cost includes checking for
collisions. Instead we follow the derivation in [12] to optimize the action flow without these gradients. The full
derivation can be found in the original paper, but performing mirror descent on the variational objective gives an
update law for q(U) as:

q̂(U) =
q(U)1−β · p(o = 1|τ)

1
α∫

q(U)1−β · p(o = 1|τ)
1
α dU

=
q(U)1−β · p(o = 1|τ)

1
α

Eq(U)

[
q(U)−β · p(o = 1|τ)

1
α

] (20)

For a distribution q(U) represented as a set of K weighted particles with weight wiKi=1 we can formulate this as
an update formula, where we assume the initial weights are uniform:

wi =
q(Ui)

−β · p(o = 1|τi)
1
α

1
K

∑K
j=1 q(Uj)

−β · p(o|τj)
1
α

(21)

E Algorithm Details: FlowMPPI

Algorithm 1 Sample from Action Flow with Perturbation
1: function SAMPLEPERTURBEDACTIONS(x0, xG, γ2, f, h,Σε,K)
2: for i ∈ {k, ...,K} do
3: Zk ∼ N (0, I)
4: εk ∼ N (0,Σε)
5: Uk ← f(Zk, h (x0, xG, γ2)) + εk
6: Ẑk ← f−1(Uk, h (x0, xG, γ2))

7: q(Uk)← from Ẑk via eq. (12)

8: return {Uk, q(Uk)}Kk=1

7



Algorithm 2 Flow Training
Inputs: N iterations, K samples, θ1 initial parameters for (f, g, h), (x0, xG, E),
action perturbation sigma Σε, learning rate η, loss hyperparameters (α, β)

1: for n ∈ {1, ..., N} do
2: γ1, γ2 ← g(E)
3: log p(E)← from (γ1, γ2) via eq. (12)
4: {Uk, q(Uk)}Kk=1 ← SAMPLEPERTURBEDACTIONS(x0, xG, γ2, f, h,Σε,K)
5: L ← − log p(E)
6: for k ∈ {1, ...,K} do
7: wk ← from ({Ui, q(Ui)}Ki=1, α, β}) via eq. (3)
8: L ← L− wk · log q(Uk)

9: θn+1 ← θn − η ∂L∂θ

Algorithm 3 Projection
1: function PROJECT(x0, xG, E, f, g, h, α, β, η,Σε,K)
2: γ1, γ2 ← g(E)
3: γ̂2 ← γ2
4: {Uk, q(Uk)}Kk=1 ← SAMPLEPERTURBEDACTIONS(x0, xG, γ̂2, f, h,Σε,K)
5: L ← − log p(γ̂2)
6: for k ∈ {1, ...,K} do
7: wk ← from ({Ui, q(Ui)}Ki=1, α, β}) via eq. (3)
8: L ← L− wk · log q(Uk)

9: γ̂ ← γ̂ − η ∂L∂γ̂
10: return γ̂2

Algorithm 4 A single step of FlowMPPI, this will run every timestep until task is completed or
failure is reached.
Inputs: Loss function J , previous nominal trajectory U , Start x0, Goal xG, Environment SDF E,
Action Flow f , Environment flow g, Context CNN h, MPPI hyperparameters (λ,Σ), Horizon T,
Samples K, Flow loss hyperparameters (α, β), Learning rate η

1: function FLOWMPPISTEP(x0, xG, E, f, g, h, J, α, β, η, λ,Σ,Σε,K)
2: γ̂2 ← PROJECT(x0, xG, E, U, f, g, h, α, β, η,Σε,K)
3: for t ∈ {1, ..., T − 1} do
4: Ut−1 ← Ut
5: UT−1 ∼ N (0,Σ)
6: Z ← f−1(U, h(x0, xG, γ̂2))
7: for k ∈ {1, ..., K2 } do
8: εU ∼ N (0,Σ)
9: Uk ← U + εU

10: τk ∼ p(τ |Uk)
11: Ck ← J(τk) + λUkΣ−1εU
12: for k ∈ {K2 + 1, ...,K} do
13: εZ ∼ N (0, I)
14: Uk ← f(εZ , h(x0, xg, γ̂2))
15: τk ∼ p(τ |Uk)
16: Ck ← J(τk) + λεZ(Z − εZ)

17: β ← mink Ck
18: η =

∑K
k=1 exp(− 1

λ (Ck − β))
19: for k ∈ {1, ...,K} do
20: wk ← 1

η exp(− 1
λ (Ck − β))

21: U ←
∑K
k=1 wkUk

22: return U
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Figure 3: Architecture for Environment flow g

F Network Architectures

The proposed system contains three networks. The action flow f , the environment flow g and the conditioning
CNN h.

Environment flow g Recall that the environment flow maps γ = g(E), with p(γ) = N (0, I). We use the
flow architecture outlined in [23], which is inspired by [24] and [17]. The input is a 64× 64 SDF. This SDF is
calculated from a 64× 64 occupancy grid. As such the SDF takes on discrete values (due to the distances being
calculated pixel-wise). Therefore we must perform dequantization to make the distribution over SDF values
continuous. Thus we add small Gaussian noise with σ = 0.02 to the SDF.

We use coupling layers as described in Appendix C. The nonlinear transformations s, t are defined by Gated
Convolutional ResNets as described in [24] with (3× 3) kernels and 2 layers. We use the ConcatElu activation
function [25]. Each transformation operating on half of the image at a time, the half that is operated on is defined
by applying a mask to the image. These masks are either a checkerboard mask, or a channel-wise mask. We also
use a Squeeze operation which squeezes an image from c×w×h to 4 · c× w

2
× h

2
. We use a hierarchical prior

which splits an imagine into two equal parts channel wise Split : (c×w× h)→ ( c
2
×w× h), ( c

2
×w× h).

After splitting one the two half-images can be evaluated on the prior.

The flow transforms E ∈ R64×64 to γ1, γ2 ∈ R8×16×16. The full architecture is shown in Figure 3.

Conditioning CNN h The conditioning CNN h takes as input x0, xG, γ2 and outputs a context vector
c ∈ Rdc which is then used in the action flow. First we use three Convolutional layers with ReLu activation
functions and 32 channels and (3 × 3) kernels to process γ2, which is a multi-channel image, followed by a
single linear to map the environment encoding to a vector of dimension 256. This is then concatenated with
x0, xG and processed with a 2 layer neural network with ReLU activations and a hidden size of 256 to produce
c. For our experiment dc = 256.

Action flow f The action flow represents distribution q(U |x0, xG, E) as a function f transforming Z ∼
N (0, I). (x0, xG, E) are represented by the context vector c described in the previous section, thus U = f(Z, c)
and the inverse w.r.t Z is Z = f−1(X, c). The context vector is used in the coupling layer as described in
Appendix C. The action sequence U ∈ RT×du , and we use a flattened Z ∈ RT ·du. Rather than defining masks
as in the previous section, we use the invertible 1× 1 convolution introduced in [18] which includes a random
permutation. The action flow f is defined as 10 coupling layers separated by a 1× 1 convolution permutation
layer.

G Experimental Details

System Dynamics For our test environment we use a 2D double integrator with damping, with the following
state and dynamics, control u ∈ R2 and ∆t = 0.05s. For our experiments we use a horizon of T = 40.xt+1

yt+1

ẋt+1

ẏt+1

 =

1 0 ∆t 0
0 1 0 ∆t
0 0 0.95 0
0 0 0 0.95


xtytẋt
ẏt

+

 0 0
0 0

∆t 0
0 ∆t

u (22)
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Figure 4: Top row: Three example environments. Left to right, Spherical obstacles, Rectangular
obstacles, Environment with Narrow passages. Bottom row: Measuring OOD of generative flow
trained on environment with spherical obstacles. Left: We see that using only γ2, the environment
representation used for planning, we get substantially better separation of in-distribution vs out of
distribution data vs using the overall likelihood of the environment on the right.

Training We train with 10000 64× 64 environment SDFs and 100 start, goal pairs per environment. At each
iteration when training on one environment, we randomly sample a single start and goal pair. We train with Adam
and learning rate of 1e−4, and L2 regularization with strength 1e−5. During training when evaluating J(τk)−
log p(Uk) we normalize it to be in the range [0, 1], we also normalize q(Uk) to be in the range [−1, 0]. We use
hyperparameters α = 0.01, β = 1 when training the flow. Additionally, we anneal the perturbation applied to
samples of the flow, decaying their magnitude to zero, i.e. Σε = I ·max(min(1.0, (1.0− epoch

#epochs )), 0.0).

Projection When performing projection inside FLOWMPPISTEP we perform one gradient step of projection
at each timestep. The learning rate when performing projection is 1e−2. Figure 4 shows the OOD score for
different datasets. Since for our dataset, the OOD score is a maximum of around −2900, we clamp the OOD
score during projection to be no higher than this. This is to prevent the OOD score from driving the projected
environment further towards the zero vector and away from the in-distribution data. During projection, we again
use α = 0.01, β = 1.0, and we use an action perturbation of Σε = 1.
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